Refactorings
This commit is contained in:
parent
84e6e1abbf
commit
7f13a24402
@ -2,7 +2,6 @@
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from pyFTS.common import FuzzySet,SortedCollection
|
||||
|
||||
|
||||
# Autocorrelation function estimative
|
||||
@ -33,6 +32,7 @@ def mape(targets, forecasts):
|
||||
|
||||
|
||||
def smape(targets, forecasts, type=2):
|
||||
return mape(targets, forecasts)
|
||||
if type == 1:
|
||||
return np.mean(np.abs(forecasts - targets) / ((forecasts + targets)/2))
|
||||
elif type == 2:
|
||||
@ -52,8 +52,10 @@ def UStatistic(targets, forecasts):
|
||||
naive = []
|
||||
y = []
|
||||
for k in np.arange(0,l-1):
|
||||
y.append((forecasts[k ] - targets[k ]) ** 2)
|
||||
naive.append((targets[k + 1] - targets[k]) ** 2)
|
||||
#y.append((forecasts[k ] - targets[k ]) ** 2)
|
||||
y.append(((forecasts[k + 1] - targets[k + 1]) / targets[k]) ** 2)
|
||||
#naive.append((targets[k + 1] - targets[k]) ** 2)
|
||||
naive.append(((targets[k + 1] - targets[k]) / targets[k]) ** 2)
|
||||
return np.sqrt(sum(y) / sum(naive))
|
||||
|
||||
|
||||
@ -109,39 +111,3 @@ def coverage(targets, forecasts):
|
||||
else:
|
||||
preds.append(0)
|
||||
return np.mean(preds)
|
||||
|
||||
|
||||
def pmf_to_cdf(density):
|
||||
ret = []
|
||||
for row in density.index:
|
||||
tmp = []
|
||||
prev = 0
|
||||
for col in density.columns:
|
||||
prev += density[col][row]
|
||||
tmp.append( prev )
|
||||
ret.append(tmp)
|
||||
df = pd.DataFrame(ret, columns=density.columns)
|
||||
return df
|
||||
|
||||
|
||||
def heavyside_cdf(bins, targets):
|
||||
ret = []
|
||||
for t in targets:
|
||||
result = [1 if b >= t else 0 for b in bins]
|
||||
ret.append(result)
|
||||
df = pd.DataFrame(ret, columns=bins)
|
||||
return df
|
||||
|
||||
|
||||
# Continuous Ranked Probability Score
|
||||
def crps(targets, densities):
|
||||
l = len(densities.columns)
|
||||
n = len(densities.index)
|
||||
Ff = pmf_to_cdf(densities)
|
||||
Fa = heavyside_cdf(densities.columns, targets)
|
||||
|
||||
_crps = float(0.0)
|
||||
for k in densities.index:
|
||||
_crps += sum([ (Ff[col][k]-Fa[col][k])**2 for col in densities.columns])
|
||||
|
||||
return _crps / float(l * n)
|
||||
|
@ -5,14 +5,13 @@ import numpy as np
|
||||
import pandas as pd
|
||||
import matplotlib as plt
|
||||
import matplotlib.colors as pltcolors
|
||||
import matplotlib.cm as cmx
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
# from sklearn.cross_validation import KFold
|
||||
from pyFTS.benchmarks import Measures, naive, ResidualAnalysis, ProbabilityDistribution
|
||||
from pyFTS.benchmarks import Measures, naive, ResidualAnalysis
|
||||
from pyFTS.partitioners import Grid
|
||||
from pyFTS.common import Membership, FuzzySet, FLR, Transformations, Util
|
||||
from pyFTS import fts, chen, yu, ismailefendi, sadaei, hofts, hwang, pwfts, ifts
|
||||
from pyFTS import fts, chen, yu, ismailefendi, sadaei, hofts, hwang, pfts, ifts
|
||||
|
||||
colors = ['grey', 'rosybrown', 'maroon', 'red','orange', 'yellow', 'olive', 'green',
|
||||
'cyan', 'blue', 'darkblue', 'purple', 'darkviolet']
|
||||
@ -23,113 +22,21 @@ styles = ['-','--','-.',':','.']
|
||||
|
||||
nsty = len(styles)
|
||||
|
||||
def get_point_methods():
|
||||
return [naive.Naive, chen.ConventionalFTS, yu.WeightedFTS, ismailefendi.ImprovedWeightedFTS,
|
||||
sadaei.ExponentialyWeightedFTS, hofts.HighOrderFTS, pwfts.ProbabilisticWeightedFTS]
|
||||
|
||||
|
||||
def sliding_window(data, windowsize, train=0.8,models=None,partitioners=[Grid.GridPartitioner],
|
||||
partitions=[10], max_order=3,transformation=None,indexer=None):
|
||||
if models is None:
|
||||
models = get_point_methods()
|
||||
|
||||
objs = {}
|
||||
lcolors = {}
|
||||
rmse = {}
|
||||
smape = {}
|
||||
u = {}
|
||||
|
||||
for train,test in Util.sliding_window(data, windowsize, train):
|
||||
for partition in partitions:
|
||||
for partitioner in partitioners:
|
||||
pttr = str(partitioner.__module__).split('.')[-1]
|
||||
if transformation is not None:
|
||||
data_train_fs = partitioner(transformation.apply(train), partition)
|
||||
else:
|
||||
data_train_fs = partitioner(train, partition)
|
||||
|
||||
for count, model in enumerate(models, start=0):
|
||||
|
||||
mfts = model("")
|
||||
_key = mfts.shortname + " " + pttr+ " q = " +str(partition)
|
||||
|
||||
mfts.partitioner = data_train_fs
|
||||
if not mfts.isHighOrder:
|
||||
|
||||
if _key not in objs:
|
||||
objs[_key] = mfts
|
||||
lcolors[_key] = colors[count % ncol]
|
||||
rmse[_key] = []
|
||||
smape[_key] = []
|
||||
u[_key] = []
|
||||
|
||||
if transformation is not None:
|
||||
mfts.appendTransformation(transformation)
|
||||
|
||||
mfts.train(train, data_train_fs.sets)
|
||||
|
||||
_rmse, _smape, _u = get_point_statistics(test, mfts, indexer)
|
||||
rmse[_key].append(_rmse)
|
||||
smape[_key].append(_smape)
|
||||
u[_key].append(_u)
|
||||
|
||||
else:
|
||||
for order in np.arange(1, max_order + 1):
|
||||
if order >= mfts.minOrder:
|
||||
mfts = model("")
|
||||
_key = mfts.shortname + " n = " + str(order) + " " + pttr + " q = " + str(partition)
|
||||
mfts.partitioner = data_train_fs
|
||||
|
||||
if _key not in objs:
|
||||
objs[_key] = mfts
|
||||
lcolors[_key] = colors[count % ncol]
|
||||
rmse[_key] = []
|
||||
smape[_key] = []
|
||||
u[_key] = []
|
||||
|
||||
if transformation is not None:
|
||||
mfts.appendTransformation(transformation)
|
||||
|
||||
mfts.train(train, data_train_fs.sets, order=order)
|
||||
|
||||
_rmse, _smape, _u = get_point_statistics(test, mfts, indexer)
|
||||
rmse[_key].append(_rmse)
|
||||
smape[_key].append(_smape)
|
||||
u[_key].append(_u)
|
||||
|
||||
ret = "Model\t&Order\t&Scheme\t&Partitions\t&RMSE AVG\t&RMSE STD\t& SMAPE AVG\t& SMAPE STD\t& U AVG\t& U STD \\\\ \n"
|
||||
for k in sorted(objs.keys()):
|
||||
mfts = objs[k]
|
||||
ret += mfts.shortname + "\t &"
|
||||
ret += str( mfts.order ) + "\t &"
|
||||
ret += mfts.partitioner.name + "\t &"
|
||||
ret += str(mfts.partitioner.partitions) + "\t &"
|
||||
ret += str(round(np.mean(rmse[k]),2)) + "\t &"
|
||||
ret += str(round(np.std(rmse[k]), 2)) + "\t &"
|
||||
ret += str(round(np.mean(smape[k]), 2)) + "\t &"
|
||||
ret += str(round(np.std(smape[k]), 2)) + "\t &"
|
||||
ret += str(round(np.mean(u[k]), 2)) + "\t &"
|
||||
ret += str(round(np.std(u[k]), 2)) + "\t &"
|
||||
ret += str(len(mfts)) + "\\\\ \n"
|
||||
|
||||
print(ret)
|
||||
|
||||
|
||||
|
||||
|
||||
def allPointForecasters(data_train, data_test, partitions, max_order=3, statistics=True, residuals=True,
|
||||
series=True, save=False, file=None, tam=[20, 5], models=None, transformation=None,
