Documentation update

This commit is contained in:
Petrônio Cândido 2019-06-21 11:34:49 -03:00
parent 1237f3c2e3
commit 812b99bcea
14 changed files with 251 additions and 83 deletions

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -335,8 +335,6 @@
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.Util.check_ignore_list">check_ignore_list() (in module pyFTS.benchmarks.Util)</a> <li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.Util.check_ignore_list">check_ignore_list() (in module pyFTS.benchmarks.Util)</a>
</li> </li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.Util.check_replace_list">check_replace_list() (in module pyFTS.benchmarks.Util)</a> <li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.Util.check_replace_list">check_replace_list() (in module pyFTS.benchmarks.Util)</a>
</li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.ResidualAnalysis.chi_squared">chi_squared() (in module pyFTS.benchmarks.ResidualAnalysis)</a>
</li> </li>
<li><a href="pyFTS.common.html#pyFTS.common.SortedCollection.SortedCollection.clear">clear() (pyFTS.common.SortedCollection.SortedCollection method)</a> <li><a href="pyFTS.common.html#pyFTS.common.SortedCollection.SortedCollection.clear">clear() (pyFTS.common.SortedCollection.SortedCollection method)</a>
</li> </li>
@ -357,6 +355,8 @@
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.common_process_point_jobs">common_process_point_jobs() (in module pyFTS.benchmarks.benchmarks)</a> <li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.common_process_point_jobs">common_process_point_jobs() (in module pyFTS.benchmarks.benchmarks)</a>
</li> </li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.common_process_probabilistic_jobs">common_process_probabilistic_jobs() (in module pyFTS.benchmarks.benchmarks)</a> <li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.common_process_probabilistic_jobs">common_process_probabilistic_jobs() (in module pyFTS.benchmarks.benchmarks)</a>
</li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.common_process_time_jobs">common_process_time_jobs() (in module pyFTS.benchmarks.benchmarks)</a>
</li> </li>
</ul></td> </ul></td>
<td style="width: 33%; vertical-align: top;"><ul> <td style="width: 33%; vertical-align: top;"><ul>
@ -432,6 +432,12 @@
</li> </li>
<li><a href="pyFTS.models.seasonal.html#pyFTS.models.seasonal.common.DateTime.day_of_year">day_of_year (pyFTS.models.seasonal.common.DateTime attribute)</a> <li><a href="pyFTS.models.seasonal.html#pyFTS.models.seasonal.common.DateTime.day_of_year">day_of_year (pyFTS.models.seasonal.common.DateTime attribute)</a>
</li> </li>
<li><a href="pyFTS.models.multivariate.html#pyFTS.models.multivariate.grid.GridCluster.defuzzyfy">defuzzyfy() (pyFTS.models.multivariate.grid.GridCluster method)</a>
<ul>
<li><a href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner.defuzzyfy">(pyFTS.partitioners.partitioner.Partitioner method)</a>
</li>
</ul></li>
</ul></td> </ul></td>
<td style="width: 33%; vertical-align: top;"><ul> <td style="width: 33%; vertical-align: top;"><ul>
<li><a href="pyFTS.probabilistic.html#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.density">density() (pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution method)</a> <li><a href="pyFTS.probabilistic.html#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.density">density() (pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution method)</a>
@ -468,10 +474,10 @@
</li> </li>
<li><a href="pyFTS.common.html#pyFTS.common.Util.enumerate2">enumerate2() (in module pyFTS.common.Util)</a> <li><a href="pyFTS.common.html#pyFTS.common.Util.enumerate2">enumerate2() (in module pyFTS.common.Util)</a>
</li> </li>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="pyFTS.probabilistic.html#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.expected_value">expected_value() (pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution method)</a> <li><a href="pyFTS.probabilistic.html#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.expected_value">expected_value() (pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution method)</a>
</li> </li>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="pyFTS.partitioners.html#pyFTS.partitioners.parallel_util.explore_partitioners">explore_partitioners() (in module pyFTS.partitioners.parallel_util)</a> <li><a href="pyFTS.partitioners.html#pyFTS.partitioners.parallel_util.explore_partitioners">explore_partitioners() (in module pyFTS.partitioners.parallel_util)</a>
<ul> <ul>
@ -486,6 +492,12 @@
</li> </li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.Util.extract_measure">extract_measure() (in module pyFTS.benchmarks.Util)</a> <li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.Util.extract_measure">extract_measure() (in module pyFTS.benchmarks.Util)</a>
</li> </li>
<li><a href="pyFTS.models.seasonal.html#pyFTS.models.seasonal.partitioner.TimeGridPartitioner.extractor">extractor() (pyFTS.models.seasonal.partitioner.TimeGridPartitioner method)</a>
<ul>
<li><a href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner.extractor">(pyFTS.partitioners.partitioner.Partitioner method)</a>
</li>
</ul></li>
</ul></td> </ul></td>
</tr></table> </tr></table>
@ -525,6 +537,8 @@
</li> </li>
</ul></li> </ul></li>
<li><a href="pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFTS.flrg_lhs_conditional_probability">flrg_lhs_conditional_probability() (pyFTS.models.pwfts.ProbabilisticWeightedFTS method)</a> <li><a href="pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFTS.flrg_lhs_conditional_probability">flrg_lhs_conditional_probability() (pyFTS.models.pwfts.ProbabilisticWeightedFTS method)</a>
</li>
<li><a href="pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFTS.flrg_lhs_conditional_probability_fuzzyfied">flrg_lhs_conditional_probability_fuzzyfied() (pyFTS.models.pwfts.ProbabilisticWeightedFTS method)</a>
</li> </li>
<li><a href="pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFTS.flrg_lhs_unconditional_probability">flrg_lhs_unconditional_probability() (pyFTS.models.pwfts.ProbabilisticWeightedFTS method)</a> <li><a href="pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFTS.flrg_lhs_unconditional_probability">flrg_lhs_unconditional_probability() (pyFTS.models.pwfts.ProbabilisticWeightedFTS method)</a>
