rename KMeans
This commit is contained in:
parent
fac2aa5ca8
commit
619c6ecd15
2
MANIFEST
2
MANIFEST
@ -104,7 +104,7 @@ pyFTS/models/seasonal/common.py
|
|||||||
pyFTS/models/seasonal/msfts.py
|
pyFTS/models/seasonal/msfts.py
|
||||||
pyFTS/models/seasonal/partitioner.py
|
pyFTS/models/seasonal/partitioner.py
|
||||||
pyFTS/models/seasonal/sfts.py
|
pyFTS/models/seasonal/sfts.py
|
||||||
pyFTS/partitioners/CMeans.py
|
pyFTS/partitioners/KMeans.py
|
||||||
pyFTS/partitioners/Entropy.py
|
pyFTS/partitioners/Entropy.py
|
||||||
pyFTS/partitioners/FCM.py
|
pyFTS/partitioners/FCM.py
|
||||||
pyFTS/partitioners/Grid.py
|
pyFTS/partitioners/Grid.py
|
||||||
|
@ -38,7 +38,7 @@ Fuzzy Time Series (FTS) are non parametric methods for time series forecasting b
|
|||||||
2. **Universe of Discourse Partitioning**: This is the most important step. Here, the range of values of the numerical time series *Y(t)* will be splited in overlapped intervals and for each interval will be created a Fuzzy Set. This step is performed by pyFTS.partition module and its classes (for instance GridPartitioner, EntropyPartitioner, etc). The main parameters are:
|
2. **Universe of Discourse Partitioning**: This is the most important step. Here, the range of values of the numerical time series *Y(t)* will be splited in overlapped intervals and for each interval will be created a Fuzzy Set. This step is performed by pyFTS.partition module and its classes (for instance GridPartitioner, EntropyPartitioner, etc). The main parameters are:
|
||||||
- the number of intervals
|
- the number of intervals
|
||||||
- which fuzzy membership function (on [pyFTS.common.Membership](https://github.com/PYFTS/pyFTS/blob/master/pyFTS/common/Membership.py))
|
- which fuzzy membership function (on [pyFTS.common.Membership](https://github.com/PYFTS/pyFTS/blob/master/pyFTS/common/Membership.py))
|
||||||
- partition scheme ([GridPartitioner](https://github.com/PYFTS/pyFTS/blob/master/pyFTS/partitioners/Grid.py), [EntropyPartitioner](https://github.com/PYFTS/pyFTS/blob/master/pyFTS/partitioners/Entropy.py)[3], [FCMPartitioner](https://github.com/PYFTS/pyFTS/blob/master/pyFTS/partitioners/FCM.py), [CMeansPartitioner](https://github.com/PYFTS/pyFTS/blob/master/pyFTS/partitioners/CMeans.py), [HuarngPartitioner](https://github.com/PYFTS/pyFTS/blob/master/pyFTS/partitioners/Huarng.py)[4])
|
- partition scheme ([GridPartitioner](https://github.com/PYFTS/pyFTS/blob/master/pyFTS/partitioners/Grid.py), [EntropyPartitioner](https://github.com/PYFTS/pyFTS/blob/master/pyFTS/partitioners/Entropy.py)[3], [FCMPartitioner](https://github.com/PYFTS/pyFTS/blob/master/pyFTS/partitioners/FCM.py), [KMeansPartitioner](https://github.com/PYFTS/pyFTS/blob/master/pyFTS/partitioners/KMeans.py), [HuarngPartitioner](https://github.com/PYFTS/pyFTS/blob/master/pyFTS/partitioners/Huarng.py)[4])
|
||||||
|
|
||||||
Check out the jupyter notebook on [notebooks/Partitioners.ipynb](https://github.com/PYFTS/notebooks/blob/master/Partitioners.ipynb) for sample codes.
|
Check out the jupyter notebook on [notebooks/Partitioners.ipynb](https://github.com/PYFTS/notebooks/blob/master/Partitioners.ipynb) for sample codes.
|
||||||
|
|
||||||
|
@ -28,10 +28,10 @@ pyFTS.partitioners.Class module
|
|||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
|
||||||
pyFTS.partitioners.CMeans module
|
pyFTS.partitioners.KMeans module
|
||||||
--------------------------------
|
--------------------------------
|
||||||
|
|
||||||
.. automodule:: pyFTS.partitioners.CMeans
|
.. automodule:: pyFTS.partitioners.KMeans
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
@ -14,7 +14,7 @@ def distance(x, y):
|
|||||||
return math.sqrt(tmp)
|
return math.sqrt(tmp)
|
||||||
|
|
||||||
|
|
||||||
def c_means(k, dados, tam):
|
def k_means(k, dados, tam):
|
||||||
# Инициализирует центроиды, выбирая случайные элементы из множества
|
# Инициализирует центроиды, выбирая случайные элементы из множества
|
||||||
centroides = [dados[rnd.randint(0, len(dados)-1)] for kk in range(0, k)]
|
centroides = [dados[rnd.randint(0, len(dados)-1)] for kk in range(0, k)]
|
||||||
|
|
||||||
@ -77,16 +77,16 @@ def c_means(k, dados, tam):
|
|||||||
return centroides
|
return centroides
|
||||||
|
|
||||||
|
|
||||||
class CMeansPartitioner(partitioner.Partitioner):
|
class KMeansPartitioner(partitioner.Partitioner):
|
||||||
def __init__(self, **kwargs):
|
def __init__(self, **kwargs):
|
||||||
super(CMeansPartitioner, self).__init__(name="CMeans", **kwargs)
|
super(KMeansPartitioner, self).__init__(name="KMeans", **kwargs)
|
||||||
|
|
||||||
def build(self, data):
|
def build(self, data):
|
||||||
sets = {}
|
sets = {}
|
||||||
|
|
||||||
kwargs = {'type': self.type, 'variable': self.variable}
|
kwargs = {'type': self.type, 'variable': self.variable}
|
||||||
|
|
||||||
centroides = c_means(self.partitions, data, 1)
|
centroides = k_means(self.partitions, data, 1)
|
||||||
centroides = [v[0] for v in centroides]
|
centroides = [v[0] for v in centroides]
|
||||||
centroides.append(self.max)
|
centroides.append(self.max)
|
||||||
centroides.append(self.min)
|
centroides.append(self.min)
|
@ -11,7 +11,7 @@ from mpl_toolkits.mplot3d import Axes3D
|
|||||||
import datetime
|
import datetime
|
||||||
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from pyFTS.partitioners import Grid, CMeans, FCM, Entropy
|
from pyFTS.partitioners import Grid, KMeans, FCM, Entropy
|
||||||
from pyFTS.common import FLR, FuzzySet, Membership, Transformations, Util, fts
|
from pyFTS.common import FLR, FuzzySet, Membership, Transformations, Util, fts
|
||||||
from pyFTS import sfts
|
from pyFTS import sfts
|
||||||
from pyFTS.models import msfts
|
from pyFTS.models import msfts
|
||||||
|
Loading…
Reference in New Issue
Block a user