Several bugfixes and optimizations
This commit is contained in:
parent
0cf938c2a6
commit
71c71ca9d9
@ -109,3 +109,38 @@ def coverage(targets, forecasts):
|
|||||||
preds.append(0)
|
preds.append(0)
|
||||||
return np.mean(preds)
|
return np.mean(preds)
|
||||||
|
|
||||||
|
|
||||||
|
def pmf_to_cdf(density):
|
||||||
|
ret = []
|
||||||
|
for row in density.index:
|
||||||
|
tmp = []
|
||||||
|
prev = 0
|
||||||
|
for col in density.columns:
|
||||||
|
prev += density[col][row]
|
||||||
|
tmp.append( prev )
|
||||||
|
ret.append(tmp)
|
||||||
|
df = pd.DataFrame(ret, columns=density.columns)
|
||||||
|
return df
|
||||||
|
|
||||||
|
|
||||||
|
def heavyside_cdf(bins, targets):
|
||||||
|
ret = []
|
||||||
|
for t in targets:
|
||||||
|
result = [1 if b >= t else 0 for b in bins]
|
||||||
|
ret.append(result)
|
||||||
|
df = pd.DataFrame(ret, columns=bins)
|
||||||
|
return df
|
||||||
|
|
||||||
|
|
||||||
|
# Continuous Ranked Probability Score
|
||||||
|
def crps(targets, densities):
|
||||||
|
l = len(densities.columns)
|
||||||
|
n = len(densities.index)
|
||||||
|
Ff = pmf_to_cdf(densities)
|
||||||
|
Fa = heavyside_cdf(densities.columns, targets)
|
||||||
|
|
||||||
|
_crps = float(0.0)
|
||||||
|
for k in densities.index:
|
||||||
|
_crps += sum([ (Ff[col][k]-Fa[col][k])**2 for col in densities.columns])
|
||||||
|
|
||||||
|
return _crps / float(l * n)
|
||||||
|
@ -5,6 +5,7 @@ import numpy as np
|
|||||||
import pandas as pd
|
import pandas as pd
|
||||||
import matplotlib as plt
|
import matplotlib as plt
|
||||||
import matplotlib.colors as pltcolors
|
import matplotlib.colors as pltcolors
|
||||||
|
import matplotlib.cm as cmx
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
from mpl_toolkits.mplot3d import Axes3D
|
from mpl_toolkits.mplot3d import Axes3D
|
||||||
# from sklearn.cross_validation import KFold
|
# from sklearn.cross_validation import KFold
|
||||||
@ -201,12 +202,71 @@ def plotComparedSeries(original, models, colors, typeonlegend=False, save=False,
|
|||||||
|
|
||||||
Util.showAndSaveImage(fig, file, save, lgd=legends)
|
Util.showAndSaveImage(fig, file, save, lgd=legends)
|
||||||
|
|
||||||
|
def allAheadForecasters(data_train, data_test, partitions, start, steps, resolution = None, max_order=3,save=False, file=None, tam=[20, 5],
|
||||||
|
models=None, transformation=None, option=2):
|
||||||
|
if models is None:
|
||||||
|
models = [pfts.ProbabilisticFTS]
|
||||||
|
|
||||||
|
if resolution is None: resolution = (max(data_train) - min(data_train)) / 100
|
||||||
|
|
||||||
|
objs = []
|
||||||
|
|
||||||
|
if transformation is not None:
|
||||||
|
data_train_fs = Grid.GridPartitionerTrimf(transformation.apply(data_train),partitions)
|
||||||
|
else:
|
||||||
|
data_train_fs = Grid.GridPartitionerTrimf(data_train, partitions)
|
||||||
|
|
||||||
|
lcolors = []
|
||||||
|
|
||||||
|
for count, model in Util.enumerate2(models, start=0, step=2):
|
||||||
|
mfts = model("")
|
||||||
|
if not mfts.isHighOrder:
|
||||||
|
if transformation is not None:
|
||||||
|
mfts.appendTransformation(transformation)
|
||||||
|
mfts.train(data_train, data_train_fs)
|
||||||
|
objs.append(mfts)
|
||||||
|
lcolors.append( colors[count % ncol] )
|
||||||
|
else:
|
||||||
|
for order in np.arange(1,max_order+1):
|
||||||
|
if order >= mfts.minOrder:
|
||||||
|
mfts = model(" n = " + str(order))
|
||||||
|