</li> </li>
@ -588,10 +602,10 @@
<li><a href="pyFTS.models.html#pyFTS.models.yu.WeightedFTS.forecast">(pyFTS.models.yu.WeightedFTS method)</a> <li><a href="pyFTS.models.html#pyFTS.models.yu.WeightedFTS.forecast">(pyFTS.models.yu.WeightedFTS method)</a>
</li> </li>
</ul></li> </ul></li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.gaussianproc.GPR.forecast_ahead">forecast_ahead() (pyFTS.benchmarks.gaussianproc.GPR method)</a> <li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead">forecast_ahead() (pyFTS.benchmarks.BSTS.ARIMA method)</a>
<ul> <ul>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.knn.KNearestNeighbors.forecast_ahead">(pyFTS.benchmarks.knn.KNearestNeighbors method)</a> <li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.gaussianproc.GPR.forecast_ahead">(pyFTS.benchmarks.gaussianproc.GPR method)</a>
</li> </li>
<li><a href="pyFTS.common.html#pyFTS.common.fts.FTS.forecast_ahead">(pyFTS.common.fts.FTS method)</a> <li><a href="pyFTS.common.html#pyFTS.common.fts.FTS.forecast_ahead">(pyFTS.common.fts.FTS method)</a>
</li> </li>
@ -618,6 +632,8 @@
<li><a href="pyFTS.common.html#pyFTS.common.fts.FTS.forecast_ahead_distribution">(pyFTS.common.fts.FTS method)</a> <li><a href="pyFTS.common.html#pyFTS.common.fts.FTS.forecast_ahead_distribution">(pyFTS.common.fts.FTS method)</a>
</li> </li>
<li><a href="pyFTS.models.ensemble.html#pyFTS.models.ensemble.ensemble.EnsembleFTS.forecast_ahead_distribution">(pyFTS.models.ensemble.ensemble.EnsembleFTS method)</a> <li><a href="pyFTS.models.ensemble.html#pyFTS.models.ensemble.ensemble.EnsembleFTS.forecast_ahead_distribution">(pyFTS.models.ensemble.ensemble.EnsembleFTS method)</a>
</li>
<li><a href="pyFTS.models.multivariate.html#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_ahead_distribution">(pyFTS.models.multivariate.cmvfts.ClusteredMVFTS method)</a>
</li> </li>
<li><a href="pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead_distribution">(pyFTS.models.pwfts.ProbabilisticWeightedFTS method)</a> <li><a href="pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead_distribution">(pyFTS.models.pwfts.ProbabilisticWeightedFTS method)</a>
</li> </li>
@ -640,6 +656,8 @@
<li><a href="pyFTS.models.html#pyFTS.models.ifts.IntervalFTS.forecast_ahead_interval">(pyFTS.models.ifts.IntervalFTS method)</a> <li><a href="pyFTS.models.html#pyFTS.models.ifts.IntervalFTS.forecast_ahead_interval">(pyFTS.models.ifts.IntervalFTS method)</a>
</li> </li>
<li><a href="pyFTS.models.html#pyFTS.models.ifts.WeightedIntervalFTS.forecast_ahead_interval">(pyFTS.models.ifts.WeightedIntervalFTS method)</a> <li><a href="pyFTS.models.html#pyFTS.models.ifts.WeightedIntervalFTS.forecast_ahead_interval">(pyFTS.models.ifts.WeightedIntervalFTS method)</a>
</li>
<li><a href="pyFTS.models.multivariate.html#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_ahead_interval">(pyFTS.models.multivariate.cmvfts.ClusteredMVFTS method)</a>
</li> </li>
<li><a href="pyFTS.models.multivariate.html#pyFTS.models.multivariate.mvfts.MVFTS.forecast_ahead_interval">(pyFTS.models.multivariate.mvfts.MVFTS method)</a> <li><a href="pyFTS.models.multivariate.html#pyFTS.models.multivariate.mvfts.MVFTS.forecast_ahead_interval">(pyFTS.models.multivariate.mvfts.MVFTS method)</a>
</li> </li>
@ -670,6 +688,8 @@
<li><a href="pyFTS.models.ensemble.html#pyFTS.models.ensemble.ensemble.EnsembleFTS.forecast_distribution">(pyFTS.models.ensemble.ensemble.EnsembleFTS method)</a> <li><a href="pyFTS.models.ensemble.html#pyFTS.models.ensemble.ensemble.EnsembleFTS.forecast_distribution">(pyFTS.models.ensemble.ensemble.EnsembleFTS method)</a>
</li> </li>
<li><a href="pyFTS.models.ensemble.html#pyFTS.models.ensemble.multiseasonal.SeasonalEnsembleFTS.forecast_distribution">(pyFTS.models.ensemble.multiseasonal.SeasonalEnsembleFTS method)</a> <li><a href="pyFTS.models.ensemble.html#pyFTS.models.ensemble.multiseasonal.SeasonalEnsembleFTS.forecast_distribution">(pyFTS.models.ensemble.multiseasonal.SeasonalEnsembleFTS method)</a>
</li>
<li><a href="pyFTS.models.multivariate.html#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_distribution">(pyFTS.models.multivariate.cmvfts.ClusteredMVFTS method)</a>
</li> </li>
<li><a href="pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_distribution">(pyFTS.models.pwfts.ProbabilisticWeightedFTS method)</a> <li><a href="pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_distribution">(pyFTS.models.pwfts.ProbabilisticWeightedFTS method)</a>
</li> </li>
@ -692,6 +712,8 @@
<li><a href="pyFTS.models.html#pyFTS.models.ifts.IntervalFTS.forecast_interval">(pyFTS.models.ifts.IntervalFTS method)</a> <li><a href="pyFTS.models.html#pyFTS.models.ifts.IntervalFTS.forecast_interval">(pyFTS.models.ifts.IntervalFTS method)</a>
</li> </li>
<li><a href="pyFTS.models.html#pyFTS.models.ifts.WeightedIntervalFTS.forecast_interval">(pyFTS.models.ifts.WeightedIntervalFTS method)</a> <li><a href="pyFTS.models.html#pyFTS.models.ifts.WeightedIntervalFTS.forecast_interval">(pyFTS.models.ifts.WeightedIntervalFTS method)</a>
</li>
<li><a href="pyFTS.models.multivariate.html#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_interval">(pyFTS.models.multivariate.cmvfts.ClusteredMVFTS method)</a>
</li> </li>
<li><a href="pyFTS.models.multivariate.html#pyFTS.models.multivariate.mvfts.MVFTS.forecast_interval">(pyFTS.models.multivariate.mvfts.MVFTS method)</a> <li><a href="pyFTS.models.multivariate.html#pyFTS.models.multivariate.mvfts.MVFTS.forecast_interval">(pyFTS.models.multivariate.mvfts.MVFTS method)</a>
</li> </li>
@ -806,8 +828,14 @@
</ul></li> </ul></li>
<li><a href="pyFTS.models.html#pyFTS.models.yu.WeightedFTS.generate_FLRG">generate_FLRG() (pyFTS.models.yu.WeightedFTS method)</a> <li><a href="pyFTS.models.html#pyFTS.models.yu.WeightedFTS.generate_FLRG">generate_FLRG() (pyFTS.models.yu.WeightedFTS method)</a>
</li> </li>
<li><a href="pyFTS.models.html#pyFTS.models.hofts.HighOrderFTS.generate_flrg_fuzzyfied">generate_flrg_fuzzyfied() (pyFTS.models.hofts.HighOrderFTS method)</a> <li><a href="pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFTS.generate_flrg2">generate_flrg2() (pyFTS.models.pwfts.ProbabilisticWeightedFTS method)</a>
