ARIMA façade for benchmarks; Sliding Window benchmarks; small bugfixes and optimizations
This commit is contained in:
parent
5c8c80cd8d
commit
5a59d91816
@ -117,7 +117,7 @@ def pmf_to_cdf(density):
|
||||
tmp = []
|
||||
prev = 0
|
||||
for col in density.columns:
|
||||
prev += density[col][row]
|
||||
prev += density[col][row] if not np.isnan(density[col][row]) else 0
|
||||
tmp.append( prev )
|
||||
ret.append(tmp)
|
||||
df = pd.DataFrame(ret, columns=density.columns)
|
||||
|
@ -43,6 +43,8 @@ class ARIMA(fts.FTS):
|
||||
self.trained_data = data #.tolist()
|
||||
|
||||
def forecast(self, data):
|
||||
if self.model_fit is None:
|
||||
return np.nan
|
||||
ret = []
|
||||
for t in data:
|
||||
output = self.model_fit.forecast()
|
||||
|
@ -10,8 +10,8 @@ import matplotlib.cm as cmx
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
# from sklearn.cross_validation import KFold
|
||||
from pyFTS.partitioners import partitioner, Grid, Huarng, Entropy, FCM
|
||||
from pyFTS.benchmarks import Measures, naive, arima, ResidualAnalysis, ProbabilityDistribution
|
||||
from pyFTS.partitioners import Grid
|
||||
from pyFTS.common import Membership, FuzzySet, FLR, Transformations, Util
|
||||
from pyFTS import fts, chen, yu, ismailefendi, sadaei, hofts, hwang, pwfts, ifts
|
||||
|
||||
@ -62,32 +62,41 @@ def external_point_sliding_window(models, parameters, data, windowsize,train=0.8
|
||||
u[_key] = []
|
||||
times[_key] = []
|
||||
|
||||
_tdiff = _end - _start
|
||||
|
||||
times[_key].append(_end - _start)
|
||||
|
||||
try:
|
||||
_start = time.time()
|
||||
_rmse, _smape, _u = get_point_statistics(test, model, None)
|
||||
_end = time.time()
|
||||
rmse[_key].append(_rmse)
|
||||
smape[_key].append(_smape)
|
||||
u[_key].append(_u)
|
||||
times[_key].append(_end - _start)
|
||||
|
||||
if dump: print(_rmse, _smape, _u)
|
||||
_tdiff += _end - _start
|
||||
times[_key].append(_tdiff)
|
||||
if dump: print(_rmse, _smape, _u, _tdiff)
|
||||
except:
|
||||
rmse[_key].append(np.nan)
|
||||
smape[_key].append(np.nan)
|
||||
u[_key].append(np.nan)
|
||||
times[_key].append(np.nan)
|
||||
|
||||
ret = []
|
||||
for k in sorted(objs.keys()):
|
||||
try:
|
||||
mod = []
|
||||
mfts = objs[k]
|
||||
mod.append(mfts.shortname)
|
||||
mod.append(round(np.nanmean(rmse[k]), 2))
|
||||
mod.append(round(np.nanstd(rmse[k]), 2))
|
||||
mod.append(round(np.nanmean(smape[k]), 2))
|
||||
mod.append(round(np.nanstd(smape[k]), 2))
|
||||
mod.append(round(np.nanmean(u[k]), 2))
|
||||
mod.append(round(np.nanstd(u[k]), 2))
|
||||
mod.append(round(np.nanmean(times[k]), 4))
|
||||
mod.append(np.round(np.nanmean(rmse[k]), 2))
|
||||
mod.append(np.round(np.nanstd(rmse[k]), 2))
|
||||
mod.append(np.round(np.nanmean(smape[k]), 2))
|
||||
mod.append(np.round(np.nanstd(smape[k]), 2))
|
||||
mod.append(np.round(np.nanmean(u[k]), 2))
|
||||
mod.append(np.round(np.nanstd(u[k]), 2))