if transformation is not None:
|
||||||
|
mfts.appendTransformation(transformation)
|
||||||
|
mfts.train(data_train, data_train_fs, order=order)
|
||||||
|
objs.append(mfts)
|
||||||
|
lcolors.append(colors[count % ncol])
|
||||||
|
|
||||||
|
distributions = [False for k in objs]
|
||||||
|
|
||||||
|
distributions[0] = True
|
||||||
|
|
||||||
|
print(getDistributionStatistics(data_test[start:], objs, steps, resolution))
|
||||||
|
|
||||||
|
#plotComparedIntervalsAhead(data_test, objs, lcolors, distributions=, save=save, file=file, tam=tam, intervals=True)
|
||||||
|
|
||||||
|
|
||||||
|
def getDistributionStatistics(original, models, steps, resolution):
|
||||||
|
ret = "Model & Order & Interval & Distribution \\\\ \n"
|
||||||
|
for fts in models:
|
||||||
|
densities1 = fts.forecastAheadDistribution(original,steps,resolution, parameters=3)
|
||||||
|
densities2 = fts.forecastAheadDistribution(original, steps, resolution, parameters=2)
|
||||||
|
ret += fts.shortname + " & "
|
||||||
|
ret += str(fts.order) + " & "
|
||||||
|
ret += str(round(Measures.crps(original, densities1), 3)) + " & "
|
||||||
|
ret += str(round(Measures.crps(original, densities2), 3)) + " \\\\ \n"
|
||||||
|
return ret
|
||||||
|
|
||||||
|
|
||||||
def plotComparedIntervalsAhead(original, models, colors, distributions, time_from, time_to,
|
def plotComparedIntervalsAhead(original, models, colors, distributions, time_from, time_to,
|
||||||
interpol=False, save=False, file=None, tam=[20, 5], resolution=None):
|
interpol=False, save=False, file=None, tam=[20, 5], resolution=None,
|
||||||
|
cmap='Blues',option=2):
|
||||||
fig = plt.figure(figsize=tam)
|
fig = plt.figure(figsize=tam)
|
||||||
ax = fig.add_subplot(111)
|
ax = fig.add_subplot(111)
|
||||||
|
|
||||||
|
cm = plt.get_cmap(cmap)
|
||||||
|
cNorm = pltcolors.Normalize(vmin=0, vmax=1)
|
||||||
|
scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=cm)
|
||||||
|
|
||||||
if resolution is None: resolution = (max(original) - min(original)) / 100
|
if resolution is None: resolution = (max(original) - min(original)) / 100
|
||||||
|
|
||||||
mi = []
|
mi = []
|
||||||
@ -215,26 +275,44 @@ def plotComparedIntervalsAhead(original, models, colors, distributions, time_fro
|
|||||||
for count, fts in enumerate(models, start=0):
|
for count, fts in enumerate(models, start=0):
|
||||||
if fts.hasDistributionForecasting and distributions[count]:
|
if fts.hasDistributionForecasting and distributions[count]:
|
||||||
density = fts.forecastAheadDistribution(original[time_from - fts.order:time_from],
|
density = fts.forecastAheadDistribution(original[time_from - fts.order:time_from],
|
||||||
time_to, resolution, parameters=True)
|
time_to, resolution, parameters=option)
|
||||||
|
|
||||||
|
Y = []
|
||||||
|
X = []
|
||||||
|
C = []
|
||||||
|
S = []
|
||||||
y = density.columns
|
y = density.columns
|
||||||
t = len(y)
|
t = len(y)
|
||||||
|
|
||||||
|
ss = time_to ** 2
|
||||||
|
|
||||||
for k in density.index:
|
for k in density.index:
|
||||||
alpha = np.array([density[q][k] for q in density]) * 100
|
#alpha = [scalarMap.to_rgba(density[col][k]) for col in density.columns]
|
||||||
|
col = [density[col][k]*5 for col in density.columns]
|
||||||
|
|
||||||
x = [time_from + k for x in np.arange(0, t)]
|
x = [time_from + k for x in np.arange(0, t)]
|
||||||
|
|
||||||
for cc in np.arange(0, resolution, 5):
|