</li> </li>
<li><a href="pyFTS.models.html#pyFTS.models.hofts.HighOrderFTS.generate_flrg_fuzzyfied">generate_flrg_fuzzyfied() (pyFTS.models.hofts.HighOrderFTS method)</a>
<ul>
<li><a href="pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFTS.generate_flrg_fuzzyfied">(pyFTS.models.pwfts.ProbabilisticWeightedFTS method)</a>
</li>
</ul></li>
<li><a href="pyFTS.models.multivariate.html#pyFTS.models.multivariate.mvfts.MVFTS.generate_flrs">generate_flrs() (pyFTS.models.multivariate.mvfts.MVFTS method)</a> <li><a href="pyFTS.models.multivariate.html#pyFTS.models.multivariate.mvfts.MVFTS.generate_flrs">generate_flrs() (pyFTS.models.multivariate.mvfts.MVFTS method)</a>
</li> </li>
<li><a href="pyFTS.data.html#pyFTS.data.artificial.generate_gaussian_linear">generate_gaussian_linear() (in module pyFTS.data.artificial)</a> <li><a href="pyFTS.data.html#pyFTS.data.artificial.generate_gaussian_linear">generate_gaussian_linear() (in module pyFTS.data.artificial)</a>
@ -1061,6 +1089,8 @@
<li><a href="pyFTS.distributed.html#pyFTS.distributed.spark.get_partitioner">get_partitioner() (in module pyFTS.distributed.spark)</a> <li><a href="pyFTS.distributed.html#pyFTS.distributed.spark.get_partitioner">get_partitioner() (in module pyFTS.distributed.spark)</a>
</li> </li>
<li><a href="pyFTS.models.ensemble.html#pyFTS.models.ensemble.ensemble.EnsembleFTS.get_point">get_point() (pyFTS.models.ensemble.ensemble.EnsembleFTS method)</a> <li><a href="pyFTS.models.ensemble.html#pyFTS.models.ensemble.ensemble.EnsembleFTS.get_point">get_point() (pyFTS.models.ensemble.ensemble.EnsembleFTS method)</a>
</li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.get_point_ahead_statistics">get_point_ahead_statistics() (in module pyFTS.benchmarks.Measures)</a>
</li> </li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.get_point_methods">get_point_methods() (in module pyFTS.benchmarks.benchmarks)</a> <li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.get_point_methods">get_point_methods() (in module pyFTS.benchmarks.benchmarks)</a>
</li> </li>
@ -1098,6 +1128,8 @@
<li><a href="pyFTS.models.html#pyFTS.models.ifts.WeightedIntervalFTS.get_sequence_membership">(pyFTS.models.ifts.WeightedIntervalFTS method)</a> <li><a href="pyFTS.models.html#pyFTS.models.ifts.WeightedIntervalFTS.get_sequence_membership">(pyFTS.models.ifts.WeightedIntervalFTS method)</a>
</li> </li>
</ul></li> </ul></li>
<li><a href="pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFTS.get_sets_from_both_fuzzyfication">get_sets_from_both_fuzzyfication() (pyFTS.models.pwfts.ProbabilisticWeightedFTS method)</a>
</li>
<li><a href="pyFTS.common.html#pyFTS.common.fts.FTS.get_UoD">get_UoD() (pyFTS.common.fts.FTS method)</a> <li><a href="pyFTS.common.html#pyFTS.common.fts.FTS.get_UoD">get_UoD() (pyFTS.common.fts.FTS method)</a>
<ul> <ul>
@ -1267,6 +1299,8 @@
<li><a href="pyFTS.common.html#pyFTS.common.fts.FTS.len_total">len_total() (pyFTS.common.fts.FTS method)</a> <li><a href="pyFTS.common.html#pyFTS.common.fts.FTS.len_total">len_total() (pyFTS.common.fts.FTS method)</a>
</li> </li>
<li><a href="pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFLRG.lhs_conditional_probability">lhs_conditional_probability() (pyFTS.models.pwfts.ProbabilisticWeightedFLRG method)</a> <li><a href="pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFLRG.lhs_conditional_probability">lhs_conditional_probability() (pyFTS.models.pwfts.ProbabilisticWeightedFLRG method)</a>
</li>
<li><a href="pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFLRG.lhs_conditional_probability_fuzzyfied">lhs_conditional_probability_fuzzyfied() (pyFTS.models.pwfts.ProbabilisticWeightedFLRG method)</a>
</li> </li>
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.perturbation.linear">linear() (in module pyFTS.models.nonstationary.perturbation)</a> <li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.perturbation.linear">linear() (in module pyFTS.models.nonstationary.perturbation)</a>
</li> </li>
@ -1275,6 +1309,8 @@
</ul></td> </ul></td>
<td style="width: 33%; vertical-align: top;"><ul> <td style="width: 33%; vertical-align: top;"><ul>
<li><a href="pyFTS.models.seasonal.html#pyFTS.models.seasonal.SeasonalIndexer.LinearSeasonalIndexer">LinearSeasonalIndexer (class in pyFTS.models.seasonal.SeasonalIndexer)</a> <li><a href="pyFTS.models.seasonal.html#pyFTS.models.seasonal.SeasonalIndexer.LinearSeasonalIndexer">LinearSeasonalIndexer (class in pyFTS.models.seasonal.SeasonalIndexer)</a>
</li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.ResidualAnalysis.ljung_box_test">ljung_box_test() (in module pyFTS.benchmarks.ResidualAnalysis)</a>
</li> </li>
<li><a href="pyFTS.common.html#pyFTS.common.Util.load_env">load_env() (in module pyFTS.common.Util)</a> <li><a href="pyFTS.common.html#pyFTS.common.Util.load_env">load_env() (in module pyFTS.common.Util)</a>
</li> </li>
@ -1446,7 +1482,7 @@
</li> </li>
<li><a href="pyFTS.common.html#pyFTS.common.Util.plot_probability_distributions">plot_probability_distributions() (in module pyFTS.common.Util)</a> <li><a href="pyFTS.common.html#pyFTS.common.Util.plot_probability_distributions">plot_probability_distributions() (in module pyFTS.common.Util)</a>
</li> </li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.ResidualAnalysis.plot_residuals">plot_residuals() (in module pyFTS.benchmarks.ResidualAnalysis)</a> <li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.ResidualAnalysis.plot_residuals_by_model">plot_residuals_by_model() (in module pyFTS.benchmarks.ResidualAnalysis)</a>
</li> </li>
<li><a href="pyFTS.common.html#pyFTS.common.Util.plot_rules">plot_rules() (in module pyFTS.common.Util)</a> <li><a href="pyFTS.common.html#pyFTS.common.Util.plot_rules">plot_rules() (in module pyFTS.common.Util)</a>
</li> </li>
@ -1461,8 +1497,6 @@
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.util.plot_sets_conditional">plot_sets_conditional() (in module pyFTS.models.nonstationary.util)</a> <li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.util.plot_sets_conditional">plot_sets_conditional() (in module pyFTS.models.nonstationary.util)</a>
