- SeasonalIndexer on sfts
This commit is contained in:
parent
4cfc2bced4
commit
849cd74bff
@ -25,9 +25,11 @@ class SeasonalIndexer(object):
|
||||
|
||||
|
||||
class LinearSeasonalIndexer(SeasonalIndexer):
|
||||
def __init__(self,seasons):
|
||||
def __init__(self,seasons,units,ignore=None):
|
||||
super(LinearSeasonalIndexer, self).__init__(len(seasons))
|
||||
self.seasons = seasons
|
||||
self.units = units
|
||||
self.ignore = ignore
|
||||
|
||||
def get_season_of_data(self,data):
|
||||
return self.get_season_by_index(np.arange(0, len(data)).tolist())
|
||||
@ -35,20 +37,25 @@ class LinearSeasonalIndexer(SeasonalIndexer):
|
||||
def get_season_by_index(self,index):
|
||||
ret = []
|
||||
if not isinstance(index, (list, np.ndarray)):
|
||||
season = (index % self.seasons[0]) + 1
|
||||
if self.num_seasons == 1:
|
||||
season = (index // self.units[0]) % self.seasons[0]
|
||||
else:
|
||||
season = []
|
||||
for ct, seasonality in enumerate(self.seasons, start=0):
|
||||
tmp = (index // self.units[ct]) % self.seasons[ct]
|
||||
if not self.ignore[ct]:
|
||||
season.append(tmp)
|
||||
ret.append(season)
|
||||
else:
|
||||
for ix in index:
|
||||
if self.num_seasons == 1:
|
||||
season = (ix % self.seasons[0])
|
||||
season = (ix // self.units[0]) % self.seasons[0]
|
||||
else:
|
||||
season = []
|
||||
for seasonality in self.seasons:
|
||||
#print("S ", seasonality)
|
||||
tmp = ix // seasonality
|
||||
#print("T ", tmp)
|
||||
for ct, seasonality in enumerate(self.seasons, start=0):
|
||||
tmp = (ix // self.units[ct]) % self.seasons[ct]
|
||||
if not self.ignore[ct]:
|
||||
season.append(tmp)
|
||||
#season.append(rest)
|
||||
|
||||
ret.append(season)
|
||||
|
||||
return ret
|
||||
|
14
sfts.py
14
sfts.py
@ -51,11 +51,13 @@ class SeasonalFTS(fts.FTS):
|
||||
|
||||
season = self.indexer.get_season_by_index(ct)[0]
|
||||
|
||||
if season not in flrgs:
|
||||
flrgs[season] = SeasonalFLRG(season)
|
||||
ss = str(season)
|
||||
|
||||
if ss not in flrgs:
|
||||
flrgs[ss] = SeasonalFLRG(season)
|
||||
|
||||
#print(season)
|
||||
flrgs[season].append(flr.RHS)
|
||||
flrgs[ss].append(flr.RHS)
|
||||
|
||||
return (flrgs)
|
||||
|
||||
@ -63,7 +65,7 @@ class SeasonalFTS(fts.FTS):
|
||||
self.sets = sets
|
||||
ndata = self.doTransformations(data)
|
||||
tmpdata = FuzzySet.fuzzySeries(ndata, sets)
|
||||
flrs = FLR.generateNonRecurrentFLRs(tmpdata)
|
||||
flrs = FLR.generateRecurrentFLRs(tmpdata)
|
||||
self.flrgs = self.generateFLRG(flrs)
|
||||
|
||||
def forecast(self, data, **kwargs):
|
||||
@ -78,11 +80,11 @@ class SeasonalFTS(fts.FTS):
|
||||
|
||||
season = self.indexer.get_season_by_index(k)[0]
|
||||
|
||||
flrg = self.flrgs[season]
|
||||
flrg = self.flrgs[str(season)]
|
||||
|
||||
mp = self.getMidpoints(flrg)
|
||||
|
||||
ret.append(sum(mp) / len(mp))
|
||||
ret.append(np.percentile(mp, 50))
|
||||
|
||||
ret = self.doInverseTransformations(ret, params=[data[self.order - 1:]])
|
||||
|
||||
|
@ -16,10 +16,12 @@ from pyFTS import fts,hofts,ifts,pwfts,tree, chen
|
||||
from pyFTS.benchmarks import naive, arima
|
||||
from pyFTS.benchmarks import Measures
|
||||
from numpy import random
|
||||
from pyFTS.models.seasonal import SeasonalIndexer
|
||||
|
||||
os.chdir("/home/petronio/dados/Dropbox/Doutorado/Codigos/")
|
||||
|
||||
diff = Transformations.Differential(1)
|
||||
ix = SeasonalIndexer.LinearSeasonalIndexer([12, 24], [720, 1],[False, False])