s = [ss for x in np.arange(0, t)]
|
||||||
ax.scatter(x, y + cc, c=alpha, marker='s', linewidths=0, cmap='Oranges', edgecolors=None)
|
|
||||||
if interpol and k < max(density.index):
|
ic = resolution/10
|
||||||
diffs = [(density[q][k + 1] - density[q][k]) / 50 for q in density]
|
|
||||||
for p in np.arange(0, 50):
|
for cc in np.arange(0, resolution, ic):
|
||||||
xx = [time_from + k + 0.02 * p for q in np.arange(0, t)]
|
Y.append(y + cc)
|
||||||
alpha2 = np.array(
|
X.append(x)
|
||||||
[density[density.columns[q]][k] + diffs[q] * p for q in np.arange(0, t)]) * 100
|
C.append(col)
|
||||||
ax.scatter(xx, y, c=alpha2, marker='s', linewidths=0, cmap='Oranges',
|
S.append(s)
|
||||||
norm=pltcolors.Normalize(vmin=0, vmax=1), vmin=0, vmax=1, edgecolors=None)
|
|
||||||
|
Y = np.hstack(Y)
|
||||||
|
X = np.hstack(X)
|
||||||
|
C = np.hstack(C)
|
||||||
|
S = np.hstack(S)
|
||||||
|
|
||||||
|
s = ax.scatter(X, Y, c=C, marker='s',s=S, linewidths=0, edgecolors=None, cmap=cmap)
|
||||||
|
s.set_clim([0, 1])
|
||||||
|
cb = fig.colorbar(s)
|
||||||
|
|
||||||
|
cb.set_label('Density')
|
||||||
|
|
||||||
|
|
||||||
if fts.hasIntervalForecasting:
|
if fts.hasIntervalForecasting:
|
||||||
forecasts = fts.forecastAheadInterval(original[time_from - fts.order:time_from], time_to)
|
forecasts = fts.forecastAheadInterval(original[time_from - fts.order:time_from], time_to)
|
||||||
@ -276,6 +354,8 @@ def plotComparedIntervalsAhead(original, models, colors, distributions, time_fro
|
|||||||
ax.set_xlabel('T')
|
ax.set_xlabel('T')
|
||||||
ax.set_xlim([0, len(original)])
|
ax.set_xlim([0, len(original)])
|
||||||
|
|
||||||
|
#plt.colorbar()
|
||||||
|
|
||||||
Util.showAndSaveImage(fig, file, save)
|
Util.showAndSaveImage(fig, file, save)
|
||||||
|
|
||||||
|
|
||||||
|
1
fts.py
1
fts.py
@ -63,7 +63,6 @@ class FTS(object):
|
|||||||
|
|
||||||
def doTransformations(self,data,params=None,updateUoD=False):
|
def doTransformations(self,data,params=None,updateUoD=False):
|
||||||
ndata = data
|
ndata = data
|
||||||
|
|
||||||
if updateUoD:
|
if updateUoD:
|
||||||
if min(data) < 0:
|
if min(data) < 0:
|
||||||
self.original_min = min(data) * 1.1
|
self.original_min = min(data) * 1.1
|
||||||
|
@ -9,18 +9,20 @@ from pyFTS.common import FuzzySet, Membership
|
|||||||
|
|
||||||
def GridPartitionerTrimf(data, npart, names=None, prefix="A"):
|
def GridPartitionerTrimf(data, npart, names=None, prefix="A"):
|
||||||
sets = []
|
sets = []
|
||||||
if min(data) < 0:
|
_min = min(data)
|
||||||
dmin = min(data) * 1.1
|
if _min < 0:
|
||||||
|
dmin = _min * 1.1
|
||||||
else:
|
else:
|
||||||
dmin = min(data) * 0.9
|
dmin = _min * 0.9
|
||||||
|
|
||||||
if max(data) > 0:
|
_max = max(data)
|
||||||
dmax = max(data) * 1.1
|
if _max > 0:
|
||||||
|
dmax = _max * 1.1
|
||||||
else:
|
else:
|
||||||
dmax = max(data) * 0.9
|
dmax = _max * 0.9
|
||||||
|
|
||||||
dlen = dmax - dmin
|
dlen = dmax - dmin
|
||||||
partlen = math.ceil(dlen / npart)
|
partlen = dlen / npart
|
||||||
|
|
||||||
count = 0
|
count = 0
|
||||||
for c in np.arange(dmin, dmax, partlen):
|
for c in np.arange(dmin, dmax, partlen):
|
||||||
|
37
pfts.py
37
pfts.py
@ -243,15 +243,15 @@ class ProbabilisticFTS(ifts.IntervalFTS):
|
|||||||
idx = np.ravel(tmp) # flatten the array
|
idx = np.ravel(tmp) # flatten the array
|
||||||
|
|
||||||
if idx.size == 0: # the element is out of the bounds of the Universe of Discourse