</li> </li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.plotCompared">plotCompared() (in module pyFTS.benchmarks.benchmarks)</a> <li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.plotCompared">plotCompared() (in module pyFTS.benchmarks.benchmarks)</a>
</li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.ResidualAnalysis.plotResiduals">plotResiduals() (in module pyFTS.benchmarks.ResidualAnalysis)</a>
</li> </li>
<li><a href="pyFTS.partitioners.html#pyFTS.partitioners.Entropy.PMF">PMF() (in module pyFTS.partitioners.Entropy)</a> <li><a href="pyFTS.partitioners.html#pyFTS.partitioners.Entropy.PMF">PMF() (in module pyFTS.partitioners.Entropy)</a>
</li> </li>
@ -1529,6 +1563,8 @@
</li> </li>
</ul></li> </ul></li>
<li><a href="pyFTS.probabilistic.html#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.pseudologlikelihood">pseudologlikelihood() (pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution method)</a> <li><a href="pyFTS.probabilistic.html#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.pseudologlikelihood">pseudologlikelihood() (pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution method)</a>
</li>
<li><a href="pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFTS.pwflrg_lhs_memberhip_fuzzyfied">pwflrg_lhs_memberhip_fuzzyfied() (pyFTS.models.pwfts.ProbabilisticWeightedFTS method)</a>
</li> </li>
<li><a href="pyFTS.html#module-pyFTS">pyFTS (module)</a> <li><a href="pyFTS.html#module-pyFTS">pyFTS (module)</a>
</li> </li>
@ -2025,6 +2061,8 @@
</ul></td> </ul></td>
<td style="width: 33%; vertical-align: top;"><ul> <td style="width: 33%; vertical-align: top;"><ul>
<li><a href="pyFTS.models.ensemble.html#pyFTS.models.ensemble.multiseasonal.train_individual_model">train_individual_model() (in module pyFTS.models.ensemble.multiseasonal)</a> <li><a href="pyFTS.models.ensemble.html#pyFTS.models.ensemble.multiseasonal.train_individual_model">train_individual_model() (in module pyFTS.models.ensemble.multiseasonal)</a>
</li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.train_test_time">train_test_time() (in module pyFTS.benchmarks.benchmarks)</a>
</li> </li>
<li><a href="pyFTS.common.html#pyFTS.common.Composite.FuzzySet.transform">transform() (pyFTS.common.Composite.FuzzySet method)</a> <li><a href="pyFTS.common.html#pyFTS.common.Composite.FuzzySet.transform">transform() (pyFTS.common.Composite.FuzzySet method)</a>

Binary file not shown.

View File

@ -145,6 +145,11 @@
<code class="descclassname">pyFTS.benchmarks.benchmarks.</code><code class="descname">common_process_probabilistic_jobs</code><span class="sig-paren">(</span><em>conn</em>, <em>data</em>, <em>job</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.common_process_probabilistic_jobs" title="Permalink to this definition"></a></dt> <code class="descclassname">pyFTS.benchmarks.benchmarks.</code><code class="descname">common_process_probabilistic_jobs</code><span class="sig-paren">(</span><em>conn</em>, <em>data</em>, <em>job</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.common_process_probabilistic_jobs" title="Permalink to this definition"></a></dt>
<dd></dd></dl> <dd></dd></dl>
<dl class="function">
<dt id="pyFTS.benchmarks.benchmarks.common_process_time_jobs">
<code class="descclassname">pyFTS.benchmarks.benchmarks.</code><code class="descname">common_process_time_jobs</code><span class="sig-paren">(</span><em>conn</em>, <em>data</em>, <em>job</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.common_process_time_jobs" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="function"> <dl class="function">
<dt id="pyFTS.benchmarks.benchmarks.compareModelsPlot"> <dt id="pyFTS.benchmarks.benchmarks.compareModelsPlot">
<code class="descclassname">pyFTS.benchmarks.benchmarks.</code><code class="descname">compareModelsPlot</code><span class="sig-paren">(</span><em>original</em>, <em>models_fo</em>, <em>models_ho</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.compareModelsPlot" title="Permalink to this definition"></a></dt> <code class="descclassname">pyFTS.benchmarks.benchmarks.</code><code class="descname">compareModelsPlot</code><span class="sig-paren">(</span><em>original</em>, <em>models_fo</em>, <em>models_ho</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.compareModelsPlot" title="Permalink to this definition"></a></dt>
@ -581,6 +586,11 @@ informing the list of dispy nodes on nodes parameter.</p>
<code class="descclassname">pyFTS.benchmarks.benchmarks.</code><code class="descname">sliding_window_benchmarks2</code><span class="sig-paren">(</span><em>data</em>, <em>windowsize</em>, <em>train=0.8</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.sliding_window_benchmarks2" title="Permalink to this definition"></a></dt> <code class="descclassname">pyFTS.benchmarks.benchmarks.</code><code class="descname">sliding_window_benchmarks2</code><span class="sig-paren">(</span><em>data</em>, <em>windowsize</em>, <em>train=0.8</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.sliding_window_benchmarks2" title="Permalink to this definition"></a></dt>
<dd></dd></dl> <dd></dd></dl>
<dl class="function">
<dt id="pyFTS.benchmarks.benchmarks.train_test_time">
<code class="descclassname">pyFTS.benchmarks.benchmarks.</code><code class="descname">train_test_time</code><span class="sig-paren">(</span><em>data</em>, <em>windowsize</em>, <em>train=0.8</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.train_test_time" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</div> </div>
<div class="section" id="module-pyFTS.benchmarks.Measures"> <div class="section" id="module-pyFTS.benchmarks.Measures">
<span id="pyfts-benchmarks-measures-module"></span><h2>pyFTS.benchmarks.Measures module<a class="headerlink" href="#module-pyFTS.benchmarks.Measures" title="Permalink to this headline"></a></h2> <span id="pyfts-benchmarks-measures-module"></span><h2>pyFTS.benchmarks.Measures module<a class="headerlink" href="#module-pyFTS.benchmarks.Measures" title="Permalink to this headline"></a></h2>
@ -751,7 +761,7 @@ Brier (1950). “Verification of Forecasts Expressed in Terms of Probability”.