|
||||
distributions=False):
|
||||
series=True, save=False, file=None, tam=[20, 5], models=None, transformation=None):
|
||||
|
||||
if models is None:
|
||||
models = get_point_methods()
|
||||
models = [naive.Naive, chen.ConventionalFTS, yu.WeightedFTS, ismailefendi.ImprovedWeightedFTS,
|
||||
sadaei.ExponentialyWeightedFTS, hofts.HighOrderFTS, pfts.ProbabilisticFTS]
|
||||
|
||||
objs = []
|
||||
|
||||
if transformation is not None:
|
||||
data_train_fs = Grid.GridPartitionerTrimf(transformation.apply(data_train),partitions)
|
||||
else:
|
||||
data_train_fs = Grid.GridPartitionerTrimf(data_train, partitions)
|
||||
data_train_fs = Grid.GridPartitioner(data_train, partitions, transformation=transformation).sets
|
||||
|
||||
# if transformation is not None:
|
||||
# data_train_fs = Grid.GridPartitionerTrimf(transformation.apply(data_train),partitions)
|
||||
# else:
|
||||
# data_train_fs = Grid.GridPartitionerTrimf(data_train, partitions)
|
||||
|
||||
count = 1
|
||||
|
||||
@ -152,10 +59,10 @@ def allPointForecasters(data_train, data_test, partitions, max_order=3, statisti
|
||||
mfts.appendTransformation(transformation)
|
||||
mfts.train(data_train, data_train_fs, order=order)
|
||||
objs.append(mfts)
|
||||
lcolors.append(colors[(count + order) % ncol])
|
||||
lcolors.append(colors[count % ncol])
|
||||
|
||||
if statistics:
|
||||
print(print_point_statistics(data_test, objs))
|
||||
print(getPointStatistics(data_test, objs))
|
||||
|
||||
if residuals:
|
||||
print(ResidualAnalysis.compareResiduals(data_test, objs))
|
||||
@ -165,53 +72,16 @@ def allPointForecasters(data_train, data_test, partitions, max_order=3, statisti
|
||||
plotComparedSeries(data_test, objs, lcolors, typeonlegend=False, save=save, file=file, tam=tam,
|
||||
intervals=False)
|
||||
|
||||
if distributions:
|
||||
lcolors.insert(0,'black')
|
||||
pmfs = []
|
||||
pmfs.append(
|
||||
ProbabilityDistribution.ProbabilityDistribution("Original", 100, [min(data_test), max(data_test)], data=data_test) )
|
||||
|
||||
for m in objs:
|
||||
forecasts = m.forecast(data_test)
|
||||
pmfs.append(
|
||||
ProbabilityDistribution.ProbabilityDistribution(m.shortname, 100, [min(data_test), max(data_test)],
|
||||
data=forecasts))
|
||||
print(getProbabilityDistributionStatistics(pmfs,data_test))
|
||||
|
||||
plotProbabilityDistributions(pmfs, lcolors,tam=tam)
|
||||
|
||||
def get_point_statistics(data, model, indexer=None):
|
||||
if indexer is not None:
|
||||
ndata = np.array(indexer.get_data(data[model.order:]))
|
||||
else:
|
||||
ndata = np.array(data[model.order:])
|
||||
|
||||
if model.isMultivariate or indexer is None:
|
||||
forecasts = model.forecast(data)
|
||||
elif not model.isMultivariate and indexer is not None:
|
||||
forecasts = model.forecast(indexer.get_data(data))
|
||||
|
||||
if model.hasSeasonality:
|
||||
nforecasts = np.array(forecasts)
|
||||
else:
|
||||
nforecasts = np.array(forecasts[:-1])
|
||||
ret = list()
|
||||
ret.append(np.round(Measures.rmse(ndata, nforecasts), 2))
|
||||
ret.append(np.round(Measures.smape(ndata, nforecasts), 2))
|
||||
ret.append(np.round(Measures.UStatistic(ndata, nforecasts), 2))
|
||||
|
||||
return ret
|
||||
|
||||
|
||||
def print_point_statistics(data, models, externalmodels = None, externalforecasts = None, indexers=None):
|
||||
ret = "Model & Order & RMSE & SMAPE & Theil's U \\\\ \n"
|
||||
for count,model in enumerate(models,start=0):
|
||||
_rmse, _smape, _u = get_point_statistics(data, model, indexers[count])
|
||||
ret += model.shortname + " & "
|
||||
ret += str(model.order) + " & "
|
||||
ret += str(_rmse) + " & "
|
||||
ret += str(_smape)+ " & "
|
||||
ret += str(_u)
|
||||
def getPointStatistics(data, models, externalmodels = None, externalforecasts = None):
|
||||
ret = "Model & Order & RMSE & MAPE & Theil's U \\\\ \n"
|
||||
for fts in models:
|
||||
forecasts = fts.forecast(data)
|
||||
ret += fts.shortname + " & "
|
||||
ret += str(fts.order) + " & "
|
||||
ret += str(round(Measures.rmse(np.array(data[fts.order:]), np.array(forecasts[:-1])), 2)) + " & "
|
||||
ret += str(round(Measures.smape(np.array(data[fts.order:]), np.array(forecasts[:-1])), 2))+ " & "
|
||||
ret += str(round(Measures.UStatistic(np.array(data[fts.order:]), np.array(forecasts[:-1])), 2))
|
||||
#ret += str(round(Measures.TheilsInequality(np.array(data[fts.order:]), np.array(forecasts[:-1])), 4))
|
||||
ret += " \\\\ \n"
|
||||
if externalmodels is not None:
|
||||
@ -219,28 +89,17 @@ def print_point_statistics(data, models, externalmodels = None, externalforecast
|
||||
for k in np.arange(0,l):
|
||||
ret += externalmodels[k] + " & "
|
||||
ret += " 1 & "
|
||||
ret += str(round(Measures.rmse(data, externalforecasts[k][:-1]), 2)) + " & "
|
||||
ret += str(round(Measures.smape(data, externalforecasts[k][:-1]), 2))+ " & "
|
||||
ret += str(round(Measures.UStatistic(data, externalforecasts[k][:-1]), 2))
|
||||
ret += str(round(Measures.rmse(data[fts.order:], externalforecasts[k][:-1]), 2)) + " & "
|
||||
ret += str(round(Measures.smape(data[fts.order:], externalforecasts[k][:-1]), 2))+ " & "
|
||||
ret += str(round(Measures.UStatistic(np.array(data[fts.order:]), np.array(forecasts[:-1])), 2))
|
||||
ret += " \\\\ \n"
|
||||
return ret
|
||||
|
||||
|
||||
def getProbabilityDistributionStatistics(pmfs, data):
|
||||
ret = "Model & Entropy & Empirical Likelihood & Pseudo Likelihood \\\\ \n"
|
||||
for k in pmfs:
|
||||
ret += k.name + " & "
|
||||
ret += str(k.entropy()) + " & "
|
||||
ret += str(k.empiricalloglikelihood())+ " & "
|
||||
ret += str(k.pseudologlikelihood(data))
|
||||
ret += " \\\\ \n"
|
||||
return ret
|
||||
|
||||
|
||||
def allIntervalForecasters(data_train, data_test, partitions, max_order=3,save=False, file=None, tam=[20, 5],
|
||||
models=None, transformation=None):
|
||||
if models is None:
|
||||
models = [ifts.IntervalFTS, pwfts.ProbabilisticWeightedFTS]
|
||||
models = [ifts.IntervalFTS, pfts.ProbabilisticFTS]
|
||||
|
||||
objs = []
|
||||
|
||||
@ -296,7 +155,7 @@ def plotDistribution(dist):
|
||||
|
||||
|
||||
def plotComparedSeries(original, models, colors, typeonlegend=False, save=False, file=None, tam=[20, 5],
|
||||
points=True, intervals=True, linewidth=1.5):
|
||||
intervals=True):
|
||||
fig = plt.figure(figsize=tam)
|
||||
ax = fig.add_subplot(111)
|
||||
|
||||
@ -305,10 +164,10 @@ def plotComparedSeries(original, models, colors, typeonlegend=False, save=False,
|
||||
|
||||
legends = []
|
||||
|
||||
ax.plot(original, color='black', label="Original", linewidth=linewidth*1.5)
|
||||