|
||||
|
||||
"""
|
||||
DATASETS
|
||||
@ -47,14 +49,14 @@ DATASETS
|
||||
#sp500 = np.array(sp500pd["Avg"][11000:])
|
||||
#del(sp500pd)
|
||||
|
||||
#sondapd = pd.read_csv("DataSets/SONDA_BSB_HOURLY_AVG.csv", sep=";")
|
||||
#sondapd = sondapd.dropna(axis=0, how='any')
|
||||
#sonda = np.array(sondapd["glo_avg"])
|
||||
#del(sondapd)
|
||||
sondapd = pd.read_csv("DataSets/SONDA_BSB_HOURLY_AVG.csv", sep=";")
|
||||
sondapd = sondapd.dropna(axis=0, how='any')
|
||||
sonda = np.array(sondapd["glo_avg"])
|
||||
del(sondapd)
|
||||
|
||||
bestpd = pd.read_csv("DataSets/BEST_TAVG.csv", sep=";")
|
||||
best = np.array(bestpd["Anomaly"])
|
||||
del(bestpd)
|
||||
#bestpd = pd.read_csv("DataSets/BEST_TAVG.csv", sep=";")
|
||||
#best = np.array(bestpd["Anomaly"])
|
||||
#del(bestpd)
|
||||
|
||||
#print(lag)
|
||||
#print(a)
|
||||
@ -137,35 +139,41 @@ bchmk.interval_sliding_window(sp500, 2000, train=0.8, inc=0.2, #models=[yu.Weigh
|
||||
|
||||
"""
|
||||
|
||||
"""
|
||||
#"""
|
||||
|
||||
bchmk.ahead_sliding_window(best, 4000, steps=10, resolution=100, train=0.8, inc=0.5,
|
||||
bchmk.ahead_sliding_window(sonda, 10000, steps=10, resolution=10, train=0.2, inc=0.5,
|
||||
partitioners=[Grid.GridPartitioner],
|
||||
partitions= np.arange(10,200,step=10),
|
||||
dump=True, save=True, file="experiments/best_ahead_analytic.csv",
|
||||
partitions= np.arange(10,200,step=10), indexer=ix,
|
||||
dump=True, save=True, file="experiments/sondasolar_ahead_analytic.csv",
|
||||
nodes=['192.168.0.106', '192.168.0.108', '192.168.0.109']) #, depends=[hofts, ifts])
|
||||
|
||||
|
||||
bchmk.ahead_sliding_window(best, 4000, steps=10, resolution=100, train=0.8, inc=0.5,
|
||||
bchmk.ahead_sliding_window(sonda, 10000, steps=10, resolution=10, train=0.2, inc=0.5,
|
||||
partitioners=[Grid.GridPartitioner],
|
||||
partitions= np.arange(3,20,step=2), transformation=diff,
|
||||
dump=True, save=True, file="experiments/best_ahead_analytic_diff.csv",
|
||||
partitions= np.arange(3,20,step=2), transformation=diff, indexer=ix,
|
||||
dump=True, save=True, file="experiments/sondasolar_ahead_analytic_diff.csv",
|
||||
nodes=['192.168.0.106', '192.168.0.108', '192.168.0.109']) #, depends=[hofts, ifts])
|
||||
|
||||
"""
|
||||
from pyFTS.partitioners import Grid
|
||||
from pyFTS.models.seasonal import SeasonalIndexer
|
||||
|
||||
from pyFTS import sfts
|
||||
|
||||
ix = SeasonalIndexer.LinearSeasonalIndexer([10])
|
||||
|
||||
|
||||
#print(ix.get_season_of_data(best[:2000]))
|
||||
|
||||
#print(ix.get_season_by_index(45))
|
||||
|
||||
#ix = SeasonalIndexer.LinearSeasonalIndexer([720,24],[False,True,False])
|
||||
|
||||
#print(ix.get_season_of_data(sonda[6500:9000])[-20:])
|
||||
|
||||
diff = Transformations.Differential(1)
|
||||
|
||||
fs = Grid.GridPartitioner(best[:2000], 10, transformation=diff)
|
||||
fs = Grid.GridPartitioner(sonda[:9000], 10, transformation=diff)
|
||||
|
||||
|
||||
|
||||
tmp = sfts.SeasonalFTS("")
|
||||
tmp.indexer = ix
|
||||
@ -175,9 +183,9 @@ tmp.appendTransformation(diff)
|
||||
|
||||
#tmp.appendTransformation(diff)
|
||||
|
||||
tmp.train(best[:1600], fs.sets, order=1)
|
||||
tmp.train(sonda[:9000], fs.sets, order=1)
|
||||
|
||||
x = tmp.forecast(best[1600:1610])
|
||||
x = tmp.forecast(sonda[:1610])
|
||||
|
||||
#print(taiex[1600:1610])
|
||||
print(x)
|
||||
|
Loading…
Reference in New Issue
Block a user