Bugfixes due to circular imports
This commit is contained in:
parent
8bf3f7b1e9
commit
5b2b983619
@ -2,9 +2,8 @@
|
|||||||
Kohonen Self Organizing Maps for Fuzzy Time Series
|
Kohonen Self Organizing Maps for Fuzzy Time Series
|
||||||
"""
|
"""
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from pyFTS.models.multivariate import wmvfts
|
#from pyFTS.models.multivariate import wmvfts
|
||||||
from typing import Tuple
|
from typing import Tuple
|
||||||
from pyFTS.common.Transformations import Transformation
|
|
||||||
from typing import List
|
from typing import List
|
||||||
from pyFTS.common.transformations.transformation import Transformation
|
from pyFTS.common.transformations.transformation import Transformation
|
||||||
|
|
||||||
|
@ -12,7 +12,7 @@ import pandas as pd
|
|||||||
from pyFTS.partitioners import Grid #, Entropy, Util as pUtil, Simple
|
from pyFTS.partitioners import Grid #, Entropy, Util as pUtil, Simple
|
||||||
#from pyFTS.benchmarks import benchmarks as bchmk, Measures
|
#from pyFTS.benchmarks import benchmarks as bchmk, Measures
|
||||||
#from pyFTS.models import chen, yu, cheng, ismailefendi, hofts, pwfts, tsaur, song, sadaei, ifts
|
#from pyFTS.models import chen, yu, cheng, ismailefendi, hofts, pwfts, tsaur, song, sadaei, ifts
|
||||||
from pyFTS.models import pwfts, hofts, chen
|
from pyFTS.models import pwfts, hofts
|
||||||
#from pyFTS.models.ensemble import ensemble
|
#from pyFTS.models.ensemble import ensemble
|
||||||
from pyFTS.common import Transformations, Membership, Util
|
from pyFTS.common import Transformations, Membership, Util
|
||||||
#from pyFTS.benchmarks import arima, quantreg #BSTS, gaussianproc, knn
|
#from pyFTS.benchmarks import arima, quantreg #BSTS, gaussianproc, knn
|
||||||
@ -38,8 +38,8 @@ l = len(dados)
|
|||||||
|
|
||||||
particionador = Grid.GridPartitioner(data = dados, npart = 10, func = Membership.trimf)
|
particionador = Grid.GridPartitioner(data = dados, npart = 10, func = Membership.trimf)
|
||||||
|
|
||||||
#modelo = pwfts.ProbabilisticWeightedFTS(partitioner = particionador, order = 1)
|
modelo = pwfts.ProbabilisticWeightedFTS(partitioner = particionador, order = 1)
|
||||||
modelo = hofts.WeightedHighOrderFTS(partitioner = particionador, order = 1, standard_horizon=1, lags=[2])
|
#modelo = hofts.WeightedHighOrderFTS(partitioner = particionador, order = 1, standard_horizon=1, lags=[2])
|
||||||
#modelo = chen.ConventionalFTS(partitioner = particionador, standard_horizon=3)
|
#modelo = chen.ConventionalFTS(partitioner = particionador, standard_horizon=3)
|
||||||
|
|
||||||
modelo.fit(dados)
|
modelo.fit(dados)
|
||||||
|
Loading…
Reference in New Issue
Block a user