Code refactorings and bugfixes
This commit is contained in:
parent
3186fb96e8
commit
7a124777f5
@ -182,7 +182,7 @@ def point_sliding_window(data, windowsize, train=0.8, models=None, partitioners=
|
|||||||
|
|
||||||
for partitioner in partitioners:
|
for partitioner in partitioners:
|
||||||
|
|
||||||
data_train_fs = partitioner(train, partition, transformation=transformation)
|
data_train_fs = partitioner(data=train, npart=partition, transformation=transformation)
|
||||||
|
|
||||||
for _id, m in enumerate(pool,start=0):
|
for _id, m in enumerate(pool,start=0):
|
||||||
if m.benchmark_only and m.shortname in benchmarks_only:
|
if m.benchmark_only and m.shortname in benchmarks_only:
|
||||||
@ -263,7 +263,7 @@ def all_point_forecasters(data_train, data_test, partitions, max_order=3, statis
|
|||||||
|
|
||||||
objs = []
|
objs = []
|
||||||
|
|
||||||
data_train_fs = Grid.GridPartitioner(data_train, partitions, transformation=transformation)
|
data_train_fs = Grid.GridPartitioner(data=data_train, npart=partitions, transformation=transformation)
|
||||||
|
|
||||||
count = 1
|
count = 1
|
||||||
|
|
||||||
@ -361,7 +361,7 @@ def interval_sliding_window(data, windowsize, train=0.8, models=None, partitione
|
|||||||
for partition in partitions:
|
for partition in partitions:
|
||||||
for partitioner in partitioners:
|
for partitioner in partitioners:
|
||||||
pttr = str(partitioner.__module__).split('.')[-1]
|
pttr = str(partitioner.__module__).split('.')[-1]
|
||||||
data_train_fs = partitioner(training, partition, transformation=transformation)
|
data_train_fs = partitioner(data=training, npart=partition, transformation=transformation)
|
||||||
|
|
||||||
for count, model in enumerate(models, start=0):
|
for count, model in enumerate(models, start=0):
|
||||||
|
|
||||||
@ -468,7 +468,7 @@ def all_interval_forecasters(data_train, data_test, partitions, max_order=3,save
|
|||||||
benchmark_models=None, benchmark_models_parameters=None):
|
benchmark_models=None, benchmark_models_parameters=None):
|
||||||
models = build_model_pool_interval(models, max_order, benchmark_models, benchmark_models_parameters)
|
models = build_model_pool_interval(models, max_order, benchmark_models, benchmark_models_parameters)
|
||||||
|
|
||||||
data_train_fs = Grid.GridPartitioner(data_train, partitions, transformation=transformation).sets
|
data_train_fs = Grid.GridPartitioner(data=data_train, npart=partitions, transformation=transformation).sets
|
||||||
|
|
||||||
lcolors = []
|
lcolors = []
|
||||||
objs = []
|
objs = []
|
||||||
@ -611,7 +611,7 @@ def ahead_sliding_window(data, windowsize, train, steps, models=None, resolution
|
|||||||
for partition in partitions:
|
for partition in partitions:
|
||||||
for partitioner in partitioners:
|
for partitioner in partitioners:
|
||||||
pttr = str(partitioner.__module__).split('.')[-1]
|
pttr = str(partitioner.__module__).split('.')[-1]
|
||||||
data_train_fs = partitioner(train, partition, transformation=transformation)
|
data_train_fs = partitioner(data=train, npart=partition, transformation=transformation)
|
||||||
|
|
||||||
for count, model in enumerate(models, start=0):
|
for count, model in enumerate(models, start=0):
|
||||||
|
|
||||||
@ -697,7 +697,7 @@ def all_ahead_forecasters(data_train, data_test, partitions, start, steps, resol
|
|||||||
|
|
||||||
objs = []
|
objs = []
|
||||||
|
|
||||||
data_train_fs = Grid.GridPartitioner(data_train, partitions, transformation=transformation).sets
|
data_train_fs = Grid.GridPartitioner(data=data_train, npart=partitions, transformation=transformation).sets
|
||||||
lcolors = []
|
lcolors = []
|
||||||
|
|
||||||
for count, model in Util.enumerate2(models, start=0, step=2):
|
for count, model in Util.enumerate2(models, start=0, step=2):
|
||||||
@ -894,7 +894,7 @@ def SelecaoSimples_MenorRMSE(original, parameters, modelo):
|
|||||||
min_rmse = 100000.0
|
min_rmse = 100000.0
|
||||||
best = None
|
best = None
|
||||||
for p in parameters:
|
for p in parameters:
|
||||||
sets = Grid.GridPartitioner(original, p).sets
|
sets = Grid.GridPartitioner(data=original, npart=p).sets
|
||||||
fts = modelo(str(p) + " particoes")
|
fts = modelo(str(p) + " particoes")
|
||||||
fts.train(original, sets=sets)
|
fts.train(original, sets=sets)
|
||||||
# print(original)
|
# print(original)
|
||||||
@ -934,7 +934,7 @@ def SelecaoSimples_MenorRMSE(original, parameters, modelo):
|
|||||||
min_rmse = 100000.0
|
min_rmse = 100000.0
|
||||||
bestd = None
|
bestd = None
|
||||||
for p in parameters:
|
for p in parameters:
|
||||||
sets = Grid.GridPartitionerTrimf(difffts, p)
|
sets = Grid.GridPartitioner(data=difffts, npart=p)
|
||||||
