Bugfixes in benchmarks
This commit is contained in:
parent
52544aca88
commit
4a4e168448
@ -334,6 +334,8 @@ def get_point_statistics(data, model, **kwargs):
|
||||
|
||||
nforecasts = np.array(forecasts[:-1])
|
||||
|
||||
print(model.shortname)
|
||||
|
||||
ret.append(np.round(rmse(ndata[model.max_lag:], nforecasts), 2))
|
||||
ret.append(np.round(mape(ndata[model.max_lag:], nforecasts), 2))
|
||||
ret.append(np.round(UStatistic(ndata[model.max_lag:], nforecasts), 2))
|
||||
|
@ -39,6 +39,7 @@ class ARIMA(fts.FTS):
|
||||
self.d = order[1]
|
||||
self.q = order[2]
|
||||
self.order = self.p + self.q + (self.q - 1 if self.q > 0 else 0)
|
||||
self.max_lag = self.order
|
||||
self.d = len(self.transformations)
|
||||
self.shortname = "ARIMA(" + str(self.p) + "," + str(self.d) + "," + str(self.q) + ") - " + str(self.alpha)
|
||||
|
||||
|
@ -104,6 +104,8 @@ def sliding_window_benchmarks(data, windowsize, train=0.8, **kwargs):
|
||||
:keyword
|
||||
benchmark_methods: a list with Non FTS models to benchmark. The default is None.
|
||||
benchmark_methods_parameters: a list with Non FTS models parameters. The default is None.
|
||||
benchmark_models: A boolean value indicating if external FTS methods will be used on benchmark. The default is False.
|
||||
build_methods: A boolean value indicating if the default FTS methods will be used on benchmark. The default is True.
|
||||
dataset: the dataset name to identify the current set of benchmarks results on database.
|
||||
distributed: A boolean value indicating if the forecasting procedure will be distributed in a dispy cluster. . The default is False
|
||||
file: file path to save the results. The default is benchmarks.db.
|
||||
@ -146,7 +148,7 @@ def sliding_window_benchmarks(data, windowsize, train=0.8, **kwargs):
|
||||
|
||||
pool = [] if models is None else models
|
||||
|
||||
if models is None and methods is None:
|
||||
if methods is None:
|
||||
if type == 'point':
|
||||
methods = get_point_methods()
|
||||
elif type == 'interval':
|
||||
@ -154,7 +156,9 @@ def sliding_window_benchmarks(data, windowsize, train=0.8, **kwargs):
|
||||
elif type == 'distribution':
|
||||
methods = get_probabilistic_methods()
|
||||
|
||||
if models is None:
|
||||
build_methods = __pop("build_methods", True, kwargs)
|
||||
|
||||
if build_methods:
|
||||
for method in methods:
|
||||
mfts = method()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user