|
||||
mod.append(np.round(np.nanmean(times[k]), 4))
|
||||
ret.append(mod)
|
||||
except Exception as ex:
|
||||
print("Erro ao salvar ",k)
|
||||
print("Exceção ", ex)
|
||||
|
||||
columns = ["Model", "RMSEAVG", "RMSESTD", "SMAPEAVG", "SMAPESTD", "UAVG", "USTD", "TIMEAVG"]
|
||||
|
||||
@ -154,6 +163,9 @@ def point_sliding_window(data, windowsize, train=0.8,models=None,partitioners=[G
|
||||
smape[_key].append(_smape)
|
||||
u[_key].append(_u)
|
||||
times[_key].append(_end - _start)
|
||||
|
||||
if dump: print(_rmse, _smape, _u)
|
||||
|
||||
else:
|
||||
for order in np.arange(1, max_order + 1):
|
||||
if order >= mfts.minOrder:
|
||||
@ -176,6 +188,7 @@ def point_sliding_window(data, windowsize, train=0.8,models=None,partitioners=[G
|
||||
if transformation is not None:
|
||||
mfts.appendTransformation(transformation)
|
||||
|
||||
try:
|
||||
_start = time.time()
|
||||
mfts.train(train, data_train_fs.sets, order=order)
|
||||
_end = time.time()
|
||||
@ -188,25 +201,39 @@ def point_sliding_window(data, windowsize, train=0.8,models=None,partitioners=[G
|
||||
smape[_key].append(_smape)
|
||||
u[_key].append(_u)
|
||||
times[_key].append(_end - _start)
|
||||
|
||||
if dump: print(_rmse, _smape, _u)
|
||||
|
||||
except Exception as e:
|
||||
print(e)
|
||||
rmse[_key].append(np.nan)
|
||||
smape[_key].append(np.nan)
|
||||
u[_key].append(np.nan)
|
||||
times[_key].append(np.nan)
|
||||
ret = []
|
||||
for k in sorted(objs.keys()):
|
||||
try:
|
||||
mod = []
|
||||
mfts = objs[k]
|
||||
mod.append(mfts.shortname)
|
||||
mod.append(mfts.order )
|
||||
mod.append(mfts.partitioner.name)
|
||||
mod.append(mfts.partitioner.partitions)
|
||||
mod.append(round(np.nanmean(rmse[k]),2))
|
||||
mod.append(round(np.nanstd(rmse[k]), 2))
|
||||
mod.append(round(np.nanmean(smape[k]), 2))
|
||||
mod.append(round(np.nanstd(smape[k]), 2))
|
||||
mod.append(round(np.nanmean(u[k]), 2))
|
||||
mod.append(round(np.nanstd(u[k]), 2))
|
||||
mod.append(len(mfts))
|
||||
mod.append(round(np.nanmean(times[k]),4))
|
||||
tmp = objs[k]
|
||||
mod.append(tmp.shortname)
|
||||
mod.append(tmp.order )
|
||||
mod.append(tmp.partitioner.name)
|
||||
mod.append(tmp.partitioner.partitions)
|
||||
mod.append(np.round(np.nanmean(rmse[k]),2))
|
||||
mod.append(np.round(np.nanstd(rmse[k]), 2))
|
||||
mod.append(np.round(np.nanmean(smape[k]), 2))
|
||||
mod.append(np.round(np.nanstd(smape[k]), 2))
|
||||
mod.append(np.round(np.nanmean(u[k]), 2))
|
||||
mod.append(np.round(np.nanstd(u[k]), 2))
|
||||
mod.append(np.round(np.nanmean(times[k]), 4))
|
||||
mod.append(np.round(np.nanstd(times[k]), 4))
|
||||
mod.append(len(tmp))
|
||||
ret.append(mod)
|
||||
except Exception as ex:
|
||||
print("Erro ao salvar ",k)
|
||||
print("Exceção ", ex)
|
||||
|
||||
columns = ["Model","Order","Scheme","Partitions","RMSEAVG","RMSESTD","SMAPEAVG","SMAPESTD","UAVG","USTD","SIZE","TIMEAVG"]
