Merge pull request #37 from felipenv/master
New Transformation functions
This commit is contained in:
commit
52e21f46c5
@ -1,10 +1,9 @@
|
||||
from pyFTS.common.transformations.transformation import Transformation
|
||||
import numpy as np
|
||||
|
||||
|
||||
class MovingAverage(Transformation):
|
||||
def __init__(self, **kwargs):
|
||||
super(MovingAverage, self).__init__()
|
||||
super(MovingAverage, self).__init__(**kwargs)
|
||||
self.name = 'Moving Average Smoothing'
|
||||
self.steps = kwargs.get('steps',2)
|
||||
|
||||
@ -20,8 +19,8 @@ class MovingAverage(Transformation):
|
||||
|
||||
class ExponentialSmoothing(Transformation):
|
||||
def __init__(self, **kwargs):
|
||||
super(MovingAverage, self).__init__()
|
||||
self.name = 'Moving Average Smoothing'
|
||||
super(ExponentialSmoothing,self).__init__(**kwargs)
|
||||
self.name = 'Exponential Moving Average Smoothing'
|
||||
self.steps = kwargs.get('steps',2)
|
||||
self.beta = kwargs.get('beta',.5)
|
||||
|
||||
@ -39,3 +38,53 @@ class ExponentialSmoothing(Transformation):
|
||||
|
||||
def inverse(self, data, param=None, **kwargs):
|
||||
return data
|
||||
|
||||
|
||||
class AveragePooling(Transformation):
|
||||
def __init__(self, **kwargs):
|
||||
super(AveragePooling,self).__init__(**kwargs)
|
||||
self.name = 'Exponential Average Smoothing'
|
||||
self.kernel = kwargs.get('kernel',5)
|
||||
self.stride = kwargs.get('stride',1)
|
||||
self.padding = kwargs.get('padding','same')
|
||||
|
||||
def apply(self, data):
|
||||
result = []
|
||||
if self.padding == 'same':
|
||||
for i in range(int(self.kernel/2), len(data)+int(self.kernel/2), self.stride):
|
||||
result.append(np.mean(data[np.max([0,i-self.kernel]):np.min([i, len(data)])]))
|
||||
|
||||
elif self.padding == 'valid':
|
||||
for i in range(self.kernel, len(data), self.stride):
|
||||
result.append(np.mean(data[i-self.kernel:i]))
|
||||
else:
|
||||
raise ValueError('Invalid padding schema')
|
||||
return result
|
||||
|
||||
def inverse(self, data, param=None, **kwargs):
|
||||
return data
|
||||
|
||||
|
||||
class MaxPooling(Transformation):
|
||||
def __init__(self, **kwargs):
|
||||
super(MaxPooling,self).__init__(**kwargs)
|
||||
self.name = 'Exponential Average Smoothing'
|
||||
self.kernel = kwargs.get('kernel',5)
|
||||
self.stride = kwargs.get('stride',1)
|
||||
self.padding = kwargs.get('padding','same')
|
||||
|
||||
def apply(self, data):
|
||||
result = []
|
||||
if self.padding == 'same':
|
||||
for i in range(int(self.kernel/2), len(data)+int(self.kernel/2), self.stride):
|
||||
result.append(np.max(data[np.max([0,i-self.kernel]):np.min([i, len(data)])]))
|
||||
|
||||
elif self.padding == 'valid':
|
||||
for i in range(self.kernel - 1, len(data), self.stride):
|
||||
result.append(np.max(data[i-self.kernel:i]))
|
||||
else:
|
||||
raise ValueError('Invalid padding schema')
|
||||
return result
|
||||
|
||||
def inverse(self, data, param=None, **kwargs):
|
||||
return data
|
6
setup.py
6
setup.py
@ -5,6 +5,10 @@ import setuptools
|
||||
|
||||
setuptools.setup(
|
||||
name='pyFTS',
|
||||
install_requires=[
|
||||
'matplotlib',
|
||||
'numpy',
|
||||
'pandas'],
|
||||
packages=['pyFTS', 'pyFTS.benchmarks', 'pyFTS.common', 'pyFTS.common.transformations', 'pyFTS.data',
|
||||
'pyFTS.models.ensemble', 'pyFTS.models', 'pyFTS.models.seasonal', 'pyFTS.partitioners',
|
||||
'pyFTS.probabilistic', 'pyFTS.tests', 'pyFTS.models.nonstationary', 'pyFTS.models.multivariate',
|
||||
@ -28,6 +32,6 @@ setuptools.setup(
|
||||
'Intended Audience :: Education',
|
||||
'Topic :: Scientific/Engineering',
|
||||
'Development Status :: 5 - Production/Stable'
|
||||
|
||||
|
||||
]
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user