Correções de importações e nomenclatura devido à modularização
This commit is contained in:
parent
eb27fabb4c
commit
57730cb14f
@ -1,10 +1,15 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
#import matplotlib as plt
|
import matplotlib as plt
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
from mpl_toolkits.mplot3d import Axes3D
|
from mpl_toolkits.mplot3d import Axes3D
|
||||||
|
|
||||||
from pyFTS import *
|
from pyFTS import common
|
||||||
|
|
||||||
|
def Teste(par):
|
||||||
|
x = np.arange(1,par)
|
||||||
|
y = [ yy**yy for yyy in x]
|
||||||
|
plt.plot(x,y)
|
||||||
|
|
||||||
# Erro quadrático médio
|
# Erro quadrático médio
|
||||||
def rmse(predictions,targets):
|
def rmse(predictions,targets):
|
||||||
@ -119,7 +124,7 @@ def SelecaoKFold_MenorRMSE(original,parameters,modelo):
|
|||||||
min_rmse_fold = 100000.0
|
min_rmse_fold = 100000.0
|
||||||
bestd = None
|
bestd = None
|
||||||
fc = 0
|
fc = 0
|
||||||
diff = diferencas(original)
|
diff = common.differential(original)
|
||||||
kf = KFold(len(original), n_folds=nfolds)
|
kf = KFold(len(original), n_folds=nfolds)
|
||||||
for train_ix, test_ix in kf:
|
for train_ix, test_ix in kf:
|
||||||
train = diff[train_ix]
|
train = diff[train_ix]
|
||||||
@ -180,7 +185,7 @@ def SelecaoSimples_MenorRMSE(original,parameters,modelo):
|
|||||||
min_rmse = 100000.0
|
min_rmse = 100000.0
|
||||||
best = None
|
best = None
|
||||||
for p in parameters:
|
for p in parameters:
|
||||||
sets = GridPartitionerTrimf(original,p)
|
sets = common.GridPartitionerTrimf(original,p)
|
||||||
fts = modelo(str(p)+ " particoes")
|
fts = modelo(str(p)+ " particoes")
|
||||||
fts.learn(original,sets)
|
fts.learn(original,sets)
|
||||||
predicted = [fts.predict(xx) for xx in original]
|
predicted = [fts.predict(xx) for xx in original]
|
||||||
@ -216,9 +221,9 @@ def SelecaoSimples_MenorRMSE(original,parameters,modelo):
|
|||||||
min_rmse = 100000.0
|
min_rmse = 100000.0
|
||||||
bestd = None
|
bestd = None
|
||||||
for p in parameters:
|
for p in parameters:
|
||||||
sets = GridPartitionerTrimf(diferencas(original),p)
|
sets = common.GridPartitionerTrimf(common.differential(original),p)
|
||||||
fts = modelo(str(p)+ " particoes")
|
fts = modelo(str(p)+ " particoes")
|
||||||
fts.learn(diferencas(original),sets)
|
fts.learn(common.differential(original),sets)
|
||||||
predicted = [fts.predictDiff(original, xx) for xx in range(1,len(original))]
|
predicted = [fts.predictDiff(original, xx) for xx in range(1,len(original))]
|
||||||
predicted.insert(0,original[0])
|
predicted.insert(0,original[0])
|
||||||
ax2.plot(predicted,label=fts.name)
|
ax2.plot(predicted,label=fts.name)
|
||||||
@ -367,7 +372,7 @@ def HOSelecaoSimples_MenorRMSE(original,parameters,orders):
|
|||||||
for p in parameters:
|
for p in parameters:
|
||||||
oc = 0
|
oc = 0
|
||||||
for o in orders:
|
for o in orders:
|
||||||
sets = GridPartitionerTrimf(diferencas(original),p)
|
sets = common.GridPartitionerTrimf(common.differential(original),p)
|
||||||
fts = HighOrderFTS(o,"k = " + str(p)+ " w = " + str(o))
|
fts = HighOrderFTS(o,"k = " + str(p)+ " w = " + str(o))
|
||||||
fts.learn(original,sets)
|
fts.learn(original,sets)
|
||||||