|
||||
columns = ["Model","Order","Scheme","Partitions","RMSEAVG","RMSESTD","SMAPEAVG","SMAPESTD","UAVG","USTD","TIMEAVG","TIMESTD","SIZE"]
|
||||
|
||||
dat = pd.DataFrame(ret,columns=columns)
|
||||
|
||||
@ -355,12 +382,13 @@ def interval_sliding_window(data, windowsize, train=0.8,models=None,partitioners
|
||||
sharpness = {}
|
||||
resolution = {}
|
||||
coverage = {}
|
||||
times = {}
|
||||
|
||||
for ct, train,test in Util.sliding_window(data, windowsize, train):
|
||||
for ct, training,test in Util.sliding_window(data, windowsize, train):
|
||||
for partition in partitions:
|
||||
for partitioner in partitioners:
|
||||
pttr = str(partitioner.__module__).split('.')[-1]
|
||||
data_train_fs = partitioner(train, partition, transformation=transformation)
|
||||
data_train_fs = partitioner(training, partition, transformation=transformation)
|
||||
|
||||
for count, model in enumerate(models, start=0):
|
||||
|
||||
@ -378,16 +406,24 @@ def interval_sliding_window(data, windowsize, train=0.8,models=None,partitioners
|
||||
sharpness[_key] = []
|
||||
resolution[_key] = []
|
||||
coverage[_key] = []
|
||||
times[_key] = []
|
||||
|
||||
if transformation is not None:
|
||||
mfts.appendTransformation(transformation)
|
||||
|
||||
mfts.train(train, data_train_fs.sets)
|
||||
_start = time.time()
|
||||
mfts.train(training, data_train_fs.sets)
|
||||
_end = time.time()
|
||||
_tdiff = _end - _start
|
||||
|
||||
_start = time.time()
|
||||
_sharp, _res, _cov = get_interval_statistics(test, mfts)
|
||||
_end = time.time()
|
||||
_tdiff += _end - _start
|
||||
sharpness[_key].append(_sharp)
|
||||
resolution[_key].append(_res)
|
||||
coverage[_key].append(_cov)
|
||||
times[_key].append(_tdiff)
|
||||
|
||||
else:
|
||||
for order in np.arange(1, max_order + 1):
|
||||
@ -404,16 +440,25 @@ def interval_sliding_window(data, windowsize, train=0.8,models=None,partitioners
|
||||
sharpness[_key] = []
|
||||
resolution[_key] = []
|
||||
coverage[_key] = []
|
||||
times[_key] = []
|
||||
|
||||
if transformation is not None:
|
||||
mfts.appendTransformation(transformation)
|
||||
|
||||
mfts.train(train, data_train_fs.sets, order=order)
|
||||
_start = time.time()
|
||||
mfts.train(training, data_train_fs.sets, order=order)
|
||||
_end = time.time()
|
||||
|
||||
_tdiff = _end - _start
|
||||
|
||||
_start = time.time()
|
||||
_sharp, _res, _cov = get_interval_statistics(test, mfts)
|
||||
_end = time.time()
|
||||
_tdiff += _end - _start
|
||||
sharpness[_key].append(_sharp)
|
||||
resolution[_key].append(_res)
|
||||
coverage[_key].append(_cov)
|
||||
times[_key].append(_tdiff)
|
||||
|
||||
ret = []
|
||||
for k in sorted(objs.keys()):
|
||||
@ -429,10 +474,12 @@ def interval_sliding_window(data, windowsize, train=0.8,models=None,partitioners
|
||||
mod.append(round(np.nanstd(resolution[k]), 2))
|
||||
mod.append(round(np.nanmean(coverage[k]), 2))
