Correções de importações e nomenclatura devido à modularização
This commit is contained in:
parent
eb27fabb4c
commit
57730cb14f
@ -1,10 +1,15 @@
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
#import matplotlib as plt
|
||||
import matplotlib as plt
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
|
||||
from pyFTS import *
|
||||
from pyFTS import common
|
||||
|
||||
def Teste(par):
|
||||
x = np.arange(1,par)
|
||||
y = [ yy**yy for yyy in x]
|
||||
plt.plot(x,y)
|
||||
|
||||
# Erro quadrático médio
|
||||
def rmse(predictions,targets):
|
||||
@ -119,7 +124,7 @@ def SelecaoKFold_MenorRMSE(original,parameters,modelo):
|
||||
min_rmse_fold = 100000.0
|
||||
bestd = None
|
||||
fc = 0
|
||||
diff = diferencas(original)
|
||||
diff = common.differential(original)
|
||||
kf = KFold(len(original), n_folds=nfolds)
|
||||
for train_ix, test_ix in kf:
|
||||
train = diff[train_ix]
|
||||
@ -180,7 +185,7 @@ def SelecaoSimples_MenorRMSE(original,parameters,modelo):
|
||||
min_rmse = 100000.0
|
||||
best = None
|
||||
for p in parameters:
|
||||
sets = GridPartitionerTrimf(original,p)
|
||||
sets = common.GridPartitionerTrimf(original,p)
|
||||
fts = modelo(str(p)+ " particoes")
|
||||
fts.learn(original,sets)
|
||||
predicted = [fts.predict(xx) for xx in original]
|
||||
@ -216,9 +221,9 @@ def SelecaoSimples_MenorRMSE(original,parameters,modelo):
|
||||
min_rmse = 100000.0
|
||||
bestd = None
|
||||
for p in parameters:
|
||||
sets = GridPartitionerTrimf(diferencas(original),p)
|
||||
sets = common.GridPartitionerTrimf(common.differential(original),p)
|
||||
fts = modelo(str(p)+ " particoes")
|
||||
fts.learn(diferencas(original),sets)
|
||||
fts.learn(common.differential(original),sets)
|
||||
predicted = [fts.predictDiff(original, xx) for xx in range(1,len(original))]
|
||||
predicted.insert(0,original[0])
|
||||
ax2.plot(predicted,label=fts.name)
|
||||
@ -367,7 +372,7 @@ def HOSelecaoSimples_MenorRMSE(original,parameters,orders):
|
||||
for p in parameters:
|
||||
oc = 0
|
||||
for o in orders:
|
||||
sets = GridPartitionerTrimf(diferencas(original),p)
|
||||
sets = common.GridPartitionerTrimf(common.differential(original),p)
|
||||
fts = HighOrderFTS(o,"k = " + str(p)+ " w = " + str(o))
|
||||
fts.learn(original,sets)
|
||||
predicted = [fts.predictDiff(original, xx) for xx in range(o,len(original))]
|
||||
|
@ -1,3 +1,12 @@
|
||||
import numpy as np
|
||||
from pyFTS import *
|
||||
|
||||
def differential(original):
|
||||
n = len(original)
|
||||
diff = [ original[t-1]-original[t] for t in np.arange(1,n) ]
|
||||
diff.insert(0,0)
|
||||
return np.array(diff)
|
||||
|
||||
def trimf(x,parameters):
|
||||
if(x < parameters[0]):
|
||||
return 0
|
||||
|
2
fts.py
2
fts.py
@ -1,3 +1,5 @@
|
||||
from pyFTS import *
|
||||
|
||||
class FTS:
|
||||
def __init__(self,order,name):
|
||||
self.sets = {}
|
||||
|
4
hwang.py
4
hwang.py
@ -1,4 +1,6 @@
|
||||
class HighOrderFTS(FTS):
|
||||
from pyFTS import *
|
||||
|
||||
class HighOrderFTS(fts.FTS):
|
||||
def __init__(self,order,name):
|
||||
super(HighOrderFTS, self).__init__(order,name)
|
||||
|
||||
|
@ -1,3 +1,5 @@
|
||||
from pyFTS import *
|
||||
|
||||
class ImprovedWeightedFLRG:
|
||||
def __init__(self,premiss):
|
||||
self.premiss = premiss
|
||||
@ -24,7 +26,7 @@ class ImprovedWeightedFLRG:
|
||||
return tmp + tmp2
|
||||
|
||||
|
||||
class ImprovedWeightedFTS(FTS):
|
||||
class ImprovedWeightedFTS(fts.FTS):
|
||||
def __init__(self,name):
|
||||
super(ImprovedWeightedFTS, self).__init__(1,name)
|
||||
|
||||
|
@ -1,3 +1,5 @@
|
||||
from pyFTS import *
|
||||
|
||||
class ExponentialyWeightedFLRG:
|
||||
def __init__(self,premiss,c):
|
||||
self.premiss = premiss
|
||||
@ -27,7 +29,7 @@ class ExponentialyWeightedFLRG:
|
||||
cc = cc + 1
|
||||
return tmp + tmp2
|
||||
|
||||
class ExponentialyWeightedFTS(FTS):
|
||||
class ExponentialyWeightedFTS(fts.FTS):
|
||||
def __init__(self,name):
|
||||
super(ExponentialyWeightedFTS, self).__init__(1,name)
|
||||
|
||||
|
6
yu.py
6
yu.py
@ -1,4 +1,6 @@
|
||||
class WeightedFLRG(FTS):
|
||||
from pyFTS import *
|
||||
|
||||
class WeightedFLRG(fts.FTS):
|
||||
def __init__(self,premiss):
|
||||
self.premiss = premiss
|
||||
self.consequent = []
|
||||
@ -25,7 +27,7 @@ class WeightedFLRG(FTS):
|
||||
return tmp + tmp2
|
||||
|
||||
|
||||
class WeightedFTS(FTS):
|
||||
class WeightedFTS(fts.FTS):
|
||||
def __init__(self,name):
|
||||
super(WeightedFTS, self).__init__(1,name)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user