<tbody valign="top"> <tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> test data</li> <li><strong>data</strong> test data</li>
<li><strong>model</strong> FTS model with interval forecasting capability</li> <li><strong>intervals</strong> predicted intervals for each datapoint</li>
<li><strong>kwargs</strong> </li> <li><strong>kwargs</strong> </li>
</ul> </ul>
</td> </td>
@ -787,6 +797,28 @@ Brier (1950). “Verification of Forecasts Expressed in Terms of Probability”.
</table> </table>
</dd></dl> </dd></dl>
<dl class="function">
<dt id="pyFTS.benchmarks.Measures.get_point_ahead_statistics">
<code class="descclassname">pyFTS.benchmarks.Measures.</code><code class="descname">get_point_ahead_statistics</code><span class="sig-paren">(</span><em>data</em>, <em>forecasts</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.benchmarks.Measures.get_point_ahead_statistics" title="Permalink to this definition"></a></dt>
<dd><p>Condensate all measures for point forecasters</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> test data</li>
<li><strong>model</strong> FTS model with point forecasting capability</li>
<li><strong>kwargs</strong> </li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the RMSE, SMAPE and U Statistic</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function"> <dl class="function">
<dt id="pyFTS.benchmarks.Measures.get_point_statistics"> <dt id="pyFTS.benchmarks.Measures.get_point_statistics">
<code class="descclassname">pyFTS.benchmarks.Measures.</code><code class="descname">get_point_statistics</code><span class="sig-paren">(</span><em>data</em>, <em>model</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.benchmarks.Measures.get_point_statistics" title="Permalink to this definition"></a></dt> <code class="descclassname">pyFTS.benchmarks.Measures.</code><code class="descname">get_point_statistics</code><span class="sig-paren">(</span><em>data</em>, <em>model</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.benchmarks.Measures.get_point_statistics" title="Permalink to this definition"></a></dt>
@ -1030,30 +1062,9 @@ Good IJ (1952). “Rational Decisions.”Journal of the Royal Statistical Socie
<div class="section" id="module-pyFTS.benchmarks.ResidualAnalysis"> <div class="section" id="module-pyFTS.benchmarks.ResidualAnalysis">
<span id="pyfts-benchmarks-residualanalysis-module"></span><h2>pyFTS.benchmarks.ResidualAnalysis module<a class="headerlink" href="#module-pyFTS.benchmarks.ResidualAnalysis" title="Permalink to this headline"></a></h2> <span id="pyfts-benchmarks-residualanalysis-module"></span><h2>pyFTS.benchmarks.ResidualAnalysis module<a class="headerlink" href="#module-pyFTS.benchmarks.ResidualAnalysis" title="Permalink to this headline"></a></h2>
<p>Residual Analysis methods</p> <p>Residual Analysis methods</p>
<dl class="function">
<dt id="pyFTS.benchmarks.ResidualAnalysis.chi_squared">
<code class="descclassname">pyFTS.benchmarks.ResidualAnalysis.</code><code class="descname">chi_squared</code><span class="sig-paren">(</span><em>q</em>, <em>h</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.benchmarks.ResidualAnalysis.chi_squared" title="Permalink to this definition"></a></dt>
<dd><p>Chi-Squared value</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>q</strong> </li>
<li><strong>h</strong> </li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last"></p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function"> <dl class="function">
<dt id="pyFTS.benchmarks.ResidualAnalysis.compare_residuals"> <dt id="pyFTS.benchmarks.ResidualAnalysis.compare_residuals">
<code class="descclassname">pyFTS.benchmarks.ResidualAnalysis.</code><code class="descname">compare_residuals</code><span class="sig-paren">(</span><em>data</em>, <em>models</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.benchmarks.ResidualAnalysis.compare_residuals" title="Permalink to this definition"></a></dt> <code class="descclassname">pyFTS.benchmarks.ResidualAnalysis.</code><code class="descname">compare_residuals</code><span class="sig-paren">(</span><em>data</em>, <em>models</em>, <em>alpha=0.05</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.benchmarks.ResidualAnalysis.compare_residuals" title="Permalink to this definition"></a></dt>
<dd><p>Compare residuals statistics of several models</p> <dd><p>Compare residuals statistics of several models</p>
<table class="docutils field-list" frame="void" rules="none"> <table class="docutils field-list" frame="void" rules="none">
<col class="field-name" /> <col class="field-name" />
@ -1073,32 +1084,13 @@ Good IJ (1952). “Rational Decisions.”Journal of the Royal Statistical Socie
</dd></dl> </dd></dl>
<dl class="function"> <dl class="function">
<dt id="pyFTS.benchmarks.ResidualAnalysis.plotResiduals"> <dt id="pyFTS.benchmarks.ResidualAnalysis.ljung_box_test">
<code class="descclassname">pyFTS.benchmarks.ResidualAnalysis.</code><code class="descname">plotResiduals</code><span class="sig-paren">(</span><em>targets, models, tam=[8, 8], save=False, file=None</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.benchmarks.ResidualAnalysis.plotResiduals" title="Permalink to this definition"></a></dt> <code class="descclassname">pyFTS.benchmarks.ResidualAnalysis.</code><code class="descname">ljung_box_test</code><span class="sig-paren">(</span><em>residuals, lags=[1, 2, 3], alpha=0.5</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.benchmarks.ResidualAnalysis.ljung_box_test" title="Permalink to this definition"></a></dt>
<dd><p>Plot residuals and statistics</p> <dd></dd></dl>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>targets</strong> </li>
<li><strong>models</strong> </li>
<li><strong>tam</strong> </li>
<li><strong>save</strong> </li>
<li><strong>file</strong> </li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last"></p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function"> <dl class="function">
<dt id="pyFTS.benchmarks.ResidualAnalysis.plot_residuals"> <dt id="pyFTS.benchmarks.ResidualAnalysis.plot_residuals_by_model">
<code class="descclassname">pyFTS.benchmarks.ResidualAnalysis.</code><code class="descname">plot_residuals</code><span class="sig-paren">(</span><em>targets, models, tam=[8, 8], save=False, file=None</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.benchmarks.ResidualAnalysis.plot_residuals" title="Permalink to this definition"></a></dt> <code class="descclassname">pyFTS.benchmarks.ResidualAnalysis.</code><code class="descname">plot_residuals_by_model</code><span class="sig-paren">(</span><em>targets, models, tam=[8, 8], save=False, file=None</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.benchmarks.ResidualAnalysis.plot_residuals_by_model" title="Permalink to this definition"></a></dt>
<dd></dd></dl> <dd></dd></dl>
<dl class="function"> <dl class="function">
@ -1109,7 +1101,7 @@ Good IJ (1952). “Rational Decisions.”Journal of the Royal Statistical Socie
<dl class="function"> <dl class="function">