|
if idx.size == 0: # the element is out of the bounds of the Universe of Discourse
|
||||||
if instance <= self.sets[0].lower:
|
if instance <= np.ceil(self.sets[0].lower):
|
||||||
idx = [0]
|
idx = [0]
|
||||||
elif instance >= self.sets[-1].upper:
|
elif instance >= np.floor(self.sets[-1].upper):
|
||||||
idx = [len(self.sets) - 1]
|
idx = [len(self.sets) - 1]
|
||||||
else:
|
else:
|
||||||
raise Exception(instance)
|
raise Exception(instance)
|
||||||
|
|
||||||
lags[count] = idx
|
lags[count] = idx
|
||||||
count = count + 1
|
count += 1
|
||||||
|
|
||||||
# Build the tree with all possible paths
|
# Build the tree with all possible paths
|
||||||
|
|
||||||
@ -331,11 +331,16 @@ class ProbabilisticFTS(ifts.IntervalFTS):
|
|||||||
return ret
|
return ret
|
||||||
|
|
||||||
def forecastAheadInterval(self, data, steps):
|
def forecastAheadInterval(self, data, steps):
|
||||||
ret = [[data[k], data[k]] for k in np.arange(len(data) - self.order, len(data))]
|
|
||||||
|
l = len(data)
|
||||||
|
|
||||||
|
ret = [[data[k], data[k]] for k in np.arange(l - self.order, l)]
|
||||||
|
|
||||||
for k in np.arange(self.order, steps+self.order):
|
for k in np.arange(self.order, steps+self.order):
|
||||||
|
|
||||||
if ret[-1][0] <= self.sets[0].lower and ret[-1][1] >= self.sets[-1].upper:
|
if (len(self.transformations) > 0 and ret[-1][0] <= self.sets[0].lower and ret[-1][1] >= self.sets[
|
||||||
|
-1].upper) or (len(self.transformations) == 0 and ret[-1][0] <= self.original_min and ret[-1][
|
||||||
|
1] >= self.original_max):
|
||||||
ret.append(ret[-1])
|
ret.append(ret[-1])
|
||||||
else:
|
else:
|
||||||
lower = self.forecastInterval([ret[x][0] for x in np.arange(k - self.order, k)])
|
lower = self.forecastInterval([ret[x][0] for x in np.arange(k - self.order, k)])
|
||||||
@ -384,7 +389,7 @@ class ProbabilisticFTS(ifts.IntervalFTS):
|
|||||||
for child in node.getChildren():
|
for child in node.getChildren():
|
||||||
self.buildTreeWithoutOrder(child, lags, level + 1)
|
self.buildTreeWithoutOrder(child, lags, level + 1)
|
||||||
|
|
||||||
def forecastAheadDistribution(self, data, steps, resolution, parameters=None):
|
def forecastAheadDistribution(self, data, steps, resolution, parameters=2):
|
||||||
|
|
||||||
ret = []
|
ret = []
|
||||||
|
|
||||||
@ -394,7 +399,7 @@ class ProbabilisticFTS(ifts.IntervalFTS):
|
|||||||
|
|
||||||
index = SortedCollection.SortedCollection(iterable=grid.keys())
|
index = SortedCollection.SortedCollection(iterable=grid.keys())
|
||||||
|
|
||||||
if parameters is None:
|
if parameters == 1:
|
||||||
|
|
||||||
grids = []
|
grids = []
|
||||||
for k in np.arange(0, steps):
|
for k in np.arange(0, steps):
|
||||||
@ -442,12 +447,7 @@ class ProbabilisticFTS(ifts.IntervalFTS):
|
|||||||
tmp = np.array([grids[k][q] for q in sorted(grids[k])])
|
tmp = np.array([grids[k][q] for q in sorted(grids[k])])
|
||||||
ret.append(tmp / sum(tmp))
|
ret.append(tmp / sum(tmp))
|
||||||
|
|
||||||
grid = self.getGridClean(resolution)
|
elif parameters == 2:
|
||||||
df = pd.DataFrame(ret, columns=sorted(grid))
|
|
||||||
return df
|
|
||||||
else:
|
|
||||||
|
|
||||||
print("novo")
|
|
||||||
|
|
||||||
ret = []
|
ret = []
|
||||||
|
|
||||||
@ -474,6 +474,17 @@ class ProbabilisticFTS(ifts.IntervalFTS):
|
|||||||
|
|
||||||
ret.append(tmp / sum(tmp))
|
ret.append(tmp / sum(tmp))
|
