Winkler score
This commit is contained in:
parent
ffd97bacfc
commit
7d5dae21e8
@ -165,6 +165,7 @@ def sharpness(forecasts):
|
||||
return np.mean(tmp)
|
||||
|
||||
|
||||
|
||||
def resolution(forecasts):
|
||||
"""Resolution - Standard deviation of the intervals"""
|
||||
shp = sharpness(forecasts)
|
||||
|
@ -24,7 +24,7 @@ partitioner = Grid.GridPartitioner(data=dataset[:800], npart=10) #, transformati
|
||||
from pyFTS.benchmarks import benchmarks as bchmk, Util as bUtil, Measures, knn, quantreg, arima, naive
|
||||
|
||||
|
||||
from pyFTS.models import pwfts, song, ifts
|
||||
from pyFTS.models import pwfts, song, ifts, hofts
|
||||
from pyFTS.models.ensemble import ensemble
|
||||
|
||||
'''
|
||||
@ -39,33 +39,33 @@ print(Measures.get_distribution_statistics(dataset[800:1000], model))
|
||||
#for tmp2 in tmp:
|
||||
# print(tmp2)
|
||||
#'''
|
||||
#'''
|
||||
'''
|
||||
|
||||
bchmk.sliding_window_benchmarks(dataset, 1000, train=0.8, inc=0.2,
|
||||
methods=[pwfts.ProbabilisticWeightedFTS],
|
||||
methods=[hofts.HighOrderFTS], #[pwfts.ProbabilisticWeightedFTS],
|
||||
benchmark_models=False,
|
||||
transformations=[None],
|
||||
orders=[1, 2, 3],
|
||||
partitions=np.arange(10, 90, 5),
|
||||
partitions=np.arange(30, 80, 5),
|
||||
progress=False, type="point",
|
||||
#steps_ahead=[1,2,4,6,8,10],
|
||||
distributed=True, nodes=['192.168.0.110', '192.168.0.107', '192.168.0.106'],
|
||||
file="benchmarks.db", dataset="SP500", tag="partitioning")
|
||||
file="benchmarks.db", dataset="NASDAQ", tag="comparisons")
|
||||
|
||||
|
||||
|
||||
bchmk.sliding_window_benchmarks(dataset, 1000, train=0.8, inc=0.2,
|
||||
methods=[pwfts.ProbabilisticWeightedFTS],
|
||||
methods=[hofts.HighOrderFTS], # [pwfts.ProbabilisticWeightedFTS],
|
||||
benchmark_models=False,
|
||||
transformations=[tdiff],
|
||||
orders=[1, 2, 3],
|
||||
partitions=np.arange(3, 30, 2),
|
||||
partitions=np.arange(3, 25, 2),
|
||||
progress=False, type="point",
|
||||
#steps_ahead=[1,2,4,6,8,10],
|
||||
distributed=True, nodes=['192.168.0.110', '192.168.0.107', '192.168.0.106'],
|
||||
file="benchmarks.db", dataset="SP500", tag="partitioning")
|
||||
file="benchmarks.db", dataset="NASDAQ", tag="comparisons")
|
||||
|
||||
#'''
|
||||
'''
|
||||
'''
|
||||
from pyFTS.partitioners import Grid, Util as pUtil
|
||||
partitioner = Grid.GridPartitioner(data=dataset[:800], npart=10, transformation=tdiff)
|
||||
@ -78,16 +78,34 @@ print(Measures.get_distribution_statistics(dataset[800:1000], model, steps_ahead
|
||||
#for tmp2 in tmp:
|
||||
# print(tmp2)
|
||||
'''
|
||||
'''
|
||||
#'''
|
||||
|
||||
types = ['point','interval','distribution']
|
||||
types = ['interval']#['point','interval','distribution']
|
||||
benchmark_methods=[[arima.ARIMA for k in range(8)] + [quantreg.QuantileRegression for k in range(4)]]
|
||||
'''
|
||||
benchmark_methods=[
|
||||
[arima.ARIMA for k in range(4)] + [naive.Naive],
|
||||
[arima.ARIMA for k in range(8)] + [quantreg.QuantileRegression for k in range(4)],
|
||||
[arima.ARIMA for k in range(4)] + [quantreg.QuantileRegression for k in range(2)]
|
||||
+ [knn.KNearestNeighbors for k in range(3)]
|
||||
]
|
||||
]'''
|
||||
benchmark_methods_parameters= [
|
||||
[
|
||||
{'order': (1, 0, 0), 'alpha': .05},
|
||||
{'order': (1, 0, 0), 'alpha': .25},
|
||||
{'order': (1, 0, 1), 'alpha': .05},
|
||||
{'order': (1, 0, 1), 'alpha': .25},
|
||||
{'order': (2, 0, 1), 'alpha': .05},
|
||||
{'order': (2, 0, 1), 'alpha': .25},
|
||||
{'order': (2, 0, 2), 'alpha': .05},
|
||||
{'order': (2, 0, 2), 'alpha': .25},
|
||||
{'order': 1, 'alpha': .05},
|
||||
{'order': 1, 'alpha': .25},
|
||||
{'order': 2, 'alpha': .05},
|
||||
{'order': 2, 'alpha': .25}
|
||||
]
|
||||
]
|
||||
'''benchmark_methods_parameters= [
|
||||
[
|
||||
{'order': (1, 0, 0)},
|
||||
{'order': (1, 0, 1)},
|
||||
@ -116,8 +134,8 @@ benchmark_methods_parameters= [
|
||||
{'order': 2, 'dist': True},
|
||||
{'order': 1}, {'order': 2}, {'order': 3},
|
||||
]
|
||||
]
|
||||
dataset_name = "NASDAQ"
|
||||
]'''
|
||||
dataset_name = "SP500"
|
||||
tag = "comparisons"
|
||||
|
||||
from pyFTS.benchmarks import arima, naive, quantreg
|
||||
@ -147,7 +165,7 @@ for ct, type in enumerate(types):
|
||||
file="benchmarks.db", dataset=dataset_name, tag=tag)
|
||||
|
||||
|
||||
'''
|
||||
#'''
|
||||
'''
|
||||
dat = pd.read_csv('pwfts_taiex_partitioning.csv', sep=';')
|
||||
print(bUtil.analytic_tabular_dataframe(dat))
|
||||
|
Loading…
Reference in New Issue
Block a user