- DateTimeSeasonalIndexer
- persist_obj, load_obj, persist_env, load_env
This commit is contained in:
parent
bb42a6be07
commit
55d3deadfc
@ -40,9 +40,9 @@ def generateIndexedFLRs(sets, indexer, data):
|
||||
flrs = []
|
||||
index = indexer.get_season_of_data(data)
|
||||
ndata = indexer.get_data(data)
|
||||
for k in np.arange(0,len(data)-1):
|
||||
lhs = FuzzySet.getMaxMembershipFuzzySet(ndata[k],sets)
|
||||
rhs = FuzzySet.getMaxMembershipFuzzySet(ndata[k+1], sets)
|
||||
for k in np.arange(1,len(data)):
|
||||
lhs = FuzzySet.getMaxMembershipFuzzySet(ndata[k-1],sets)
|
||||
rhs = FuzzySet.getMaxMembershipFuzzySet(ndata[k], sets)
|
||||
season = index[k]
|
||||
flr = IndexedFLR(season,lhs,rhs)
|
||||
flrs.append(flr)
|
||||
|
@ -1,5 +1,6 @@
|
||||
import time
|
||||
import matplotlib.pyplot as plt
|
||||
import dill
|
||||
|
||||
|
||||
current_milli_time = lambda: int(round(time.time() * 1000))
|
||||
@ -26,4 +27,20 @@ def showAndSaveImage(fig,file,flag,lgd=None):
|
||||
def enumerate2(xs, start=0, step=1):
|
||||
for x in xs:
|
||||
yield (start, x)
|
||||
start += step
|
||||
start += step
|
||||
|
||||
|
||||
def persist_obj(obj, file):
|
||||
with open(file, 'wb') as _file:
|
||||
dill.dump(obj, _file)
|
||||
|
||||
def load_obj(file):
|
||||
with open(file, 'rb') as _file:
|
||||
obj = dill.load(_file)
|
||||
return obj
|
||||
|
||||
def persist_env(file):
|
||||
dill.dump_session(file)
|
||||
|
||||
def load_env(file):
|
||||
dill.load_session(file)
|
@ -2,6 +2,7 @@ import numpy as np
|
||||
from pyFTS.common import FuzzySet,FLR
|
||||
from pyFTS import fts, sfts
|
||||
|
||||
|
||||
class MultiSeasonalFTS(sfts.SeasonalFTS):
|
||||
def __init__(self, name, indexer):
|
||||
super(MultiSeasonalFTS, self).__init__("MSFTS")
|
||||
@ -18,44 +19,50 @@ class MultiSeasonalFTS(sfts.SeasonalFTS):
|
||||
def generateFLRG(self, flrs):
|
||||
flrgs = {}
|
||||
|
||||
for index, season in enumerate(self.indexer.get_season_of_data(flrs),start=0):
|
||||
for flr in flrs:
|
||||
|
||||
print(index)
|
||||
print(season)
|
||||
if str(flr.index) not in self.flrgs:
|
||||
flrgs[str(flr.index)] = sfts.SeasonalFLRG(flr.index)
|
||||
|
||||
if str(season) not in self.flrgs:
|
||||
flrgs[str(season)] = sfts.SeasonalFLRG(season)
|
||||
|
||||
flrgs[str(season)].append(flrs[index].RHS)
|
||||
flrgs[str(flr.index)].append(flr.RHS)
|
||||
|
||||
return (flrgs)
|
||||
|
||||
def train(self, data, sets, order=1, parameters=None):
|
||||
self.sets = sets
|
||||
self.seasonality = parameters
|
||||
ndata = self.indexer.set_data(data,self.doTransformations(self.indexer.get_data(data)))
|
||||
tmpdata = FuzzySet.fuzzySeries(ndata, sets)
|
||||
flrs = FLR.generateRecurrentFLRs(tmpdata)
|
||||
#ndata = self.indexer.set_data(data,self.doTransformations(self.indexer.get_data(data)))
|
||||
flrs = FLR.generateIndexedFLRs(self.sets, self.indexer, data)
|
||||
self.flrgs = self.generateFLRG(flrs)
|
||||
|
||||
def forecast(self, data):
|
||||
|
||||
ndata = np.array(self.doTransformations(self.indexer.get_data(data)))
|
||||
|
||||
l = len(ndata)
|
||||
|
||||
ret = []
|
||||
|
||||
for k in np.arange(1, l):
|
||||
index = self.indexer.get_season_of_data(data)
|
||||
ndata = self.indexer.get_data(data)
|
||||
|
||||
season = self.indexer.get_season_index(k)
|
||||
for k in np.arange(1, len(data)):
|
||||
|
||||
flrg = self.flrgs[str(season)]
|
||||
flrg = self.flrgs[str(index[k])]
|
||||
|
||||
mp = self.getMidpoints(flrg)
|
||||
|
||||
ret.append(sum(mp) / len(mp))
|
||||
|
||||
ret = self.doInverseTransformations(ret, params=[data[self.order - 1:]])