|
||||
mod.append(round(np.nanstd(coverage[k]), 2))
|
||||
mod.append(round(np.nanmean(times[k]), 2))
|
||||
mod.append(round(np.nanstd(times[k]), 2))
|
||||
mod.append(len(mfts))
|
||||
ret.append(mod)
|
||||
|
||||
columns = ["Model","Order","Scheme","Partitions","SHARPAVG","SHARPSTD","RESAVG","RESSTD","COVAVG","COVSTD","SIZE"]
|
||||
columns = ["Model","Order","Scheme","Partitions","SHARPAVG","SHARPSTD","RESAVG","RESSTD","COVAVG","COVSTD","TIMEAVG","TIMESTD","SIZE"]
|
||||
|
||||
dat = pd.DataFrame(ret,columns=columns)
|
||||
|
||||
@ -566,7 +613,7 @@ def plot_probability_distributions(pmfs, lcolors, tam=[15, 7]):
|
||||
ax.legend(handles0, labels0)
|
||||
|
||||
|
||||
def ahead_sliding_window(data, windowsize, train=0.9,models=None, resolution = None, partitioners=[Grid.GridPartitioner],
|
||||
def ahead_sliding_window(data, windowsize, train, steps, models=None, resolution = None, partitioners=[Grid.GridPartitioner],
|
||||
partitions=[10], max_order=3,transformation=None,indexer=None,dump=False,
|
||||
save=False, file=None):
|
||||
if models is None:
|
||||
@ -576,8 +623,8 @@ def ahead_sliding_window(data, windowsize, train=0.9,models=None, resolution = N
|
||||
lcolors = {}
|
||||
crps_interval = {}
|
||||
crps_distr = {}
|
||||
|
||||
steps = int(round(windowsize*(1.0-train),0))
|
||||
times1 = {}
|
||||
times2 = {}
|
||||
|
||||
for ct, train,test in Util.sliding_window(data, windowsize, train):
|
||||
for partition in partitions:
|
||||
@ -600,15 +647,26 @@ def ahead_sliding_window(data, windowsize, train=0.9,models=None, resolution = N
|
||||
lcolors[_key] = colors[count % ncol]
|
||||
crps_interval[_key] = []
|
||||
crps_distr[_key] = []
|
||||
times1[_key] = []
|
||||
times2[_key] = []
|
||||
|
||||
if transformation is not None:
|
||||
mfts.appendTransformation(transformation)
|
||||
|
||||
_start = time.time()
|
||||
mfts.train(train, data_train_fs.sets)
|
||||
_end = time.time()
|
||||
|
||||
_tdiff = _end - _start
|
||||
|
||||
_crps1, _crps2, _t1, _t2 = get_distribution_statistics(test,mfts,steps=steps,resolution=resolution)
|
||||
|
||||
_crps1, _crps2 = get_distribution_statistics(test,mfts,steps=steps,resolution=resolution)
|
||||
crps_interval[_key].append(_crps1)
|
||||
crps_distr[_key].append(_crps2)
|
||||
times1[_key] = _tdiff + _t1
|
||||
times2[_key] = _tdiff + _t2
|
||||
|
||||
if dump: print(_crps1, _crps2, _tdiff, _t1, _t2)
|
||||
|
||||
else:
|
||||
for order in np.arange(1, max_order + 1):
|
||||
@ -624,32 +682,49 @@ def ahead_sliding_window(data, windowsize, train=0.9,models=None, resolution = N
|
||||
lcolors[_key] = colors[count % ncol]
|
||||
crps_interval[_key] = []
|
||||
crps_distr[_key] = []
|
||||
times1[_key] = []
|
||||
times2[_key] = []
|
||||
|
||||
if transformation is not None:
|
||||
mfts.appendTransformation(transformation)
|
||||
|
||||
_start = time.time()
|
||||