<dt id="pyFTS.benchmarks.ResidualAnalysis.single_plot_residuals"> <dt id="pyFTS.benchmarks.ResidualAnalysis.single_plot_residuals">
<code class="descclassname">pyFTS.benchmarks.ResidualAnalysis.</code><code class="descname">single_plot_residuals</code><span class="sig-paren">(</span><em>targets, forecasts, order, tam=[8, 8], save=False, file=None</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.benchmarks.ResidualAnalysis.single_plot_residuals" title="Permalink to this definition"></a></dt> <code class="descclassname">pyFTS.benchmarks.ResidualAnalysis.</code><code class="descname">single_plot_residuals</code><span class="sig-paren">(</span><em>res, order, tam=[10, 7], save=False, file=None</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.benchmarks.ResidualAnalysis.single_plot_residuals" title="Permalink to this definition"></a></dt>
<dd></dd></dl> <dd></dd></dl>
</div> </div>
@ -1741,28 +1733,6 @@ of the metric measure with the same tag, returning a Pandas DataFram
</table> </table>
</dd></dl> </dd></dl>
<dl class="method">
<dt id="pyFTS.benchmarks.knn.KNearestNeighbors.forecast_ahead">
<code class="descname">forecast_ahead</code><span class="sig-paren">(</span><em>data</em>, <em>steps</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.benchmarks.knn.KNearestNeighbors.forecast_ahead" title="Permalink to this definition"></a></dt>
<dd><p>Point forecast n steps ahead</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</li>
<li><strong>steps</strong> the number of steps ahead to forecast (default: 1)</li>
<li><strong>start_at</strong> in the multi step forecasting, the index of the data where to start forecasting (default: 0)</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the forecasted values</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method"> <dl class="method">
<dt id="pyFTS.benchmarks.knn.KNearestNeighbors.forecast_ahead_distribution"> <dt id="pyFTS.benchmarks.knn.KNearestNeighbors.forecast_ahead_distribution">
<code class="descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em>data</em>, <em>steps</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.benchmarks.knn.KNearestNeighbors.forecast_ahead_distribution" title="Permalink to this definition"></a></dt> <code class="descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em>data</em>, <em>steps</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.benchmarks.knn.KNearestNeighbors.forecast_ahead_distribution" title="Permalink to this definition"></a></dt>
@ -2241,6 +2211,28 @@ of the metric measure with the same tag, returning a Pandas DataFram
</table> </table>
</dd></dl> </dd></dl>
<dl class="method">
<dt id="pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead">
<code class="descname">forecast_ahead</code><span class="sig-paren">(</span><em>data</em>, <em>steps</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead" title="Permalink to this definition"></a></dt>
<dd><p>Point forecast n steps ahead</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</li>
<li><strong>steps</strong> the number of steps ahead to forecast (default: 1)</li>
<li><strong>start_at</strong> in the multi step forecasting, the index of the data where to start forecasting (default: 0)</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the forecasted values</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method"> <dl class="method">
<dt id="pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead_distribution"> <dt id="pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead_distribution">
<code class="descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em>data</em>, <em>steps</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead_distribution" title="Permalink to this definition"></a></dt> <code class="descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em>data</em>, <em>steps</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead_distribution" title="Permalink to this definition"></a></dt>

View File

@ -941,6 +941,11 @@ US Dollar to Ringgit Malaysia,” Int. J. Comput. Intell. Appl., vol. 12, no. 1,
<code class="descname">lhs_conditional_probability</code><span class="sig-paren">(</span><em>x</em>, <em>sets</em>, <em>norm</em>, <em>uod</em>, <em>nbins</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFLRG.lhs_conditional_probability" title="Permalink to this definition"></a></dt> <code class="descname">lhs_conditional_probability</code><span class="sig-paren">(</span><em>x</em>, <em>sets</em>, <em>norm</em>, <em>uod</em>, <em>nbins</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFLRG.lhs_conditional_probability" title="Permalink to this definition"></a></dt>
<dd></dd></dl> <dd></dd></dl>
<dl class="method">
<dt id="pyFTS.models.pwfts.ProbabilisticWeightedFLRG.lhs_conditional_probability_fuzzyfied">
<code class="descname">lhs_conditional_probability_fuzzyfied</code><span class="sig-paren">(</span><em>lhs_mv</em>, <em>sets</em>, <em>norm</em>, <em>uod</em>, <em>nbins</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFLRG.lhs_conditional_probability_fuzzyfied" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method"> <dl class="method">
<dt id="pyFTS.models.pwfts.ProbabilisticWeightedFLRG.partition_function"> <dt id="pyFTS.models.pwfts.ProbabilisticWeightedFLRG.partition_function">
<code class="descname">partition_function</code><span class="sig-paren">(</span><em>sets</em>, <em>uod</em>, <em>nbins=100</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFLRG.partition_function" title="Permalink to this definition"></a></dt> <code class="descname">partition_function</code><span class="sig-paren">(</span><em>sets</em>, <em>uod</em>, <em>nbins=100</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFLRG.partition_function" title="Permalink to this definition"></a></dt>
@ -973,6 +978,11 @@ US Dollar to Ringgit Malaysia,” Int. J. Comput. Intell. Appl., vol. 12, no. 1,
<code class="descname">flrg_lhs_conditional_probability</code><span class="sig-paren">(</span><em>x</em>, <em>flrg</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.flrg_lhs_conditional_probability" title="Permalink to this definition"></a></dt> <code class="descname">flrg_lhs_conditional_probability</code><span class="sig-paren">(</span><em>x</em>, <em>flrg</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.flrg_lhs_conditional_probability" title="Permalink to this definition"></a></dt>
<dd></dd></dl> <dd></dd></dl>
<dl class="method">
<dt id="pyFTS.models.pwfts.ProbabilisticWeightedFTS.flrg_lhs_conditional_probability_fuzzyfied">
<code class="descname">flrg_lhs_conditional_probability_fuzzyfied</code><span class="sig-paren">(</span><em>x</em>, <em>flrg</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.flrg_lhs_conditional_probability_fuzzyfied" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method"> <dl class="method">