|
||||
ret = self.doInverseTransformations(ret, params=[ndata[self.order - 1:]])
|
||||
|
||||
return ret
|
||||
|
||||
def forecastAhead(self, data, steps):
|
||||
ret = []
|
||||
for i in steps:
|
||||
flrg = self.flrgs[str(i)]
|
||||
|
||||
mp = self.getMidpoints(flrg)
|
||||
|
||||
ret.append(sum(mp) / len(mp))
|
||||
|
||||
ret = self.doInverseTransformations(ret, params=data)
|
||||
|
||||
return ret
|
||||
|
@ -1,4 +1,5 @@
|
||||
import numpy as np
|
||||
from enum import Enum
|
||||
|
||||
class SeasonalIndexer(object):
|
||||
def __init__(self,num_seasons):
|
||||
@ -68,6 +69,7 @@ class DataFrameSeasonalIndexer(SeasonalIndexer):
|
||||
self.data_fields = data_fields
|
||||
|
||||
def get_season_of_data(self,data):
|
||||
#data = data.copy()
|
||||
ret = []
|
||||
for ix in data.index:
|
||||
season = []
|
||||
@ -75,7 +77,8 @@ class DataFrameSeasonalIndexer(SeasonalIndexer):
|
||||
if self.seasons[c] is None:
|
||||
season.append(data[f][ix])
|
||||
else:
|
||||
season.append(data[f][ix] // self.seasons[c])
|
||||
a = data[f][ix]
|
||||
season.append(a // self.seasons[c])
|
||||
ret.append(season)
|
||||
return ret
|
||||
|
||||
@ -98,5 +101,73 @@ class DataFrameSeasonalIndexer(SeasonalIndexer):
|
||||
return data[self.data_fields].tolist()
|
||||
|
||||
def set_data(self, data, value):
|
||||
data[self.data_fields] = value
|
||||
return data
|
||||
data.loc[:,self.data_fields] = value
|
||||
return data
|
||||
|
||||
class DateTime(Enum):
|
||||
year = 1
|
||||
month = 2
|
||||
day_of_month = 3
|
||||
day_of_year = 4
|
||||
day_of_week = 5
|
||||
hour = 6
|
||||
minute = 7
|
||||
second = 8
|
||||
|
||||
|
||||
class DateTimeSeasonalIndexer(SeasonalIndexer):
|
||||
def __init__(self,date_field, index_fields, index_seasons, data_fields):
|
||||
super(DateTimeSeasonalIndexer, self).__init__(len(index_seasons))
|
||||
self.fields = index_fields
|
||||
self.seasons = index_seasons
|
||||
self.data_fields = data_fields
|
||||
self.date_field = date_field
|
||||
|
||||
def strip_datepart(self, date, date_part, resolution):
|
||||
if date_part == DateTime.year:
|
||||
tmp = date.year
|
||||
elif date_part == DateTime.month:
|
||||
tmp = date.month
|
||||
elif date_part == DateTime.day_of_year:
|
||||
tmp = date.timetuple().tm_yday
|
||||
elif date_part == DateTime.day_of_month:
|
||||
tmp = date.day
|
||||
elif date_part == DateTime.day_of_week:
|
||||
tmp = date.weekday()
|
||||
elif date_part == DateTime.hour:
|
||||
tmp = date.hour
|
||||
elif date_part == DateTime.minute:
|
||||
tmp = date.minute
|
||||
elif date_part == DateTime.second:
|
||||
tmp = date.second
|
||||
|
||||
if resolution is None:
|
||||
return tmp
|
||||
else:
|
||||
return tmp // resolution
|
||||
|
||||
def get_season_of_data(self, data):
|
||||
# data = data.copy()
|
||||
ret = []
|
||||
for ix in data.index:
|
||||
date = data[self.date_field][ix]
|
||||
season = []
|
||||
for c, f in enumerate(self.fields, start=0):
|
||||
season.append( self.strip_datepart(date, f, self.seasons[c]) )
|
||||
ret.append(season)
|
||||
return ret
|
||||
|
||||
def get_season_by_index(self, index):
|
||||
raise Exception("Operation not available!")
|
||||
|
||||
def get_data_by_season(self, data, indexes):
|
||||
raise Exception("Operation not available!")
|
||||
|
||||
def get_index_by_season(self, indexes):
|
||||
raise Exception("Operation not available!")
|
||||
|
||||
def get_data(self, data):
|
||||
return data[self.data_fields].tolist()
|
||||
|
||||
def set_data(self, data, value):
|
||||
raise Exception("Operation not available!")