ax.plot(original, color='black', label="Original", linewidth=1.5)
|
||||
|
||||
for count, fts in enumerate(models, start=0):
|
||||
if fts.hasPointForecasting and points:
|
||||
if fts.hasPointForecasting and not intervals:
|
||||
forecasted = fts.forecast(original)
|
||||
mi.append(min(forecasted) * 0.95)
|
||||
ma.append(max(forecasted) * 1.05)
|
||||
@ -316,7 +175,7 @@ def plotComparedSeries(original, models, colors, typeonlegend=False, save=False,
|
||||
forecasted.insert(0, None)
|
||||
lbl = fts.shortname
|
||||
if typeonlegend: lbl += " (Point)"
|
||||
ax.plot(forecasted, color=colors[count], label=lbl, ls="-",linewidth=linewidth)
|
||||
ax.plot(forecasted, color=colors[count], label=lbl, ls="-")
|
||||
|
||||
if fts.hasIntervalForecasting and intervals:
|
||||
forecasted = fts.forecastInterval(original)
|
||||
@ -329,8 +188,8 @@ def plotComparedSeries(original, models, colors, typeonlegend=False, save=False,
|
||||
upper.insert(0, None)
|
||||
lbl = fts.shortname
|
||||
if typeonlegend: lbl += " (Interval)"
|
||||
ax.plot(lower, color=colors[count], label=lbl, ls="--",linewidth=linewidth)
|
||||
ax.plot(upper, color=colors[count], ls="--",linewidth=linewidth)
|
||||
ax.plot(lower, color=colors[count], label=lbl, ls="-")
|
||||
ax.plot(upper, color=colors[count], ls="-")
|
||||
|
||||
handles0, labels0 = ax.get_legend_handles_labels()
|
||||
lgd = ax.legend(handles0, labels0, loc=2, bbox_to_anchor=(1, 1))
|
||||
@ -345,82 +204,11 @@ def plotComparedSeries(original, models, colors, typeonlegend=False, save=False,
|
||||
Util.showAndSaveImage(fig, file, save, lgd=legends)
|
||||
|
||||
|
||||
def plotProbabilityDistributions(pmfs,lcolors,tam=[15, 7]):
|
||||
fig = plt.figure(figsize=tam)
|
||||
ax = fig.add_subplot(111)
|
||||
|
||||
for k,m in enumerate(pmfs,start=0):
|
||||
m.plot(ax, color=lcolors[k])
|
||||
|
||||
handles0, labels0 = ax.get_legend_handles_labels()
|
||||
ax.legend(handles0, labels0)
|
||||
|
||||
|
||||
def allAheadForecasters(data_train, data_test, partitions, start, steps, resolution = None, max_order=3,save=False, file=None, tam=[20, 5],
|
||||
models=None, transformation=None, option=2):
|
||||
if models is None:
|
||||
models = [pwfts.ProbabilisticWeightedFTS]
|
||||
|
||||
if resolution is None: resolution = (max(data_train) - min(data_train)) / 100
|
||||
|
||||
objs = []
|
||||
|
||||
if transformation is not None:
|
||||
data_train_fs = Grid.GridPartitionerTrimf(transformation.apply(data_train),partitions)
|
||||
else:
|
||||
data_train_fs = Grid.GridPartitionerTrimf(data_train, partitions)
|
||||
|
||||
lcolors = []
|
||||
|
||||
for count, model in Util.enumerate2(models, start=0, step=2):
|
||||
mfts = model("")
|
||||
if not mfts.isHighOrder:
|
||||
if transformation is not None:
|
||||
mfts.appendTransformation(transformation)
|
||||
mfts.train(data_train, data_train_fs)
|
||||
objs.append(mfts)
|
||||
lcolors.append( colors[count % ncol] )
|
||||
else:
|
||||
for order in np.arange(1,max_order+1):
|
||||
if order >= mfts.minOrder:
|
||||
mfts = model(" n = " + str(order))
|
||||
if transformation is not None:
|
||||
mfts.appendTransformation(transformation)
|
||||
mfts.train(data_train, data_train_fs, order=order)
|
||||
objs.append(mfts)
|
||||
lcolors.append(colors[count % ncol])
|
||||
|
||||
distributions = [False for k in objs]
|
||||
|
||||
distributions[0] = True
|
||||
|
||||
print(getDistributionStatistics(data_test[start:], objs, steps, resolution))
|
||||
|
||||
#plotComparedIntervalsAhead(data_test, objs, lcolors, distributions=, save=save, file=file, tam=tam, intervals=True)
|
||||
|
||||
|
||||
def getDistributionStatistics(original, models, steps, resolution):
|
||||
ret = "Model & Order & Interval & Distribution \\\\ \n"
|
||||
for fts in models:
|
||||
densities1 = fts.forecastAheadDistribution(original,steps,resolution, parameters=3)
|
||||
densities2 = fts.forecastAheadDistribution(original, steps, resolution, parameters=2)
|
||||
ret += fts.shortname + " & "
|
||||
ret += str(fts.order) + " & "
|
||||
ret += str(round(Measures.crps(original, densities1), 3)) + " & "
|
||||
ret += str(round(Measures.crps(original, densities2), 3)) + " \\\\ \n"
|
||||
return ret
|
||||
|
||||
|
||||
def plotComparedIntervalsAhead(original, models, colors, distributions, time_from, time_to,
|
||||
interpol=False, save=False, file=None, tam=[20, 5], resolution=None,
|
||||
cmap='Blues',option=2):
|
||||
interpol=False, save=False, file=None, tam=[20, 5], resolution=None):
|
||||
fig = plt.figure(figsize=tam)
|
||||
ax = fig.add_subplot(111)
|
||||
|
||||
cm = plt.get_cmap(cmap)
|
||||
cNorm = pltcolors.Normalize(vmin=0, vmax=1)
|
||||
scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=cm)
|
||||
|
||||
if resolution is None: resolution = (max(original) - min(original)) / 100
|
||||
|
||||
mi = []
|
||||
@ -429,44 +217,26 @@ def plotComparedIntervalsAhead(original, models, colors, distributions, time_fro
|
||||
for count, fts in enumerate(models, start=0):
|
||||
if fts.hasDistributionForecasting and distributions[count]:
|
||||
density = fts.forecastAheadDistribution(original[time_from - fts.order:time_from],
|
||||
time_to, resolution, parameters=option)
|
||||
time_to, resolution, parameters=True)
|
||||
|
||||
Y = []
|
||||
X = []
|
||||
C = []
|
||||
S = []
|
||||
y = density.columns
|
||||
t = len(y)
|
||||
|
||||
ss = time_to ** 2
|
||||
|
||||
for k in density.index:
|
||||
#alpha = [scalarMap.to_rgba(density[col][k]) for col in density.columns]
|
||||
col = [density[col][k]*5 for col in density.columns]
|
||||
alpha = np.array([density[q][k] for q in density]) * 100
|
||||
|
||||
x = [time_from + k for x in np.arange(0, t)]
|
||||
|
||||
s = [ss for x in np.arange(0, t)]
|
||||
|
||||
ic = resolution/10
|
||||
|
||||
for cc in np.arange(0, resolution, ic):
|
||||
Y.append(y + cc)
|
||||
X.append(x)
|
||||
C.append(col)
|
||||
S.append(s)
|
||||
|
||||
Y = np.hstack(Y)
|
||||
X = np.hstack(X)
|
||||
C = np.hstack(C)
|
||||
S = np.hstack(S)
|
||||
|
||||
s = ax.scatter(X, Y, c=C, marker='s',s=S, linewidths=0, edgecolors=None, cmap=cmap)
|
||||
s.set_clim([0, 1])
|
||||
cb = fig.colorbar(s)
|
||||
|
||||
cb.set_label('Density')
|
||||
|
||||
for cc in np.arange(0, resolution, 5):
|
||||
ax.scatter(x, y + cc, c=alpha, marker='s', linewidths=0, cmap='Oranges', edgecolors=None)
|
||||
if interpol and k < max(density.index):
|
||||
diffs = [(density[q][k + 1] - density[q][k]) / 50 for q in density]
|
||||
for p in np.arange(0, 50):
|
||||
xx = [time_from + k + 0.02 * p for q in np.arange(0, t)]
|
||||
alpha2 = np.array(
|
||||