mfts.train(train, data_train_fs.sets, order=order)
|
||||
_end = time.time()
|
||||
|
||||
_tdiff = _end - _start
|
||||
|
||||
_crps1, _crps2, _t1, _t2 = get_distribution_statistics(test, mfts, steps=steps,
|
||||
resolution=resolution)
|
||||
|
||||
_crps1, _crps2 = get_distribution_statistics(test,mfts,steps=steps,resolution=resolution)
|
||||
crps_interval[_key].append(_crps1)
|
||||
crps_distr[_key].append(_crps2)
|
||||
times1[_key] = _tdiff + _t1
|
||||
times2[_key] = _tdiff + _t2
|
||||
|
||||
if dump: print(_crps1, _crps2, _tdiff, _t1, _t2)
|
||||
|
||||
ret = []
|
||||
for k in sorted(objs.keys()):
|
||||
try:
|
||||
mod = []
|
||||
mfts = objs[k]
|
||||
mod.append(mfts.shortname)
|
||||
mod.append(mfts.order )
|
||||
mod.append(mfts.partitioner.name)
|
||||
mod.append(mfts.partitioner.partitions)
|
||||
mod.append(round(np.nanmean(crps_interval[k]),2))
|
||||
mod.append(round(np.nanstd(crps_interval[k]), 2))
|
||||
mod.append(round(np.nanmean(crps_distr[k]), 2))
|
||||
mod.append(round(np.nanstd(crps_distr[k]), 2))
|
||||
mod.append(np.round(np.nanmean(crps_interval[k]),2))
|
||||
mod.append(np.round(np.nanstd(crps_interval[k]), 2))
|
||||
mod.append(np.round(np.nanmean(crps_distr[k]), 2))
|
||||
mod.append(np.round(np.nanstd(crps_distr[k]), 2))
|
||||
mod.append(len(mfts))
|
||||
mod.append(np.round(np.nanmean(times1[k]), 4))
|
||||
mod.append(np.round(np.nanmean(times2[k]), 4))
|
||||
ret.append(mod)
|
||||
except Exception as e:
|
||||
print ('Erro: %s' % e)
|
||||
|
||||
columns = ["Model","Order","Scheme","Partitions","CRPS1AVG","CRPS1STD","CRPS2AVG","CRPS2STD","SIZE"]
|
||||
columns = ["Model","Order","Scheme","Partitions","CRPS1AVG","CRPS1STD","CRPS2AVG","CRPS2STD","SIZE","TIME1AVG","TIME2AVG"]
|
||||
|
||||
dat = pd.DataFrame(ret,columns=columns)
|
||||
|
||||
@ -694,20 +769,40 @@ def all_ahead_forecasters(data_train, data_test, partitions, start, steps, resol
|
||||
|
||||
print_distribution_statistics(data_test[start:], objs, steps, resolution)
|
||||
|
||||
#plotComparedIntervalsAhead(data_test, objs, lcolors, distributions=, save=save, file=file, tam=tam, intervals=True)
|
||||
plotComparedIntervalsAhead(data_test, objs, lcolors, distributions=distributions, time_from=start, time_to=steps,
|
||||
interpol=False, save=save, file=file, tam=tam, resolution=resolution, option=option)
|
||||
|
||||
|
||||
def get_distribution_statistics(original, model, steps, resolution):
|
||||
ret = list()
|
||||
try:
|
||||
_s1 = time.time()
|
||||
densities1 = model.forecastAheadDistribution(original,steps,resolution, parameters=3)
|
||||
densities2 = model.forecastAheadDistribution(original, steps, resolution, parameters=2)
|
||||
_e1 = time.time()
|
||||
ret.append(round(Measures.crps(original, densities1), 3))
|
||||
ret.append(round(_e1 - _s1, 3))
|
||||
except Exception as e:
|
||||
print('Erro: ', e)
|
||||
ret.append(np.nan)
|
||||