<dt id="pyFTS.models.pwfts.ProbabilisticWeightedFTS.flrg_lhs_unconditional_probability"> <dt id="pyFTS.models.pwfts.ProbabilisticWeightedFTS.flrg_lhs_unconditional_probability">
<code class="descname">flrg_lhs_unconditional_probability</code><span class="sig-paren">(</span><em>flrg</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.flrg_lhs_unconditional_probability" title="Permalink to this definition"></a></dt> <code class="descname">flrg_lhs_unconditional_probability</code><span class="sig-paren">(</span><em>flrg</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.flrg_lhs_unconditional_probability" title="Permalink to this definition"></a></dt>
@ -1117,6 +1127,16 @@ US Dollar to Ringgit Malaysia,” Int. J. Comput. Intell. Appl., vol. 12, no. 1,
<code class="descname">generate_flrg</code><span class="sig-paren">(</span><em>data</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.generate_flrg" title="Permalink to this definition"></a></dt> <code class="descname">generate_flrg</code><span class="sig-paren">(</span><em>data</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.generate_flrg" title="Permalink to this definition"></a></dt>
<dd></dd></dl> <dd></dd></dl>
<dl class="method">
<dt id="pyFTS.models.pwfts.ProbabilisticWeightedFTS.generate_flrg2">
<code class="descname">generate_flrg2</code><span class="sig-paren">(</span><em>data</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.generate_flrg2" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.models.pwfts.ProbabilisticWeightedFTS.generate_flrg_fuzzyfied">
<code class="descname">generate_flrg_fuzzyfied</code><span class="sig-paren">(</span><em>data</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.generate_flrg_fuzzyfied" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method"> <dl class="method">
<dt id="pyFTS.models.pwfts.ProbabilisticWeightedFTS.generate_lhs_flrg"> <dt id="pyFTS.models.pwfts.ProbabilisticWeightedFTS.generate_lhs_flrg">
<code class="descname">generate_lhs_flrg</code><span class="sig-paren">(</span><em>sample</em>, <em>explain=False</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.generate_lhs_flrg" title="Permalink to this definition"></a></dt> <code class="descname">generate_lhs_flrg</code><span class="sig-paren">(</span><em>sample</em>, <em>explain=False</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.generate_lhs_flrg" title="Permalink to this definition"></a></dt>
@ -1137,6 +1157,11 @@ US Dollar to Ringgit Malaysia,” Int. J. Comput. Intell. Appl., vol. 12, no. 1,
<code class="descname">get_midpoint</code><span class="sig-paren">(</span><em>flrg</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.get_midpoint" title="Permalink to this definition"></a></dt> <code class="descname">get_midpoint</code><span class="sig-paren">(</span><em>flrg</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.get_midpoint" title="Permalink to this definition"></a></dt>
<dd></dd></dl> <dd></dd></dl>
<dl class="method">
<dt id="pyFTS.models.pwfts.ProbabilisticWeightedFTS.get_sets_from_both_fuzzyfication">
<code class="descname">get_sets_from_both_fuzzyfication</code><span class="sig-paren">(</span><em>sample</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.get_sets_from_both_fuzzyfication" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method"> <dl class="method">
<dt id="pyFTS.models.pwfts.ProbabilisticWeightedFTS.get_upper"> <dt id="pyFTS.models.pwfts.ProbabilisticWeightedFTS.get_upper">
<code class="descname">get_upper</code><span class="sig-paren">(</span><em>flrg</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.get_upper" title="Permalink to this definition"></a></dt> <code class="descname">get_upper</code><span class="sig-paren">(</span><em>flrg</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.get_upper" title="Permalink to this definition"></a></dt>
@ -1144,12 +1169,12 @@ US Dollar to Ringgit Malaysia,” Int. J. Comput. Intell. Appl., vol. 12, no. 1,
<dl class="method"> <dl class="method">
<dt id="pyFTS.models.pwfts.ProbabilisticWeightedFTS.interval_heuristic"> <dt id="pyFTS.models.pwfts.ProbabilisticWeightedFTS.interval_heuristic">
<code class="descname">interval_heuristic</code><span class="sig-paren">(</span><em>sample</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.interval_heuristic" title="Permalink to this definition"></a></dt> <code class="descname">interval_heuristic</code><span class="sig-paren">(</span><em>sample</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.interval_heuristic" title="Permalink to this definition"></a></dt>
<dd></dd></dl> <dd></dd></dl>
<dl class="method"> <dl class="method">
<dt id="pyFTS.models.pwfts.ProbabilisticWeightedFTS.interval_quantile"> <dt id="pyFTS.models.pwfts.ProbabilisticWeightedFTS.interval_quantile">
<code class="descname">interval_quantile</code><span class="sig-paren">(</span><em>ndata</em>, <em>alpha</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.interval_quantile" title="Permalink to this definition"></a></dt> <code class="descname">interval_quantile</code><span class="sig-paren">(</span><em>ndata</em>, <em>alpha</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.interval_quantile" title="Permalink to this definition"></a></dt>
<dd></dd></dl> <dd></dd></dl>
<dl class="method"> <dl class="method">
@ -1162,6 +1187,11 @@ US Dollar to Ringgit Malaysia,” Int. J. Comput. Intell. Appl., vol. 12, no. 1,
<code class="descname">point_heuristic</code><span class="sig-paren">(</span><em>sample</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.point_heuristic" title="Permalink to this definition"></a></dt> <code class="descname">point_heuristic</code><span class="sig-paren">(</span><em>sample</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.point_heuristic" title="Permalink to this definition"></a></dt>
<dd></dd></dl> <dd></dd></dl>
<dl class="method">
<dt id="pyFTS.models.pwfts.ProbabilisticWeightedFTS.pwflrg_lhs_memberhip_fuzzyfied">
<code class="descname">pwflrg_lhs_memberhip_fuzzyfied</code><span class="sig-paren">(</span><em>flrg</em>, <em>sample</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.pwflrg_lhs_memberhip_fuzzyfied" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method"> <dl class="method">
<dt id="pyFTS.models.pwfts.ProbabilisticWeightedFTS.train"> <dt id="pyFTS.models.pwfts.ProbabilisticWeightedFTS.train">
<code class="descname">train</code><span class="sig-paren">(</span><em>data</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.train" title="Permalink to this definition"></a></dt> <code class="descname">train</code><span class="sig-paren">(</span><em>data</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.train" title="Permalink to this definition"></a></dt>

View File

@ -428,6 +428,11 @@ overlapped fuzzy sets.</p>
</table> </table>
</dd></dl> </dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.grid.GridCluster.defuzzyfy">
<code class="descname">defuzzyfy</code><span class="sig-paren">(</span><em>values</em>, <em>mode='both'</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.grid.GridCluster.defuzzyfy" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</dd></dl> </dd></dl>