[density[density.columns[q]][k] + diffs[q] * p for q in np.arange(0, t)]) * 100
|
||||
ax.scatter(xx, y, c=alpha2, marker='s', linewidths=0, cmap='Oranges',
|
||||
norm=pltcolors.Normalize(vmin=0, vmax=1), vmin=0, vmax=1, edgecolors=None)
|
||||
|
||||
if fts.hasIntervalForecasting:
|
||||
forecasts = fts.forecastAheadInterval(original[time_from - fts.order:time_from], time_to)
|
||||
@ -508,8 +278,6 @@ def plotComparedIntervalsAhead(original, models, colors, distributions, time_fro
|
||||
ax.set_xlabel('T')
|
||||
ax.set_xlim([0, len(original)])
|
||||
|
||||
#plt.colorbar()
|
||||
|
||||
Util.showAndSaveImage(fig, file, save)
|
||||
|
||||
|
||||
@ -795,8 +563,7 @@ def compareModelsTable(original, models_fo, models_ho):
|
||||
|
||||
|
||||
def simpleSearch_RMSE(train, test, model, partitions, orders, save=False, file=None, tam=[10, 15],
|
||||
plotforecasts=False, elev=30, azim=144, intervals=False,parameters=None):
|
||||
_3d = len(orders) > 1
|
||||
plotforecasts=False, elev=30, azim=144, intervals=False):
|
||||
ret = []
|
||||
errors = np.array([[0 for k in range(len(partitions))] for kk in range(len(orders))])
|
||||
forecasted_best = []
|
||||
@ -817,16 +584,13 @@ def simpleSearch_RMSE(train, test, model, partitions, orders, save=False, file=N
|
||||
sets = Grid.GridPartitionerTrimf(train, p)
|
||||
for oc, o in enumerate(orders, start=0):
|
||||
fts = model("q = " + str(p) + " n = " + str(o))
|
||||
fts.train(train, sets, o,parameters=parameters)
|
||||
fts.train(train, sets, o)
|
||||
if not intervals:
|
||||
forecasted = fts.forecast(test)
|
||||
if not fts.hasSeasonality:
|
||||
error = Measures.rmse(np.array(test[o:]), np.array(forecasted[:-1]))
|
||||
else:
|
||||
error = Measures.rmse(np.array(test[o:]), np.array(forecasted))
|
||||
error = Measures.rmse(np.array(test[o:]), np.array(forecasted[:-1]))
|
||||
for kk in range(o):
|
||||
forecasted.insert(0, None)
|
||||
if plotforecasts: ax0.plot(forecasted, label=fts.name)
|
||||
if plotforecasts: ax0.plot(forecasted, label=fts.name)
|
||||
else:
|
||||
forecasted = fts.forecastInterval(test)
|
||||
error = 1.0 - Measures.rmse_interval(np.array(test[o:]), np.array(forecasted[:-1]))
|
||||
@ -841,22 +605,15 @@ def simpleSearch_RMSE(train, test, model, partitions, orders, save=False, file=N
|
||||
# handles0, labels0 = ax0.get_legend_handles_labels()
|
||||
# ax0.legend(handles0, labels0)
|
||||
ax0.plot(test, label="Original", linewidth=3.0, color="black")
|
||||
if _3d: ax1 = Axes3D(fig, rect=[0, 1, 0.9, 0.9], elev=elev, azim=azim)
|
||||
ax1 = Axes3D(fig, rect=[0, 1, 0.9, 0.9], elev=elev, azim=azim)
|
||||
if not plotforecasts: ax1 = Axes3D(fig, rect=[0, 1, 0.9, 0.9], elev=elev, azim=azim)
|
||||
# ax1 = fig.add_axes([0.6, 0.5, 0.45, 0.45], projection='3d')
|
||||
if _3d:
|
||||
ax1.set_title('Error Surface')
|
||||
ax1.set_ylabel('Model order')
|
||||
ax1.set_xlabel('Number of partitions')
|
||||
ax1.set_zlabel('RMSE')
|
||||
X, Y = np.meshgrid(partitions, orders)
|
||||
surf = ax1.plot_surface(X, Y, errors, rstride=1, cstride=1, antialiased=True)
|
||||
else:
|
||||
ax1 = fig.add_axes([0, 1, 0.9, 0.9])
|
||||
ax1.set_title('Error Curve')
|
||||
ax1.set_ylabel('Number of partitions')
|
||||
ax1.set_xlabel('RMSE')
|
||||
ax0.plot(errors,partitions)
|
||||
ax1.set_title('Error Surface')
|
||||
ax1.set_ylabel('Model order')
|
||||
ax1.set_xlabel('Number of partitions')
|
||||
ax1.set_zlabel('RMSE')
|
||||
X, Y = np.meshgrid(partitions, orders)
|
||||
surf = ax1.plot_surface(X, Y, errors, rstride=1, cstride=1, antialiased=True)
|
||||
ret.append(best)
|
||||
ret.append(forecasted_best)
|
||||
|
||||
@ -877,7 +634,7 @@ def pftsExploreOrderAndPartitions(data,save=False, file=None):
|
||||
axes[2].set_title('Interval Forecasts by Order')
|
||||
|
||||
for order in np.arange(1, 6):
|
||||
fts = pwfts.ProbabilisticWeightedFTS("")
|
||||
fts = pfts.ProbabilisticFTS("")
|
||||
fts.shortname = "n = " + str(order)
|
||||
fts.train(data, data_fs1, order=order)
|
||||
point_forecasts = fts.forecast(data)
|
||||
@ -899,7 +656,7 @@ def pftsExploreOrderAndPartitions(data,save=False, file=None):
|
||||
|
||||
for partitions in np.arange(5, 11):
|
||||
data_fs = Grid.GridPartitionerTrimf(data, partitions)
|
||||
fts = pwfts.ProbabilisticWeightedFTS("")
|
||||
fts = pfts.ProbabilisticFTS("")
|
||||
fts.shortname = "q = " + str(partitions)
|
||||
fts.train(data, data_fs, 1)
|
||||
point_forecasts = fts.forecast(data)
|
||||
@ -927,4 +684,3 @@ def pftsExploreOrderAndPartitions(data,save=False, file=None):
|
||||
plt.tight_layout()
|
||||
|
||||
Util.showAndSaveImage(fig, file, save)
|
||||
|
||||
|
@ -30,11 +30,16 @@ def enumerate2(xs, start=0, step=1):
|
||||
yield (start, x)
|
||||
start += step
|
||||
|
||||
def sliding_window(data, windowsize, train=0.8):
|
||||
def sliding_window(data, windowsize, train=0.8, inc=0.1):
|
||||
l = len(data)
|
||||
ttrain = int(round(windowsize * train, 0))
|
||||
for count in np.arange(0,l,windowsize):
|
||||
yield ( data[count : count + ttrain], data[count + ttrain : count + windowsize] )
|
||||
ic = int(round(windowsize * inc, 0))
|
||||
for count in np.arange(0,l-windowsize+ic,ic):
|
||||
if count + windowsize > l:
|
||||
_end = l
|
||||
else:
|
||||
_end = count + windowsize
|
||||
yield (count, data[count : count + ttrain], data[count + ttrain : _end] )
|
||||
|
||||
|
||||
def persist_obj(obj, file):
|
||||
|
@ -77,18 +77,14 @@ def c_means(k, dados, tam):
|
||||
return centroides
|
||||
|
||||
class CMeansPartitioner(partitioner.Partitioner):
|
||||
def __init__(self, npart,data,func = Membership.trimf):
|
||||
super(CMeansPartitioner, self).__init__("CMeans ",data,npart,func)
|
||||
def __init__(self, data, npart, func = Membership.trimf, transformation=None):
|
||||
super(CMeansPartitioner, self).__init__("CMeans", data, npart, func=func, transformation=transformation)
|
||||
|
||||
def build(self, data):
|
||||
sets = []
|
||||
dmax = max(data)
|
||||
dmax += dmax * 0.10
|
||||
dmin = min(data)
|
||||
dmin -= dmin * 0.10
|
||||
centroides = c_means(self.partitions, data, 1)
|
||||
centroides.append(dmax)
|
||||
centroides.append(dmin)
|
||||
centroides.append(self.max)
|
||||
centroides.append(self.min)
|
||||
centroides = list(set(centroides))
|
||||
centroides.sort()
|
||||
for c in np.arange(1, len(centroides) - 1):
|
||||
|
@ -77,19 +77,15 @@ def bestSplit(data, npart):
|
||||
return [threshold]
|
||||
|
||||
class EntropyPartitioner(partitioner.Partitioner):
|
||||
def __init__(self, data,npart,func = Membership.trimf):
|
||||
super(EntropyPartitioner, self).__init__("Entropy" ,data,npart,func)