ret.append(np.nan)
|
||||
|
||||
try:
|
||||
_s2 = time.time()
|
||||
densities2 = model.forecastAheadDistribution(original, steps, resolution, parameters=2)
|
||||
_e2 = time.time()
|
||||
ret.append( round(Measures.crps(original, densities2), 3))
|
||||
ret.append(round(_e2 - _s2, 3))
|
||||
except:
|
||||
ret.append(np.nan)
|
||||
ret.append(np.nan)
|
||||
|
||||
return ret
|
||||
|
||||
|
||||
def print_distribution_statistics(original, models, steps, resolution):
|
||||
ret = "Model & Order & Interval & Distribution \\\\ \n"
|
||||
for fts in models:
|
||||
_crps1, _crps2 = get_distribution_statistics(original, fts, steps, resolution)
|
||||
_crps1, _crps2, _t1, _t2 = get_distribution_statistics(original, fts, steps, resolution)
|
||||
ret += fts.shortname + " & "
|
||||
ret += str(fts.order) + " & "
|
||||
ret += str(_crps1) + " & "
|
||||
@ -977,7 +1072,8 @@ def compareModelsTable(original, models_fo, models_ho):
|
||||
|
||||
|
||||
def simpleSearch_RMSE(train, test, model, partitions, orders, save=False, file=None, tam=[10, 15],
|
||||
plotforecasts=False, elev=30, azim=144, intervals=False,parameters=None):
|
||||
plotforecasts=False, elev=30, azim=144, intervals=False,parameters=None,
|
||||
partitioner=Grid.GridPartitioner,transformation=None,indexer=None):
|
||||
_3d = len(orders) > 1
|
||||
ret = []
|
||||
errors = np.array([[0 for k in range(len(partitions))] for kk in range(len(orders))])
|
||||
@ -996,9 +1092,10 @@ def simpleSearch_RMSE(train, test, model, partitions, orders, save=False, file=N
|
||||
|
||||
for pc, p in enumerate(partitions, start=0):
|
||||
|
||||
sets = Grid.GridPartitioner(train, p).sets
|
||||
sets = partitioner(train, p, transformation=transformation).sets
|
||||
for oc, o in enumerate(orders, start=0):
|
||||
fts = model("q = " + str(p) + " n = " + str(o))
|
||||
fts.appendTransformation(transformation)
|
||||
fts.train(train, sets, o, parameters=parameters)
|
||||
if not intervals:
|
||||
forecasted = fts.forecast(test)
|
||||
@ -1041,6 +1138,7 @@ def simpleSearch_RMSE(train, test, model, partitions, orders, save=False, file=N
|
||||
ax0.plot(errors,partitions)
|
||||
ret.append(best)
|
||||
ret.append(forecasted_best)
|
||||
ret.append(min_rmse)
|
||||
|
||||
# plt.tight_layout()
|
||||
|
||||
|
@ -206,8 +206,10 @@ class SortedCollection(object):
|
||||
def inside(self, ge, le):
|
||||
g = bisect_right(self._keys, ge)
|
||||
l = bisect_left(self._keys, le)
|
||||
if g != len(self) and l != len(self):
|
||||
if g != len(self) and l != len(self) and g != l:
|
||||
return self._items[g : l]
|
||||
elif g != len(self) and l != len(self) and g == l:
|
||||
return [ self._items[g] ]
|
||||
elif g != len(self):
|
||||
return self._items[g-1: l]
|
||||
elif l != len(self):
|
||||
|
1
fts.py
1
fts.py
@ -66,6 +66,7 @@ class FTS(object):
|
||||
return ret
|
||||
|
||||
def appendTransformation(self, transformation):