<dl class="class"> <dl class="class">
@ -779,6 +784,50 @@ multivariate fuzzy set base.</p>
</table> </table>
</dd></dl> </dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_ahead_distribution">
<code class="descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em>data</em>, <em>steps</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_ahead_distribution" title="Permalink to this definition"></a></dt>
<dd><p>Probabilistic forecast n steps ahead</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</li>
<li><strong>steps</strong> the number of steps ahead to forecast</li>
<li><strong>start_at</strong> in the multi step forecasting, the index of the data where to start forecasting (default: 0)</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the forecasted Probability Distributions</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_ahead_interval">
<code class="descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em>data</em>, <em>steps</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_ahead_interval" title="Permalink to this definition"></a></dt>
<dd><p>Interval forecast n steps ahead</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</li>
<li><strong>steps</strong> the number of steps ahead to forecast</li>
<li><strong>start_at</strong> in the multi step forecasting, the index of the data where to start forecasting (default: 0)</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the forecasted intervals</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method"> <dl class="method">
<dt id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_ahead_multivariate"> <dt id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_ahead_multivariate">
<code class="descname">forecast_ahead_multivariate</code><span class="sig-paren">(</span><em>data</em>, <em>steps</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_ahead_multivariate" title="Permalink to this definition"></a></dt> <code class="descname">forecast_ahead_multivariate</code><span class="sig-paren">(</span><em>data</em>, <em>steps</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_ahead_multivariate" title="Permalink to this definition"></a></dt>
@ -801,6 +850,48 @@ multivariate fuzzy set base.</p>
</table> </table>
</dd></dl> </dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_distribution">
<code class="descname">forecast_distribution</code><span class="sig-paren">(</span><em>data</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_distribution" title="Permalink to this definition"></a></dt>
<dd><p>Probabilistic forecast one step ahead</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</li>
<li><strong>kwargs</strong> model specific parameters</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_interval">
<code class="descname">forecast_interval</code><span class="sig-paren">(</span><em>data</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_interval" title="Permalink to this definition"></a></dt>
<dd><p>Interval forecast one step ahead</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</li>
<li><strong>kwargs</strong> model specific parameters</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the prediction intervals</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method"> <dl class="method">
<dt id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_multivariate"> <dt id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_multivariate">
<code class="descname">forecast_multivariate</code><span class="sig-paren">(</span><em>data</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_multivariate" title="Permalink to this definition"></a></dt> <code class="descname">forecast_multivariate</code><span class="sig-paren">(</span><em>data</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_multivariate" title="Permalink to this definition"></a></dt>

View File

@ -600,6 +600,12 @@
<code class="descname">build_index</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.seasonal.partitioner.TimeGridPartitioner.build_index" title="Permalink to this definition"></a></dt> <code class="descname">build_index</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.seasonal.partitioner.TimeGridPartitioner.build_index" title="Permalink to this definition"></a></dt>
<dd></dd></dl> <dd></dd></dl>
<dl class="method">
<dt id="pyFTS.models.seasonal.partitioner.TimeGridPartitioner.extractor">
<code class="descname">extractor</code><span class="sig-paren">(</span><em>x</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.seasonal.partitioner.TimeGridPartitioner.extractor" title="Permalink to this definition"></a></dt>
<dd><p>Extract a single primitive type from an structured instance</p>
</dd></dl>
<dl class="method"> <dl class="method">
<dt id="pyFTS.models.seasonal.partitioner.TimeGridPartitioner.plot"> <dt id="pyFTS.models.seasonal.partitioner.TimeGridPartitioner.plot">
<code class="descname">plot</code><span class="sig-paren">(</span><em>ax</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.seasonal.partitioner.TimeGridPartitioner.plot" title="Permalink to this definition"></a></dt> <code class="descname">plot</code><span class="sig-paren">(</span><em>ax</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.seasonal.partitioner.TimeGridPartitioner.plot" title="Permalink to this definition"></a></dt>

View File

@ -167,6 +167,17 @@ fuzzy set.</p>
<p>the data is inside the UoD.</p> <p>the data is inside the UoD.</p>
</dd></dl> </dd></dl>
<dl class="method">
<dt id="pyFTS.partitioners.partitioner.Partitioner.defuzzyfy">
<code class="descname">defuzzyfy</code><span class="sig-paren">(</span><em>values</em>, <em>mode='both'</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.partitioners.partitioner.Partitioner.defuzzyfy" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.partitioners.partitioner.Partitioner.extractor">
<code class="descname">extractor</code><span class="sig-paren">(</span><em>x</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.partitioners.partitioner.Partitioner.extractor" title="Permalink to this definition"></a></dt>
<dd><p>Extract a single primitive type from an structured instance</p>
</dd></dl>
<dl class="method"> <dl class="method">
<dt id="pyFTS.partitioners.partitioner.Partitioner.fuzzyfy"> <dt id="pyFTS.partitioners.partitioner.Partitioner.fuzzyfy">
<code class="descname">fuzzyfy</code><span class="sig-paren">(</span><em>data</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.partitioners.partitioner.Partitioner.fuzzyfy" title="Permalink to this definition"></a></dt> <code class="descname">fuzzyfy</code><span class="sig-paren">(</span><em>data</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.partitioners.partitioner.Partitioner.fuzzyfy" title="Permalink to this definition"></a></dt>

File diff suppressed because one or more lines are too long