|
||||
def __init__(self, data, npart, func = Membership.trimf, transformation=None):
|
||||
super(EntropyPartitioner, self).__init__("Entropy", data, npart, func=func, transformation=transformation)
|
||||
|
||||
def build(self, data):
|
||||
sets = []
|
||||
dmax = max(data)
|
||||
dmax += dmax * 0.10
|
||||
dmin = min(data)
|
||||
dmin -= dmin * 0.10
|
||||
|
||||
partitions = bestSplit(data, self.partitions)
|
||||
partitions.append(dmin)
|
||||
partitions.append(dmax)
|
||||
partitions.append(self.min)
|
||||
partitions.append(self.max)
|
||||
partitions = list(set(partitions))
|
||||
partitions.sort()
|
||||
for c in np.arange(1, len(partitions) - 1):
|
||||
|
@ -101,18 +101,15 @@ def fuzzy_cmeans(k, dados, tam, m, deltadist=0.001):
|
||||
|
||||
|
||||
class FCMPartitioner(partitioner.Partitioner):
|
||||
def __init__(self, data,npart,func = Membership.trimf):
|
||||
super(FCMPartitioner, self).__init__("FCM ",data,npart,func)
|
||||
def __init__(self, data,npart,func = Membership.trimf, transformation=None):
|
||||
super(FCMPartitioner, self).__init__("FCM", data, npart, func=func, transformation=transformation)
|
||||
|
||||
def build(self,data):
|
||||
sets = []
|
||||
dmax = max(data)
|
||||
dmax = dmax + dmax*0.10
|
||||
dmin = min(data)
|
||||
dmin = dmin - dmin*0.10
|
||||
|
||||
centroides = fuzzy_cmeans(self.partitions, data, 1, 2)
|
||||
centroides.append(dmax)
|
||||
centroides.append(dmin)
|
||||
centroides.append(self.max)
|
||||
centroides.append(self.min)
|
||||
centroides = list(set(centroides))
|
||||
centroides.sort()
|
||||
for c in np.arange(1,len(centroides)-1):
|
||||
|
@ -7,28 +7,17 @@ from pyFTS.partitioners import partitioner
|
||||
|
||||
|
||||
class GridPartitioner(partitioner.Partitioner):
|
||||
def __init__(self, data,npart,func = Membership.trimf):
|
||||
super(GridPartitioner, self).__init__("Grid",data,npart,func)
|
||||
def __init__(self, data,npart,func = Membership.trimf, transformation=None):
|
||||
super(GridPartitioner, self).__init__("Grid", data, npart, func=func, transformation=transformation)
|
||||
|
||||
def build(self, data):
|
||||
sets = []
|
||||
_min = min(data)
|
||||
if _min < 0:
|
||||
dmin = _min * 1.1
|
||||
else:
|
||||
dmin = _min * 0.9
|
||||
|
||||
_max = max(data)
|
||||
if _max > 0:
|
||||
dmax = _max * 1.1
|
||||
else:
|
||||
dmax = _max * 0.9
|
||||
|
||||
dlen = dmax - dmin
|
||||
dlen = self.max - self.min
|
||||
partlen = dlen / self.partitions
|
||||
|
||||
count = 0
|
||||
for c in np.arange(dmin, dmax, partlen):
|
||||
for c in np.arange(self.min, self.max, partlen):
|
||||
if self.membership_function == Membership.trimf:
|
||||
sets.append(
|
||||
FuzzySet.FuzzySet(self.prefix + str(count), Membership.trimf, [c - partlen, c, c + partlen],c))
|
||||
|
@ -11,11 +11,12 @@ from pyFTS.partitioners import partitioner
|
||||
|
||||
|
||||
class HuarngPartitioner(partitioner.Partitioner):
|
||||
def __init__(self, npart,data,func = Membership.trimf):
|
||||
super(HuarngPartitioner, self).__init__("Huarng",data,npart,func)
|
||||
def __init__(self, data,npart,func = Membership.trimf, transformation=None):
|
||||
super(HuarngPartitioner, self).__init__("Huarng", data, npart, func=func, transformation=transformation)
|
||||
|
||||
def build(self, data):
|
||||
data2 = Transformations.differential(data)
|
||||
diff = Transformations.Differential(1)
|
||||
data2 = diff.apply(data)
|
||||
davg = np.abs( np.mean(data2) / 2 )
|
||||
|
||||
if davg <= 1.0:
|
||||
@ -28,13 +29,10 @@ class HuarngPartitioner(partitioner.Partitioner):
|
||||
base = 100
|
||||
|
||||
sets = []
|
||||
dmax = max(data)
|
||||
dmax += dmax * 0.10
|
||||
dmin = min(data)
|
||||
dmin -= dmin * 0.10
|
||||
dlen = dmax - dmin
|
||||
|
||||
dlen = self.max - self.min
|
||||
npart = math.ceil(dlen / base)
|
||||
partition = math.ceil(dmin)
|
||||
partition = math.ceil(self.min)
|
||||
for c in range(npart):
|
||||
sets.append(
|
||||
FuzzySet.FuzzySet(self.prefix + str(c), Membership.trimf, [partition - base, partition, partition + base], partition))
|
||||
|
@ -2,27 +2,34 @@ from pyFTS.common import FuzzySet, Membership
|
||||
import numpy as np
|
||||
|
||||
class Partitioner(object):
|
||||
def __init__(self,name,data,npart,func = Membership.trimf, names=None, prefix="A"):
|
||||
def __init__(self,name,data,npart,func = Membership.trimf, names=None, prefix="A", transformation=None):
|
||||
self.name = name
|
||||
self.partitions = npart
|
||||
self.sets = []
|
||||
self.membership_function = func
|
||||
self.setnames = names
|
||||
self.prefix = prefix
|
||||
_min = min(data)
|
||||
self.transformation = transformation
|
||||
|
||||
if transformation is not None:
|
||||
ndata = transformation.apply(data)
|
||||
else:
|
||||
ndata = data
|
||||
|
||||
_min = min(ndata)
|
||||
if _min < 0:
|
||||
self.min = _min * 1.1
|
||||
else:
|
||||
self.min = _min * 0.9
|
||||
|
||||
_max = max(data)
|
||||
_max = max(ndata)
|
||||
if _max > 0:
|
||||
self.max = _max * 1.1
|
||||
else:
|
||||
self.max = _max * 0.9
|
||||
self.sets = self.build(data)
|
||||
self.sets = self.build(ndata)
|
||||
|
||||
def build(self,data):
|
||||
def build(self, data):
|
||||
pass
|
||||
|
||||
def plot(self,ax):
|
||||
|
487
pfts.py
Normal file
487
pfts.py
Normal file
@ -0,0 +1,487 @@
|
||||
#!/usr/bin/python
|
||||
# -*- coding: utf8 -*-
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import math
|
||||
from operator import itemgetter
|
||||
from pyFTS.common import FuzzySet, SortedCollection
|
||||
from pyFTS import hofts, ifts, tree
|
||||
|
||||
|
||||
class ProbabilisticFLRG(hofts.HighOrderFLRG):
|
||||
def __init__(self, order):
|
||||
super(ProbabilisticFLRG, self).__init__(order)
|
||||
self.RHS = {}
|
||||
self.frequencyCount = 0.0
|
||||
|
||||
def appendRHS(self, c):
|
||||
self.frequencyCount += 1.0
|
||||
if c.name in self.RHS:
|
||||
self.RHS[c.name] += 1.0
|
||||
else:
|
||||
self.RHS[c.name] = 1.0
|
||||
|
||||
def getProbability(self, c):
|
||||
return self.RHS[c] / self.frequencyCount
|
||||
|
||||
def __str__(self):
|
||||
tmp2 = ""
|
||||
for c in sorted(self.RHS):
|
||||
if len(tmp2) > 0:
|
||||
tmp2 = tmp2 + ", "
|
||||
tmp2 = tmp2 + "(" + str(round(self.RHS[c] / self.frequencyCount, 3)) + ")" + c
|
||||
return self.strLHS() + " -> " + tmp2
|
||||
|
||||
|
||||
class ProbabilisticFTS(ifts.IntervalFTS):
|
||||
def __init__(self, name):
|
||||
super(ProbabilisticFTS, self).__init__("PFTS")
|
||||
self.shortname = "PFTS " + name
|
||||
self.name = "Probabilistic FTS"
|
||||
self.detail = "Silva, P.; Guimarães, F.; Sadaei, H."