|
||||
if transformation is not None:
|
||||
self.transformations.append(transformation)
|
||||
|
||||
def doTransformations(self,data,params=None,updateUoD=False):
|
||||
|
19
ifts.py
19
ifts.py
@ -73,6 +73,16 @@ class IntervalFTS(hofts.HighOrderFTS):
|
||||
mb = FuzzySet.fuzzyInstance(instance, self.sets)
|
||||
tmp = np.argwhere(mb)
|
||||
idx = np.ravel(tmp) # flat the array
|
||||
|
||||
if idx.size == 0: # the element is out of the bounds of the Universe of Discourse
|
||||
if instance <= self.sets[0].lower:
|
||||
idx = [0]
|
||||
elif instance >= self.sets[-1].upper:
|
||||
idx = [len(self.sets) - 1]
|
||||
else:
|
||||
raise Exception(instance)
|
||||
|
||||
|
||||
lags[count] = idx
|
||||
count = count + 1
|
||||
|
||||
@ -98,6 +108,15 @@ class IntervalFTS(hofts.HighOrderFTS):
|
||||
mv = FuzzySet.fuzzyInstance(ndata[k], self.sets)
|
||||
tmp = np.argwhere(mv)
|
||||
idx = np.ravel(tmp)
|
||||
|
||||
if idx.size == 0: # the element is out of the bounds of the Universe of Discourse
|
||||
if ndata[k] <= self.sets[0].lower:
|
||||
idx = [0]
|
||||
elif ndata[k] >= self.sets[-1].upper:
|
||||
idx = [len(self.sets) - 1]
|
||||
else:
|
||||
raise Exception(ndata[k])
|
||||
|
||||
for kk in idx:
|
||||
flrg = hofts.HighOrderFLRG(self.order)
|
||||
flrg.appendLHS(self.sets[kk])
|
||||
|
14
pwfts.py
14
pwfts.py
@ -327,12 +327,13 @@ class ProbabilisticWeightedFTS(ifts.IntervalFTS):
|
||||
idx = np.ravel(tmp) # flatten the array
|
||||
|
||||
if idx.size == 0: # the element is out of the bounds of the Universe of Discourse
|
||||
if instance <= np.ceil(self.sets[0].lower):
|
||||
if math.isclose(instance, self.sets[0].lower) or instance < self.sets[0].lower:
|
||||
idx = [0]
|
||||
elif instance >= np.floor(self.sets[-1].upper):
|
||||
elif math.isclose(instance, self.sets[-1].upper) or instance > self.sets[-1].upper:
|
||||
idx = [len(self.sets) - 1]
|
||||
else:
|
||||
raise Exception(instance)
|
||||
raise Exception("Data exceed the known bounds [%s, %s] of universe of discourse: %s" %
|
||||
(self.sets[0].lower, self.sets[-1].upper, instance))
|
||||
|
||||
lags[count] = idx
|
||||
count += 1
|
||||
@ -365,12 +366,13 @@ class ProbabilisticWeightedFTS(ifts.IntervalFTS):
|
||||
idx = np.ravel(tmp) # flatten the array
|
||||
|
||||
if idx.size == 0: # the element is out of the bounds of the Universe of Discourse
|
||||
if ndata[k] <= self.sets[0].lower:
|
||||
if math.isclose(ndata[k], self.sets[0].lower) or ndata[k] < self.sets[0].lower:
|
||||
idx = [0]
|
||||
elif ndata[k] >= self.sets[-1].upper:
|
||||
elif math.isclose(ndata[k], self.sets[-1].upper) or ndata[k] > self.sets[-1].upper:
|
||||
idx = [len(self.sets) - 1]
|
||||
else:
|
||||
raise Exception(ndata[k])
|
||||
raise Exception("Data exceed the known bounds [%s, %s] of universe of discourse: %s" %
|
||||
(self.sets[0].lower, self.sets[-1].upper, ndata[k]))
|
||||
|
||||
