diff --git a/ismailefendi.py b/ismailefendi.py index e3fde55..87888c7 100644 --- a/ismailefendi.py +++ b/ismailefendi.py @@ -30,31 +30,32 @@ class ImprovedWeightedFLRG: class ImprovedWeightedFTS(fts.FTS): def __init__(self,name): super(ImprovedWeightedFTS, self).__init__(1,name) + + def generateFLRG(self, flrs): + flrgs = {} + for flr in flrs: + if flr.LHS in flrgs: + flrgs[flr.LHS].append(flr.RHS) + else: + flrgs[flr.LHS] = ImprovedWeightedFLRG(flr.LHS); + flrgs[flr.LHS].append(flr.RHS) + return (flrgs) + + def train(self, data, sets): + self.sets = sets + tmpdata = common.fuzzySeries(data,sets) + flrs = common.generateRecurrentFLRs(tmpdata) + self.flrgs = self.generateFLRG(flrs) def forecast(self,data): - actual = self.fuzzy(data) - if actual["fuzzyset"] not in self.flrgs: - return self.sets[actual["fuzzyset"]].centroid - flrg = self.flrgs[actual["fuzzyset"]] + mv = common.fuzzyInstance(data, self.sets) + + actual = self.sets[ np.argwhere( mv == max(mv) )[0,0] ] + + if actual.name not in self.flrgs: + return actual.centroid + + flrg = self.flrgs[actual.name] + mi = np.array([self.sets[s].centroid for s in flrg.RHS.keys()]) return mi.dot( flrg.weights() ) - - def train(self, data, sets): - last = {"fuzzyset":"", "membership":0.0} - actual = {"fuzzyset":"", "membership":0.0} - - for s in sets: - self.sets[s.name] = s - - self.flrgs = {} - count = 1 - for inst in data: - actual = self.fuzzy(inst) - - if count > self.order: - if last["fuzzyset"] not in self.flrgs: - self.flrgs[last["fuzzyset"]] = ImprovedWeightedFLRG(last["fuzzyset"]) - - self.flrgs[last["fuzzyset"]].append(actual["fuzzyset"]) - count = count + 1 - last = actual