- Issue #3 - Code documentation with PEP 257 compliance

- Several bugfixes in benchmarks methods and optimizations
This commit is contained in:
Petrônio Cândido de Lima e Silva 2017-05-09 10:27:47 -03:00
parent 8df4f9c749
commit 537e7dcfe3
5 changed files with 59 additions and 8 deletions

View File

@ -141,9 +141,15 @@ def save_dataframe_point(experiments, file, objs, rmse, save, sintetic, smape, t
print("Erro ao salvar ", k) print("Erro ao salvar ", k)
print("Exceção ", ex) print("Exceção ", ex)
columns = point_dataframe_analytic_columns(experiments) columns = point_dataframe_analytic_columns(experiments)
dat = pd.DataFrame(ret, columns=columns) try:
if save: dat.to_csv(Util.uniquefilename(file), sep=";", index=False) dat = pd.DataFrame(ret, columns=columns)
return dat if save: dat.to_csv(Util.uniquefilename(file), sep=";", index=False)
return dat
except Exception as ex:
print(ex)
print(experiments)
print(columns)
print(ret)
def cast_dataframe_to_sintetic_point(infile, outfile, experiments): def cast_dataframe_to_sintetic_point(infile, outfile, experiments):
@ -193,9 +199,9 @@ def analytical_data_columns(experiments):
return data_columns return data_columns
def plot_dataframe_point(file_synthetic, file_analytic, experiments): def plot_dataframe_point(file_synthetic, file_analytic, experiments, tam):
fig, axes = plt.subplots(nrows=4, ncols=1, figsize=[6, 8]) fig, axes = plt.subplots(nrows=4, ncols=1, figsize=tam)
axes[0].set_title('RMSE') axes[0].set_title('RMSE')
axes[1].set_title('SMAPE') axes[1].set_title('SMAPE')
@ -216,7 +222,7 @@ def plot_dataframe_point(file_synthetic, file_analytic, experiments):
times = [] times = []
labels = [] labels = []
for b in bests.keys(): for b in sorted(bests.keys()):
best = bests[b] best = bests[b]
tmp = dat_ana[(dat_ana.Model == best["Model"]) & (dat_ana.Order == best["Order"]) tmp = dat_ana[(dat_ana.Model == best["Model"]) & (dat_ana.Order == best["Order"])
& (dat_ana.Scheme == best["Scheme"]) & (dat_ana.Partitions == best["Partitions"])] & (dat_ana.Scheme == best["Scheme"]) & (dat_ana.Partitions == best["Partitions"])]

View File

@ -32,8 +32,11 @@ class ARIMA(fts.FTS):
self.shortname = "ARIMA(" + str(self.p) + "," + str(self.d) + "," + str(self.q) + ")" self.shortname = "ARIMA(" + str(self.p) + "," + str(self.d) + "," + str(self.q) + ")"
old_fit = self.model_fit old_fit = self.model_fit
self.model = stats_arima(data, order=(self.p, self.d, self.q)) try:
self.model_fit = self.model.fit(disp=0) self.model = stats_arima(data, order=(self.p, self.d, self.q))
self.model_fit = self.model.fit(disp=0)
except:
self.model_fit = None
def ar(self, data): def ar(self, data):
return data.dot(self.model_fit.arparams) return data.dot(self.model_fit.arparams)

View File

@ -35,6 +35,7 @@ def run_point(mfts, partitioner, train_data, test_data, window_key=None, transfo
from pyFTS import yu,chen,hofts,ifts,pwfts,ismailefendi,sadaei, song, cheng, hwang from pyFTS import yu,chen,hofts,ifts,pwfts,ismailefendi,sadaei, song, cheng, hwang
from pyFTS.partitioners import Grid, Entropy, FCM from pyFTS.partitioners import Grid, Entropy, FCM
from pyFTS.benchmarks import Measures, naive, arima, quantreg from pyFTS.benchmarks import Measures, naive, arima, quantreg
from pyFTS.common import Transformations
tmp = [song.ConventionalFTS, chen.ConventionalFTS, yu.WeightedFTS, ismailefendi.ImprovedWeightedFTS, tmp = [song.ConventionalFTS, chen.ConventionalFTS, yu.WeightedFTS, ismailefendi.ImprovedWeightedFTS,
cheng.TrendWeightedFTS, sadaei.ExponentialyWeightedFTS, hofts.HighOrderFTS, hwang.HighOrderFTS, cheng.TrendWeightedFTS, sadaei.ExponentialyWeightedFTS, hofts.HighOrderFTS, hwang.HighOrderFTS,
@ -46,6 +47,8 @@ def run_point(mfts, partitioner, train_data, test_data, window_key=None, transfo
tmp3 = [Measures.get_point_statistics] tmp3 = [Measures.get_point_statistics]
tmp5 = [Transformations.Differential]
if mfts.benchmark_only: if mfts.benchmark_only:
_key = mfts.shortname + str(mfts.order if mfts.order is not None else "") _key = mfts.shortname + str(mfts.order if mfts.order is not None else "")
else: else:

View File

@ -16,6 +16,13 @@ def uniquefilename(name):
def showAndSaveImage(fig,file,flag,lgd=None): def showAndSaveImage(fig,file,flag,lgd=None):
"""
Show and image and save on file
:param fig: Matplotlib Figure object
:param file: filename to save the picture
:param flag: if True the image will be saved
:param lgd: legend
"""
if flag: if flag:
plt.show() plt.show()
if lgd is not None: if lgd is not None:
@ -30,7 +37,16 @@ def enumerate2(xs, start=0, step=1):
yield (start, x) yield (start, x)
start += step start += step
def sliding_window(data, windowsize, train=0.8, inc=0.1): def sliding_window(data, windowsize, train=0.8, inc=0.1):
"""
Sliding window method of cross validation for time series
:param data: the entire dataset
:param windowsize: window size
:param train: percentual of the window size will be used for training the models
:param inc: percentual of data used for slide the window
:return: window count, training set, test set
"""
l = len(data) l = len(data)
ttrain = int(round(windowsize * train, 0)) ttrain = int(round(windowsize * train, 0))
ic = int(round(windowsize * inc, 0)) ic = int(round(windowsize * inc, 0))
@ -43,15 +59,30 @@ def sliding_window(data, windowsize, train=0.8, inc=0.1):
def persist_obj(obj, file): def persist_obj(obj, file):
"""
Persist an object on filesystem. This function depends on Dill package
:param obj: object on memory
:param file: file name to store the object
"""
with open(file, 'wb') as _file: with open(file, 'wb') as _file:
dill.dump(obj, _file) dill.dump(obj, _file)
def load_obj(file): def load_obj(file):
"""
Load to memory an object stored filesystem. This function depends on Dill package
:param file: file name where the object is stored
:return: object
"""
with open(file, 'rb') as _file: with open(file, 'rb') as _file:
obj = dill.load(_file) obj = dill.load(_file)
return obj return obj
def persist_env(file): def persist_env(file):
"""
Persist an entire environment on file. This function depends on Dill package
:param file: file name to store the environment
"""
dill.dump_session(file) dill.dump_session(file)
def load_env(file): def load_env(file):

View File

@ -82,6 +82,14 @@ bchmk.point_sliding_window(taiex,2000,train=0.8, #models=[yu.WeightedFTS], # #
dump=True, save=True, file="experiments/taiex_point_analytic.csv", dump=True, save=True, file="experiments/taiex_point_analytic.csv",
nodes=['192.168.0.102', '192.168.0.109', '192.168.0.106']) #, depends=[hofts, ifts]) nodes=['192.168.0.102', '192.168.0.109', '192.168.0.106']) #, depends=[hofts, ifts])
diff = Transformations.Differential(1)
bchmk.point_sliding_window(taiex,2000,train=0.8, #models=[yu.WeightedFTS], # #
partitioners=[Grid.GridPartitioner], #Entropy.EntropyPartitioner], # FCM.FCMPartitioner, ],
partitions= np.arange(10,200,step=10), transformation=diff,
dump=True, save=True, file="experiments/taiex_point_analytic_diff.csv",
nodes=['192.168.0.102', '192.168.0.109', '192.168.0.106']) #, depends=[hofts, ifts])
#bchmk.testa(taiex,[10,20],partitioners=[Grid.GridPartitioner], nodes=['192.168.0.109', '192.168.0.101']) #bchmk.testa(taiex,[10,20],partitioners=[Grid.GridPartitioner], nodes=['192.168.0.109', '192.168.0.101'])
#parallel_util.explore_partitioners(taiex,20) #parallel_util.explore_partitioners(taiex,20)