for kk in idx:
|
||||
flrg = hofts.HighOrderFLRG(self.order)
|
||||
|
@ -41,30 +41,38 @@ nasdaq = np.array(nasdaqpd["avg"][:5000])
|
||||
|
||||
#, ,
|
||||
|
||||
#diff = Transformations.Differential(1)
|
||||
diff = Transformations.Differential(1)
|
||||
|
||||
|
||||
bchmk.external_point_sliding_window([naive.Naive, arima.ARIMA, arima.ARIMA, arima.ARIMA, arima.ARIMA, arima.ARIMA, arima.ARIMA],
|
||||
[None, (1,0,0),(1,1,0),(2,0,0), (2,1,0), (1,1,1), (1,0,1)],
|
||||
nasdaq,2000,train=0.8, #transformation=diff, #models=[pwfts.ProbabilisticWeightedFTS], # #
|
||||
dump=True, save=True, file="experiments/arima_nasdaq.csv")
|
||||
#bchmk.external_point_sliding_window([naive.Naive, arima.ARIMA, arima.ARIMA, arima.ARIMA, arima.ARIMA, arima.ARIMA, arima.ARIMA],
|
||||
# [None, (1,0,0),(1,1,0),(2,0,0), (2,1,0), (1,1,1), (1,0,1)],
|
||||
# gauss,2000,train=0.8, dump=True, save=True, file="experiments/arima_gauss.csv")
|
||||
|
||||
|
||||
#bchmk.point_sliding_window(taiex,2000,train=0.8, #transformation=diff, #models=[pwfts.ProbabilisticWeightedFTS], # #
|
||||
bchmk.interval_sliding_window(nasdaq,2000,train=0.8, #transformation=diff, #models=[pwfts.ProbabilisticWeightedFTS], # #
|
||||
partitioners=[Grid.GridPartitioner], #Entropy.EntropyPartitioner], # FCM.FCMPartitioner, ],
|
||||
partitions= np.arange(10,200,step=5), #
|
||||
dump=True, save=True, file="experiments/nasdaq_interval.csv")
|
||||
|
||||
#3bchmk.ahead_sliding_window(taiex,2000,train=0.8, steps=20, resolution=250, #transformation=diff, #models=[pwfts.ProbabilisticWeightedFTS], # #
|
||||
# partitioners=[Grid.GridPartitioner], #Entropy.EntropyPartitioner], # FCM.FCMPartitioner, ],
|
||||
# partitions= [45,55, 65, 75, 85, 95,105,115,125,135, 150], #np.arange(5,150,step=10), #
|
||||
# dump=True, save=True, file="experiments/taiex_point_new.csv")
|
||||
# partitions= np.arange(10,200,step=10), #
|
||||
# dump=True, save=True, file="experiments/taiex_ahead.csv")
|
||||
|
||||
|
||||
#bchmk.allPointForecasters(taiex_treino, taiex_treino, 95, #transformation=diff,
|
||||
# models=[ naive.Naive, pfts.ProbabilisticFTS, pwfts.ProbabilisticWeightedFTS],
|
||||
# statistics=True, residuals=False, series=False)
|
||||
|
||||
#data_train_fs = Grid.GridPartitioner(taiex_treino, 10, transformation=diff).sets
|
||||
#data_train_fs = Grid.GridPartitioner(nasdaq[:1600], 95).sets
|
||||
|
||||
#fts1 = pfts.ProbabilisticFTS("")
|
||||
#fts1 = pwfts.ProbabilisticWeightedFTS("")
|
||||
#fts1.appendTransformation(diff)
|
||||
#fts1.train(taiex_treino, data_train_fs, order=1)
|
||||
#fts1.train(nasdaq[:1600], data_train_fs, order=1)
|
||||
|
||||
#_crps1, _crps2, _t1, _t2 = bchmk.get_distribution_statistics(nasdaq[1600:2000], fts1, steps=20, resolution=200)
|
||||
|
||||
#print(_crps1, _crps2, _t1, _t2)
|
||||
|
||||
#print(fts1.forecast([5000, 5000]))
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user