fts = modelo(str(p) + " particoes")
|
fts = modelo(str(p) + " particoes")
|
||||||
fts.train(difffts, sets=sets)
|
fts.train(difffts, sets=sets)
|
||||||
forecasted = fts.forecast(difffts)
|
forecasted = fts.forecast(difffts)
|
||||||
@ -1046,7 +1046,7 @@ def simpleSearch_RMSE(train, test, model, partitions, orders, save=False, file=N
|
|||||||
|
|
||||||
for pc, p in enumerate(partitions, start=0):
|
for pc, p in enumerate(partitions, start=0):
|
||||||
|
|
||||||
sets = partitioner(train, p, transformation=transformation).sets
|
sets = partitioner(data=train, npart=p, transformation=transformation).sets
|
||||||
for oc, o in enumerate(orders, start=0):
|
for oc, o in enumerate(orders, start=0):
|
||||||
fts = model("q = " + str(p) + " n = " + str(o))
|
fts = model("q = " + str(p) + " n = " + str(o))
|
||||||
fts.append_transformation(transformation)
|
fts.append_transformation(transformation)
|
||||||
@ -1123,7 +1123,7 @@ def sliding_window_simple_search(data, windowsize, model, partitions, orders, sa
|
|||||||
|
|
||||||
for pc, p in enumerate(partitions, start=0):
|
for pc, p in enumerate(partitions, start=0):
|
||||||
|
|
||||||
sets = Grid.GridPartitioner(data, p).sets
|
sets = Grid.GridPartitioner(data=data, npart=p).sets
|
||||||
for oc, o in enumerate(orders, start=0):
|
for oc, o in enumerate(orders, start=0):
|
||||||
_error = []
|
_error = []
|
||||||
for ct, train, test in Util.sliding_window(data, windowsize, 0.8):
|
for ct, train, test in Util.sliding_window(data, windowsize, 0.8):
|
||||||
@ -1181,7 +1181,7 @@ def sliding_window_simple_search(data, windowsize, model, partitions, orders, sa
|
|||||||
|
|
||||||
def pftsExploreOrderAndPartitions(data,save=False, file=None):
|
def pftsExploreOrderAndPartitions(data,save=False, file=None):
|
||||||
fig, axes = plt.subplots(nrows=4, ncols=1, figsize=[6, 8])
|
fig, axes = plt.subplots(nrows=4, ncols=1, figsize=[6, 8])
|
||||||
data_fs1 = Grid.GridPartitioner(data, 10).sets
|
data_fs1 = Grid.GridPartitioner(data=data, npart=10).sets
|
||||||
mi = []
|
mi = []
|
||||||
ma = []
|
ma = []
|
||||||
|
|
||||||
@ -1210,7 +1210,7 @@ def pftsExploreOrderAndPartitions(data,save=False, file=None):
|
|||||||
axes[3].set_title('Interval Forecasts by Number of Partitions')
|
axes[3].set_title('Interval Forecasts by Number of Partitions')
|
||||||
|
|
||||||
for partitions in np.arange(5, 11):
|
for partitions in np.arange(5, 11):
|
||||||
data_fs = Grid.GridPartitioner(data, partitions).sets
|
data_fs = Grid.GridPartitioner(data=data, npart=partitions).sets
|
||||||
fts = pwfts.ProbabilisticWeightedFTS("")
|
fts = pwfts.ProbabilisticWeightedFTS("")
|
||||||
fts.shortname = "q = " + str(partitions)
|
fts.shortname = "q = " + str(partitions)
|
||||||
fts.train(data, sets=data_fs.sets, order=1)
|
fts.train(data, sets=data_fs.sets, order=1)
|
||||||
|
@ -19,7 +19,7 @@ class FLR(object):
|
|||||||
self.RHS = set
|
self.RHS = set
|
||||||
|
|
||||||
def __str__(self):
|
def __str__(self):
|
||||||
return str([k +":"+self.LHS[k].name for k in self.LHS.keys()]) + " -> " + self.RHS.name
|
return str([self.LHS[k].name for k in self.LHS.keys()]) + " -> " + self.RHS.name
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -25,7 +25,7 @@ class FLRG(flg.FLRG):
|
|||||||
_str = ""
|
_str = ""
|
||||||
for k in self.LHS.keys():
|
for k in self.LHS.keys():
|
||||||
_str += "," if len(_str) > 0 else ""
|
_str += "," if len(_str) > 0 else ""
|
||||||
_str += k + ":" + self.LHS[k].name
|
_str += self.LHS[k].name
|
||||||
self.key = _str
|
self.key = _str
|
||||||
|
|
||||||
return self.key
|
return self.key
|
||||||
|
@ -37,6 +37,8 @@ class Variable:
|
|||||||
transformation=self.transformation, prefix=self.alias,
|
transformation=self.transformation, prefix=self.alias,
|
||||||
variable=self.name)
|
variable=self.name)
|
||||||
|
|
||||||
|
self.partitioner.name = self.name + " " + self.partitioner.name
|
||||||
|
|
||||||
def apply_transformations(self, data, **kwargs):
|
def apply_transformations(self, data, **kwargs):
|
||||||
|
|
||||||
if kwargs.get('params', None) is not None:
|
if kwargs.get('params', None) is not None:
|
||||||
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@ -62,7 +62,7 @@ def explore_partitioners(data, npart, methods=None, mf=None, tam=[12, 10], save=
|
|||||||
|
|
||||||
for p in methods:
|
for p in methods:
|
||||||
for m in mf:
|
for m in mf:
|
||||||
obj = p(data, npart,m)
|
obj = p(data=data, npart=npart, func=m)
|
||||||
obj.name = obj.name + " - " + obj.membership_function.__name__
|
obj.name = obj.name + " - " + obj.membership_function.__name__
|
||||||
objs.append(obj)
|
objs.append(obj)
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user