|
@ -8,9 +8,11 @@ import matplotlib as plt
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
|
||||
import datetime
|
||||
|
||||
import pandas as pd
|
||||
from pyFTS.partitioners import Grid
|
||||
from pyFTS.common import FLR,FuzzySet,Membership,Transformations
|
||||
from pyFTS.partitioners import Grid, CMeans, FCM, Entropy
|
||||
from pyFTS.common import FLR,FuzzySet,Membership,Transformations,Util
|
||||
from pyFTS import fts,sfts
|
||||
from pyFTS.models import msfts
|
||||
from pyFTS.benchmarks import benchmarks as bchmk
|
||||
@ -18,12 +20,36 @@ from pyFTS.benchmarks import Measures
|
||||
|
||||
os.chdir("/home/petronio/dados/Dropbox/Doutorado/Disciplinas/AdvancedFuzzyTimeSeriesModels/")
|
||||
|
||||
sonda = pd.read_csv("DataSets/SONDA_BSB_CLEAN.csv", sep=";")
|
||||
sonda = pd.read_csv("DataSets/SONDA_BSB_MOD.csv", sep=";")
|
||||
|
||||
sonda['data'] = pd.to_datetime(sonda['data'])
|
||||
|
||||
sonda = sonda[:][527041:]
|
||||
|
||||
sonda.index = np.arange(0,len(sonda.index))
|
||||
|
||||
#data = []
|
||||
|
||||
#for i in sonda.index:
|
||||
|
||||
#inst = []
|
||||
|
||||
#year = int( sonda["year"][i] )
|
||||
#day_of_year = int( sonda["day"][i] )
|
||||
#minute = int (sonda["min"][i] )
|
||||
|
||||
#glo_avg = sonda["glo_avg"][i]
|
||||
|
||||
#inst.append( datetime.datetime(year, 1, 1) + datetime.timedelta(day_of_year - 1, minutes=minute) )
|
||||
|
||||
#inst.append( glo_avg )
|
||||
|
||||
#data.append(inst)
|
||||
|
||||
#nov = pd.DataFrame(data,columns=["data","glo_avg"])
|
||||
|
||||
#nov.to_csv("DataSets/SONDA_BSB_MOD.csv", sep=";")
|
||||
|
||||
sonda_treino = sonda[:1051200]
|
||||
sonda_teste = sonda[1051201:]
|
||||
|
||||
@ -37,19 +63,42 @@ from pyFTS.models.seasonal import SeasonalIndexer
|
||||
from pyFTS.models import msfts
|
||||
from pyFTS.common import FLR
|
||||
|
||||
ix = SeasonalIndexer.DataFrameSeasonalIndexer(['day','min'],[30, 60],'glo_avg')
|
||||
ix = SeasonalIndexer.DateTimeSeasonalIndexer('data',[SeasonalIndexer.DateTime.month,
|
||||
SeasonalIndexer.DateTime.hour, SeasonalIndexer.DateTime.minute],
|
||||
[None, None,15],'glo_avg')
|
||||
|
||||
fs = Grid.GridPartitionerTrimf(ix.get_data(sonda_treino),20)
|
||||
tmp = ix.get_data(sonda_treino)
|
||||
for max_part in [10, 20, 30, 40, 50]:
|
||||
|
||||
fs1 = Grid.GridPartitionerTrimf(tmp,max_part)
|
||||
|
||||
Util.persist_obj(fs1,"models/sonda_fs_grid_" + str(max_part) + ".pkl")
|
||||
|
||||
fs2 = FCM.FCMPartitionerTrimf(tmp, max_part)
|
||||
|
||||
Util.persist_obj(fs2, "models/sonda_fs_fcm_" + str(max_part) + ".pkl")
|
||||
|
||||
fs3 = Entropy.EntropyPartitionerTrimf(tmp, max_part)
|
||||
|
||||
Util.persist_obj(fs3, "models/sonda_fs_entropy_" + str(max_part) + ".pkl")
|
||||
|
||||
|
||||
#fs = Util.load_obj("models/sonda_fs_grid_50.pkl")
|
||||
|
||||
#for f in fs:
|
||||
# print(f)
|
||||
|
||||
#mfts = msfts.MultiSeasonalFTS("",ix)
|
||||
|
||||
#mfts.train(sonda_teste,fs)
|
||||
#mfts.train(sonda_treino,fs)
|
||||
|
||||
#print(str(mfts))
|
||||
|
||||
#plt.plot(mfts.forecast(sonda_teste))
|
||||
|
||||
#[10, 508]
|
||||
|
||||
flrs = FLR.generateIndexedFLRs(fs, ix, sonda_treino[110000:111450])
|
||||
#flrs = FLR.generateIndexedFLRs(fs, ix, sonda_treino[110000:111450])
|
||||
|
||||
for i in flrs: #ix.get_data(sonda_treino[111430:111450]):
|
||||
print(i)
|
||||
#for i in mfts.forecast(sonda_teste):
|
||||
# print(i)
|
Loading…
Reference in New Issue
Block a user