predicted = [fts.predictDiff(original, xx) for xx in range(o,len(original))]
|
predicted = [fts.predictDiff(original, xx) for xx in range(o,len(original))]
|
||||||
|
@ -1,3 +1,12 @@
|
|||||||
|
import numpy as np
|
||||||
|
from pyFTS import *
|
||||||
|
|
||||||
|
def differential(original):
|
||||||
|
n = len(original)
|
||||||
|
diff = [ original[t-1]-original[t] for t in np.arange(1,n) ]
|
||||||
|
diff.insert(0,0)
|
||||||
|
return np.array(diff)
|
||||||
|
|
||||||
def trimf(x,parameters):
|
def trimf(x,parameters):
|
||||||
if(x < parameters[0]):
|
if(x < parameters[0]):
|
||||||
return 0
|
return 0
|
||||||
|
2
fts.py
2
fts.py
@ -1,3 +1,5 @@
|
|||||||
|
from pyFTS import *
|
||||||
|
|
||||||
class FTS:
|
class FTS:
|
||||||
def __init__(self,order,name):
|
def __init__(self,order,name):
|
||||||
self.sets = {}
|
self.sets = {}
|
||||||
|
4
hwang.py
4
hwang.py
@ -1,4 +1,6 @@
|
|||||||
class HighOrderFTS(FTS):
|
from pyFTS import *
|
||||||
|
|
||||||
|
class HighOrderFTS(fts.FTS):
|
||||||
def __init__(self,order,name):
|
def __init__(self,order,name):
|
||||||
super(HighOrderFTS, self).__init__(order,name)
|
super(HighOrderFTS, self).__init__(order,name)
|
||||||
|
|
||||||
|
@ -1,3 +1,5 @@
|
|||||||
|
from pyFTS import *
|
||||||
|
|
||||||
class ImprovedWeightedFLRG:
|
class ImprovedWeightedFLRG:
|
||||||
def __init__(self,premiss):
|
def __init__(self,premiss):
|
||||||
self.premiss = premiss
|
self.premiss = premiss
|
||||||
@ -24,7 +26,7 @@ class ImprovedWeightedFLRG:
|
|||||||
return tmp + tmp2
|
return tmp + tmp2
|
||||||
|
|
||||||
|
|
||||||
class ImprovedWeightedFTS(FTS):
|
class ImprovedWeightedFTS(fts.FTS):
|
||||||
def __init__(self,name):
|
def __init__(self,name):
|
||||||
super(ImprovedWeightedFTS, self).__init__(1,name)
|
super(ImprovedWeightedFTS, self).__init__(1,name)
|
||||||
|
|
||||||
|
@ -1,3 +1,5 @@
|
|||||||
|
from pyFTS import *
|
||||||
|
|
||||||
class ExponentialyWeightedFLRG:
|
class ExponentialyWeightedFLRG:
|
||||||
def __init__(self,premiss,c):
|
def __init__(self,premiss,c):
|
||||||
self.premiss = premiss
|
self.premiss = premiss
|
||||||
@ -27,7 +29,7 @@ class ExponentialyWeightedFLRG:
|
|||||||
cc = cc + 1
|
cc = cc + 1
|
||||||
return tmp + tmp2
|
return tmp + tmp2
|
||||||
|
|
||||||
class ExponentialyWeightedFTS(FTS):
|
class ExponentialyWeightedFTS(fts.FTS):
|
||||||
def __init__(self,name):
|
def __init__(self,name):
|
||||||
super(ExponentialyWeightedFTS, self).__init__(1,name)
|
super(ExponentialyWeightedFTS, self).__init__(1,name)
|
||||||
|
|
||||||
|
6
yu.py
6
yu.py
@ -1,4 +1,6 @@
|
|||||||
class WeightedFLRG(FTS):
|
from pyFTS import *
|
||||||
|
|
||||||
|
class WeightedFLRG(fts.FTS):
|
||||||
def __init__(self,premiss):
|
def __init__(self,premiss):
|
||||||
self.premiss = premiss
|
self.premiss = premiss
|
||||||
self.consequent = []
|
self.consequent = []
|
||||||
@ -25,7 +27,7 @@ class WeightedFLRG(FTS):
|
|||||||
return tmp + tmp2
|
return tmp + tmp2
|
||||||
|
|
||||||
|
|
||||||
class WeightedFTS(FTS):
|
class WeightedFTS(fts.FTS):
|
||||||
def __init__(self,name):
|
def __init__(self,name):
|
||||||
super(WeightedFTS, self).__init__(1,name)
|
super(WeightedFTS, self).__init__(1,name)
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user