|
||||
self.flrgs = {}
|
||||
self.globalFrequency = 0
|
||||
self.hasPointForecasting = True
|
||||
self.hasIntervalForecasting = True
|
||||
self.hasDistributionForecasting = True
|
||||
self.isHighOrder = True
|
||||
|
||||
def generateFLRG(self, flrs):
|
||||
flrgs = {}
|
||||
l = len(flrs)
|
||||
for k in np.arange(self.order, l+1):
|
||||
if self.dump: print("FLR: " + str(k))
|
||||
flrg = ProbabilisticFLRG(self.order)
|
||||
|
||||
for kk in np.arange(k - self.order, k):
|
||||
flrg.appendLHS(flrs[kk].LHS)
|
||||
if self.dump: print("LHS: " + str(flrs[kk]))
|
||||
|
||||
if flrg.strLHS() in flrgs:
|
||||
flrgs[flrg.strLHS()].appendRHS(flrs[k-1].RHS)
|
||||
else:
|
||||
flrgs[flrg.strLHS()] = flrg;
|
||||
flrgs[flrg.strLHS()].appendRHS(flrs[k-1].RHS)
|
||||
if self.dump: print("RHS: " + str(flrs[k-1]))
|
||||
|
||||
self.globalFrequency += 1
|
||||
return (flrgs)
|
||||
|
||||
def addNewPFLGR(self,flrg):
|
||||
if flrg.strLHS() not in self.flrgs:
|
||||
tmp = ProbabilisticFLRG(self.order)
|
||||
for fs in flrg.LHS: tmp.appendLHS(fs)
|
||||
tmp.appendRHS(flrg.LHS[-1])
|
||||
self.flrgs[tmp.strLHS()] = tmp;
|
||||
self.globalFrequency += 1
|
||||
|
||||
def getProbability(self, flrg):
|
||||
if flrg.strLHS() in self.flrgs:
|
||||
return self.flrgs[flrg.strLHS()].frequencyCount / self.globalFrequency
|
||||
else:
|
||||
self.addNewPFLGR(flrg)
|
||||
return self.getProbability(flrg)
|
||||
|
||||
def getMidpoints(self, flrg):
|
||||
if flrg.strLHS() in self.flrgs:
|
||||
tmp = self.flrgs[flrg.strLHS()]
|
||||
ret = sum(np.array([tmp.getProbability(s) * self.setsDict[s].centroid for s in tmp.RHS]))
|
||||
else:
|
||||
pi = 1 / len(flrg.LHS)
|
||||
ret = sum(np.array([pi * s.centroid for s in flrg.LHS]))
|
||||
return ret
|
||||
|
||||
def getUpper(self, flrg):
|
||||
if flrg.strLHS() in self.flrgs:
|
||||
tmp = self.flrgs[flrg.strLHS()]
|
||||
ret = sum(np.array([tmp.getProbability(s) * self.setsDict[s].upper for s in tmp.RHS]))
|
||||
else:
|
||||
pi = 1 / len(flrg.LHS)
|
||||
ret = sum(np.array([pi * s.upper for s in flrg.LHS]))
|
||||
return ret
|
||||
|
||||
def getLower(self, flrg):
|
||||
if flrg.strLHS() in self.flrgs:
|
||||
tmp = self.flrgs[flrg.strLHS()]
|
||||
ret = sum(np.array([tmp.getProbability(s) * self.setsDict[s].lower for s in tmp.RHS]))
|
||||
else:
|
||||
pi = 1 / len(flrg.LHS)
|
||||
ret = sum(np.array([pi * s.lower for s in flrg.LHS]))
|
||||
return ret
|
||||
|
||||
def forecast(self, data):
|
||||
|
||||
ndata = np.array(self.doTransformations(data))
|
||||
|
||||
l = len(ndata)
|
||||
|
||||
ret = []
|
||||
|
||||
for k in np.arange(self.order - 1, l):
|
||||
|
||||
# print(k)
|
||||
|
||||
affected_flrgs = []
|
||||
affected_flrgs_memberships = []
|
||||
norms = []
|
||||
|
||||
mp = []
|
||||
|
||||
# Find the sets which membership > 0 for each lag
|
||||
count = 0
|
||||
lags = {}
|
||||
if self.order > 1:
|
||||
subset = ndata[k - (self.order - 1): k + 1]
|
||||
|
||||
for instance in subset:
|
||||
mb = FuzzySet.fuzzyInstance(instance, self.sets)
|
||||
tmp = np.argwhere(mb)
|
||||
idx = np.ravel(tmp) # flatten the array
|
||||
|
||||
if idx.size == 0: # the element is out of the bounds of the Universe of Discourse
|
||||
if instance <= self.sets[0].lower:
|
||||
idx = [0]
|
||||
elif instance >= self.sets[-1].upper:
|
||||
idx = [len(self.sets) - 1]
|
||||
else:
|
||||
raise Exception(instance)
|
||||
|
||||
lags[count] = idx
|
||||
count = count + 1
|
||||
|
||||
# Build the tree with all possible paths
|
||||
|
||||
root = tree.FLRGTreeNode(None)
|
||||
|
||||
self.buildTree(root, lags, 0)
|
||||
|
||||
# Trace the possible paths and build the PFLRG's
|
||||
|
||||
for p in root.paths():
|
||||
path = list(reversed(list(filter(None.__ne__, p))))
|
||||
flrg = hofts.HighOrderFLRG(self.order)
|
||||
for kk in path: flrg.appendLHS(self.sets[kk])
|
||||
|
||||
assert len(flrg.LHS) == subset.size, str(subset) + " -> " + str([s.name for s in flrg.LHS])
|
||||
|
||||
##
|
||||
affected_flrgs.append(flrg)
|
||||
|
||||
# Find the general membership of FLRG
|
||||
affected_flrgs_memberships.append(min(self.getSequenceMembership(subset, flrg.LHS)))
|
||||
|
||||
else:
|
||||
|
||||
mv = FuzzySet.fuzzyInstance(ndata[k], self.sets) # get all membership values
|
||||
tmp = np.argwhere(mv) # get the indices of values > 0
|
||||
idx = np.ravel(tmp) # flatten the array
|
||||
|
||||
if idx.size == 0: # the element is out of the bounds of the Universe of Discourse
|
||||
if ndata[k] <= self.sets[0].lower:
|
||||
idx = [0]
|
||||
elif ndata[k] >= self.sets[-1].upper:
|
||||
idx = [len(self.sets) - 1]
|
||||
else:
|
||||
raise Exception(ndata[k])
|
||||
|
||||
for kk in idx:
|
||||
flrg = hofts.HighOrderFLRG(self.order)
|
||||
flrg.appendLHS(self.sets[kk])
|
||||
affected_flrgs.append(flrg)
|
||||
affected_flrgs_memberships.append(mv[kk])
|
||||
|
||||
count = 0
|
||||
for flrg in affected_flrgs:
|
||||
# achar o os bounds de cada FLRG, ponderados pela probabilidade e pertinência
|
||||
norm = self.getProbability(flrg) * affected_flrgs_memberships[count]
|
||||
if norm == 0:
|
||||
norm = self.getProbability(flrg) # * 0.001
|
||||
mp.append(norm * self.getMidpoints(flrg))
|
||||
norms.append(norm)
|
||||
count = count + 1
|
||||
|
||||
# gerar o intervalo
|
||||
norm = sum(norms)
|
||||
if norm == 0:
|
||||
ret.append(0)
|
||||
else:
|
||||
ret.append(sum(mp) / norm)
|
||||
|
||||
ret = self.doInverseTransformations(ret, params=[data[self.order - 1:]])
|
||||
|
||||
return ret
|
||||
|
||||
def forecastInterval(self, data):
|
||||
|
||||
ndata = np.array(self.doTransformations(data))