||||||
|
|
||||||
|
else:
|
||||||
|
ret = []
|
||||||
|
|
||||||
|
for k in np.arange(self.order, steps + self.order):
|
||||||
|
grid = self.getGridClean(resolution)
|
||||||
|
grid = self.gridCount(grid, resolution, index, intervals[k])
|
||||||
|
|
||||||
|
tmp = np.array([grid[k] for k in sorted(grid)])
|
||||||
|
|
||||||
|
ret.append(tmp / sum(tmp))
|
||||||
|
|
||||||
grid = self.getGridClean(resolution)
|
grid = self.getGridClean(resolution)
|
||||||
df = pd.DataFrame(ret, columns=sorted(grid))
|
df = pd.DataFrame(ret, columns=sorted(grid))
|
||||||
return df
|
return df
|
||||||
|
@ -13,23 +13,46 @@ from pyFTS.partitioners import Grid
|
|||||||
from pyFTS.common import FLR,FuzzySet,Membership,Transformations
|
from pyFTS.common import FLR,FuzzySet,Membership,Transformations
|
||||||
from pyFTS import fts,hofts,ifts,pfts,tree, chen
|
from pyFTS import fts,hofts,ifts,pfts,tree, chen
|
||||||
from pyFTS.benchmarks import benchmarks as bchmk
|
from pyFTS.benchmarks import benchmarks as bchmk
|
||||||
|
from pyFTS.benchmarks import Measures
|
||||||
|
from numpy import random
|
||||||
|
|
||||||
|
gauss_treino = random.normal(0,1.0,1600)
|
||||||
|
gauss_teste = random.normal(0,1.0,400)
|
||||||
|
|
||||||
|
|
||||||
os.chdir("/home/petronio/dados/Dropbox/Doutorado/Disciplinas/AdvancedFuzzyTimeSeriesModels/")
|
os.chdir("/home/petronio/dados/Dropbox/Doutorado/Disciplinas/AdvancedFuzzyTimeSeriesModels/")
|
||||||
|
|
||||||
enrollments = pd.read_csv("DataSets/Enrollments.csv", sep=";")
|
#enrollments = pd.read_csv("DataSets/Enrollments.csv", sep=";")
|
||||||
enrollments = np.array(enrollments["Enrollments"])
|
#enrollments = np.array(enrollments["Enrollments"])
|
||||||
|
|
||||||
#diff = Transformations.Differential(1)
|
#taiex = pd.read_csv("DataSets/TAIEX.csv", sep=",")
|
||||||
|
#taiex_treino = np.array(taiex["avg"][2500:3900])
|
||||||
|
#taiex_teste = np.array(taiex["avg"][3901:4500])
|
||||||
|
|
||||||
fs = Grid.GridPartitionerTrimf(enrollments,6)
|
#nasdaq = pd.read_csv("DataSets/NASDAQ_IXIC.csv", sep=",")
|
||||||
|
#nasdaq_treino = np.array(nasdaq["avg"][0:1600])
|
||||||
|
#nasdaq_teste = np.array(nasdaq["avg"][1601:2000])
|
||||||
|
|
||||||
|
diff = Transformations.Differential(1)
|
||||||
|
|
||||||
|
fs = Grid.GridPartitionerTrimf(gauss_treino,7)
|
||||||
|
|
||||||
#tmp = chen.ConventionalFTS("")
|
#tmp = chen.ConventionalFTS("")
|
||||||
|
|
||||||
pfts1 = pfts.ProbabilisticFTS("1")
|
pfts1 = pfts.ProbabilisticFTS("1")
|
||||||
#pfts1.appendTransformation(diff)
|
#pfts1.appendTransformation(diff)
|
||||||
pfts1.train(enrollments,fs,1)
|
pfts1.train(gauss_treino,fs,1)
|
||||||
|
pfts2 = pfts.ProbabilisticFTS("n = 2")
|
||||||
|
#pfts2.appendTransformation(diff)
|
||||||
|
pfts2.train(gauss_treino,fs,2)
|
||||||
|
|
||||||
|
pfts3 = pfts.ProbabilisticFTS("n = 3")
|
||||||
|
#pfts3.appendTransformation(diff)
|
||||||
|
pfts3.train(gauss_treino,fs,3)
|
||||||
|
|
||||||
|
densities1 = pfts1.forecastAheadDistribution(gauss_teste[:50],2,1.50, parameters=2)
|
||||||
|
|
||||||
|
#print(bchmk.getDistributionStatistics(gauss_teste[:50], [pfts1,pfts2,pfts3], 20, 1.50))
|
||||||
|
|
||||||
|
|
||||||
#bchmk.plotComparedIntervalsAhead(enrollments,[pfts1], ["blue"],[True],5,10)
|
|
||||||
|
|
||||||
pfts1.forecastAheadDistribution(enrollments,5,1, parameters=True)
|
|
||||||
|
Loading…
Reference in New Issue
Block a user