|
||||
|
||||
l = len(ndata)
|
||||
|
||||
ret = []
|
||||
|
||||
for k in np.arange(self.order - 1, l):
|
||||
|
||||
# print(k)
|
||||
|
||||
affected_flrgs = []
|
||||
affected_flrgs_memberships = []
|
||||
norms = []
|
||||
|
||||
up = []
|
||||
lo = []
|
||||
|
||||
# Find the sets which membership > 0 for each lag
|
||||
count = 0
|
||||
lags = {}
|
||||
if self.order > 1:
|
||||
subset = ndata[k - (self.order - 1): k + 1]
|
||||
|
||||
for instance in subset:
|
||||
mb = FuzzySet.fuzzyInstance(instance, self.sets)
|
||||
tmp = np.argwhere(mb)
|
||||
idx = np.ravel(tmp) # flatten the array
|
||||
|
||||
if idx.size == 0: # the element is out of the bounds of the Universe of Discourse
|
||||
if instance <= self.sets[0].lower:
|
||||
idx = [0]
|
||||
elif instance >= self.sets[-1].upper:
|
||||
idx = [len(self.sets) - 1]
|
||||
else:
|
||||
raise Exception(instance)
|
||||
|
||||
lags[count] = idx
|
||||
count = count + 1
|
||||
|
||||
# Build the tree with all possible paths
|
||||
|
||||
root = tree.FLRGTreeNode(None)
|
||||
|
||||
self.buildTree(root, lags, 0)
|
||||
|
||||
# Trace the possible paths and build the PFLRG's
|
||||
|
||||
for p in root.paths():
|
||||
path = list(reversed(list(filter(None.__ne__, p))))
|
||||
flrg = hofts.HighOrderFLRG(self.order)
|
||||
for kk in path: flrg.appendLHS(self.sets[kk])
|
||||
|
||||
assert len(flrg.LHS) == subset.size, str(subset) + " -> " + str([s.name for s in flrg.LHS])
|
||||
|
||||
##
|
||||
affected_flrgs.append(flrg)
|
||||
|
||||
# Find the general membership of FLRG
|
||||
affected_flrgs_memberships.append(min(self.getSequenceMembership(subset, flrg.LHS)))
|
||||
|
||||
else:
|
||||
|
||||
mv = FuzzySet.fuzzyInstance(ndata[k], self.sets) # get all membership values
|
||||
tmp = np.argwhere(mv) # get the indices of values > 0
|
||||
idx = np.ravel(tmp) # flatten the array
|
||||
|
||||
if idx.size == 0: # the element is out of the bounds of the Universe of Discourse
|
||||
if ndata[k] <= self.sets[0].lower:
|
||||
idx = [0]
|
||||
elif ndata[k] >= self.sets[-1].upper:
|
||||
idx = [len(self.sets) - 1]
|
||||
else:
|
||||
raise Exception(ndata[k])
|
||||
|
||||
for kk in idx:
|
||||
flrg = hofts.HighOrderFLRG(self.order)
|
||||
flrg.appendLHS(self.sets[kk])
|
||||
affected_flrgs.append(flrg)
|
||||
affected_flrgs_memberships.append(mv[kk])
|
||||
|
||||
count = 0
|
||||
for flrg in affected_flrgs:
|
||||
# achar o os bounds de cada FLRG, ponderados pela probabilidade e pertinência
|
||||
norm = self.getProbability(flrg) * affected_flrgs_memberships[count]
|
||||
if norm == 0:
|
||||
norm = self.getProbability(flrg) # * 0.001
|
||||
up.append(norm * self.getUpper(flrg))
|
||||
lo.append(norm * self.getLower(flrg))
|
||||
norms.append(norm)
|
||||
count = count + 1
|
||||
|
||||
# gerar o intervalo
|
||||
norm = sum(norms)
|
||||
if norm == 0:
|
||||
ret.append([0, 0])
|
||||
else:
|
||||
lo_ = self.doInverseTransformations(sum(lo) / norm, params=[data[k - (self.order - 1): k + 1]])
|
||||
up_ = self.doInverseTransformations(sum(up) / norm, params=[data[k - (self.order - 1): k + 1]])
|
||||
ret.append([lo_, up_])
|
||||
|
||||
return ret
|
||||
|
||||
def forecastAhead(self, data, steps):
|
||||
ret = [data[k] for k in np.arange(len(data) - self.order, len(data))]
|
||||
|
||||
for k in np.arange(self.order - 1, steps):
|
||||
|
||||
if ret[-1] <= self.sets[0].lower or ret[-1] >= self.sets[-1].upper:
|
||||
ret.append(ret[-1])
|
||||
else:
|
||||
mp = self.forecast([ret[x] for x in np.arange(k - self.order, k)])
|
||||
|
||||
ret.append(mp)
|
||||
|
||||
return ret
|
||||
|
||||
def forecastAheadInterval(self, data, steps):
|
||||
ret = [[data[k], data[k]] for k in np.arange(len(data) - self.order, len(data))]
|
||||
|
||||
for k in np.arange(self.order, steps+self.order):
|
||||
|
||||
if ret[-1][0] <= self.sets[0].lower and ret[-1][1] >= self.sets[-1].upper:
|
||||
ret.append(ret[-1])
|
||||
else:
|
||||
lower = self.forecastInterval([ret[x][0] for x in np.arange(k - self.order, k)])
|
||||
upper = self.forecastInterval([ret[x][1] for x in np.arange(k - self.order, k)])
|
||||
|
||||
ret.append([np.min(lower), np.max(upper)])
|
||||
|
||||
return ret
|
||||
|
||||
def getGridClean(self, resolution):
|
||||
grid = {}
|
||||
|
||||
if len(self.transformations) == 0:
|
||||
_min = self.sets[0].lower
|
||||
_max = self.sets[-1].upper
|
||||
else:
|
||||
_min = self.original_min
|
||||
_max = self.original_max
|
||||
|
||||
for sbin in np.arange(_min,_max, resolution):
|
||||
grid[sbin] = 0
|
||||
|
||||
return grid
|
||||
|
||||
def gridCount(self, grid, resolution, index, interval):
|
||||
#print(interval)
|
||||
for k in index.inside(interval[0],interval[1]):
|
||||
#print(k)
|
||||
grid[k] += 1
|
||||
return grid
|
||||
|
||||
def gridCountPoint(self, grid, resolution, index, point):
|
||||
k = index.find_ge(point)
|
||||
# print(k)
|
||||
grid[k] += 1
|
||||
return grid
|
||||
|
||||
def buildTreeWithoutOrder(self, node, lags, level):
|
||||
|
||||
if level not in lags:
|
||||
return
|
||||
|
||||
for s in lags[level]:
|
||||
node.appendChild(tree.FLRGTreeNode(s))
|
||||
|
||||
for child in node.getChildren():
|
||||
self.buildTreeWithoutOrder(child, lags, level + 1)
|
||||
|
||||
def forecastAheadDistribution(self, data, steps, resolution, parameters=None):
|
||||
|
||||
ret = []
|
||||
|
||||
intervals = self.forecastAheadInterval(data, steps)
|
||||
|
||||
grid = self.getGridClean(resolution)
|
||||
|
||||
index = SortedCollection.SortedCollection(iterable=grid.keys())
|
||||
|
||||
if parameters is None:
|
||||
|
||||
grids = []
|
||||
for k in np.arange(0, steps):
|
||||
grids.append(self.getGridClean(resolution))
|
||||
|
||||
for k in np.arange(self.order, steps + self.order):
|
||||
|
||||
lags = {}
|
||||
|
||||
cc = 0
|
||||
|
||||
for i in intervals[k - self.order : k]:
|
||||
|
||||
quantiles = []
|
||||
|
||||
for qt in np.arange(0, 50, 2):
|
||||
quantiles.append(i[0] + qt * ((i[1] - i[0]) / 100))
|
||||
quantiles.append(i[1] - qt * ((i[1] - i[0]) / 100))
|
||||
quantiles.append(i[0] + ((i[1] - i[0]) / 2))
|
||||
|
||||
quantiles = list(set(quantiles))
|
||||
|
||||
quantiles.sort()
|
||||
|
||||
lags[cc] = quantiles
|
||||
|
||||
cc += 1
|
||||
|
||||
# Build the tree with all possible paths
|
||||
|
||||
root = tree.FLRGTreeNode(None)
|
||||
|
||||
self.buildTreeWithoutOrder(root, lags, 0)
|
||||
|
||||
# Trace the possible paths
|
||||
|
||||
for p in root.paths():
|
||||
path = list(reversed(list(filter(None.__ne__, p))))
|
||||
|
||||
qtle = self.forecastInterval(path)
|
||||
|
||||
grids[k - self.order] = self.gridCount(grids[k - self.order], resolution, index, np.ravel(qtle))
|
||||
|
||||
for k in np.arange(0, steps):
|
||||
tmp = np.array([grids[k][q] for q in sorted(grids[k])])
|
||||
ret.append(tmp / sum(tmp))
|
||||
|
||||
grid = self.getGridClean(resolution)
|
||||
df = pd.DataFrame(ret, columns=sorted(grid))
|
||||
return df
|
||||
else:
|
||||
|
||||
print("novo")
|
||||
|
||||
ret = []
|
||||
|
||||
for k in np.arange(self.order, steps + self.order):
|
||||
|
||||
grid = self.getGridClean(resolution)
|
||||
grid = self.gridCount(grid, resolution, index, intervals[k])
|
||||
|
||||
for qt in np.arange(0, 50, 1):
|
||||
# print(qt)
|
||||
qtle_lower = self.forecastInterval(
|
||||
[intervals[x][0] + qt * ((intervals[x][1] - intervals[x][0]) / 100) for x in
|
||||
np.arange(k - self.order, k)])
|
||||
grid = self.gridCount(grid, resolution, index, np.ravel(qtle_lower))
|
||||
qtle_upper = self.forecastInterval(
|
||||
[intervals[x][1] - qt * ((intervals[x][1] - intervals[x][0]) / 100) for x in
|
||||
np.arange(k - self.order, k)])
|
||||
grid = self.gridCount(grid, resolution, index, np.ravel(qtle_upper))
|
||||
qtle_mid = self.forecastInterval(
|
||||
[intervals[x][0] + (intervals[x][1] - intervals[x][0]) / 2 for x in np.arange(k - self.order, k)])
|
||||
grid = self.gridCount(grid, resolution, index, np.ravel(qtle_mid))
|
||||
|
||||
tmp = np.array([grid[k] for k in sorted(grid)])
|
||||
|
||||
ret.append(tmp / sum(tmp))
|
||||
|
||||
grid = self.getGridClean(resolution)
|
||||
df = pd.DataFrame(ret, columns=sorted(grid))
|
||||
return df
|
||||
|
||||
|
||||
def __str__(self):
|
||||
tmp = self.name + ":\n"
|
||||
for r in sorted(self.flrgs):
|
||||
p = round(self.flrgs[r].frequencyCount / self.globalFrequency, 3)
|
||||
tmp = tmp + "(" + str(p) + ") " + str(self.flrgs[r]) + "\n"
|
||||
return tmp
|
@ -9,23 +9,61 @@ import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
|
||||
import pandas as pd
|
||||
from pyFTS.partitioners import Grid, Entropy, FCM
|
||||
from pyFTS.partitioners import Grid, Entropy, FCM, Huarng
|
||||
from pyFTS.common import FLR,FuzzySet,Membership,Transformations
|
||||
from pyFTS import fts,hofts,ifts,pwfts,tree, chen
|
||||
from pyFTS import fts,hofts,ifts,pwfts,tree, chen, pfts
|
||||
from pyFTS.benchmarks import benchmarks as bchmk
|
||||
from pyFTS.benchmarks import naive
|
||||
from pyFTS.benchmarks import Measures
|
||||
from numpy import random
|
||||
|
||||
#print(FCM.FCMPartitionerTrimf.__module__)
|
||||
|
||||
gauss = random.normal(0,1.0,2000)
|
||||
#gauss = random.normal(0,1.0,2000)
|
||||
#gauss_teste = random.normal(0,1.0,400)
|
||||
|
||||
|
||||
os.chdir("/home/petronio/dados/Dropbox/Doutorado/Disciplinas/AdvancedFuzzyTimeSeriesModels/")
|
||||
|
||||
#taiexpd = pd.read_csv("DataSets/TAIEX.csv", sep=",")
|
||||
#taiex = np.array(taiexpd["avg"][:5000])
|
||||
|
||||
taiex = pd.read_csv("DataSets/TAIEX.csv", sep=",")
|
||||
taiex_treino = np.array(taiex["avg"][2500:3900])
|
||||
taiex_teste = np.array(taiex["avg"][3901:4500])
|
||||
|
||||
#print(len(taiex))
|
||||
|
||||
#from pyFTS.common import Util
|
||||
|
||||
#, ,
|
||||
|
||||
bchmk.sliding_window(gauss,500,train=0.7,partitioners=[Grid.GridPartitioner, FCM.FCMPartitioner, Entropy.EntropyPartitioner])
|
||||
diff = Transformations.Differential(1)
|
||||
|
||||
#bchmk.sliding_window(taiex,2000,train=0.8, #transformation=diff, #models=[pwfts.ProbabilisticWeightedFTS],
|
||||
# partitioners=[Grid.GridPartitioner, FCM.FCMPartitioner, Entropy.EntropyPartitioner],
|
||||
# partitions=[10, 15, 20, 25, 30, 35, 40], dump=True, save=True, file="experiments/points.csv")
|
||||
|
||||
|
||||
bchmk.allPointForecasters(taiex_treino, taiex_treino, 7, transformation=diff,
|
||||
models=[ naive.Naive, pfts.ProbabilisticFTS, pwfts.ProbabilisticWeightedFTS],
|
||||
statistics=True, residuals=False, series=False)
|
||||
|
||||
data_train_fs = Grid.GridPartitioner(taiex_treino, 10, transformation=diff).sets
|
||||
|
||||
fts1 = pfts.ProbabilisticFTS("")
|
||||
fts1.appendTransformation(diff)
|
||||
fts1.train(taiex_treino, data_train_fs, order=1)
|
||||
|
||||
print(fts1.forecast([5000, 5000]))
|
||||
|
||||
fts2 = pwfts.ProbabilisticWeightedFTS("")
|
||||
fts2.appendTransformation(diff)
|
||||
fts2.train(taiex_treino, data_train_fs, order=1)
|
||||
|
||||
print(fts2.forecast([5000, 5000]))
|
||||
|
||||
|
||||
#tmp = Grid.GridPartitioner(taiex_treino,7,transformation=diff)
|
||||
|
||||
#for s in tmp.sets: print(s)
|
Loading…
Reference in New Issue
Block a user