step_to parameter in predict function
BIN
docs/build/doctrees/environment.pickle
vendored
BIN
docs/build/doctrees/pyFTS.benchmarks.doctree
vendored
BIN
docs/build/doctrees/pyFTS.common.doctree
vendored
BIN
docs/build/doctrees/pyFTS.models.doctree
vendored
BIN
docs/build/doctrees/pyFTS.models.ensemble.doctree
vendored
BIN
docs/build/doctrees/pyFTS.models.incremental.doctree
vendored
BIN
docs/build/doctrees/pyFTS.models.seasonal.doctree
vendored
BIN
docs/build/doctrees/pyFTS.partitioners.doctree
vendored
BIN
docs/build/html/_static/ajax-loader.gif
vendored
Before Width: | Height: | Size: 673 B |
BIN
docs/build/html/_static/comment-bright.png
vendored
Before Width: | Height: | Size: 756 B |
BIN
docs/build/html/_static/comment-close.png
vendored
Before Width: | Height: | Size: 829 B |
BIN
docs/build/html/_static/comment.png
vendored
Before Width: | Height: | Size: 641 B |
BIN
docs/build/html/_static/down-pressed.png
vendored
Before Width: | Height: | Size: 222 B |
BIN
docs/build/html/_static/down.png
vendored
Before Width: | Height: | Size: 202 B |
10253
docs/build/html/_static/jquery-3.2.1.js
vendored
BIN
docs/build/html/_static/up-pressed.png
vendored
Before Width: | Height: | Size: 214 B |
BIN
docs/build/html/_static/up.png
vendored
Before Width: | Height: | Size: 203 B |
808
docs/build/html/_static/websupport.js
vendored
@ -1,808 +0,0 @@
|
|||||||
/*
|
|
||||||
* websupport.js
|
|
||||||
* ~~~~~~~~~~~~~
|
|
||||||
*
|
|
||||||
* sphinx.websupport utilities for all documentation.
|
|
||||||
*
|
|
||||||
* :copyright: Copyright 2007-2018 by the Sphinx team, see AUTHORS.
|
|
||||||
* :license: BSD, see LICENSE for details.
|
|
||||||
*
|
|
||||||
*/
|
|
||||||
|
|
||||||
(function($) {
|
|
||||||
$.fn.autogrow = function() {
|
|
||||||
return this.each(function() {
|
|
||||||
var textarea = this;
|
|
||||||
|
|
||||||
$.fn.autogrow.resize(textarea);
|
|
||||||
|
|
||||||
$(textarea)
|
|
||||||
.focus(function() {
|
|
||||||
textarea.interval = setInterval(function() {
|
|
||||||
$.fn.autogrow.resize(textarea);
|
|
||||||
}, 500);
|
|
||||||
})
|
|
||||||
.blur(function() {
|
|
||||||
clearInterval(textarea.interval);
|
|
||||||
});
|
|
||||||
});
|
|
||||||
};
|
|
||||||
|
|
||||||
$.fn.autogrow.resize = function(textarea) {
|
|
||||||
var lineHeight = parseInt($(textarea).css('line-height'), 10);
|
|
||||||
var lines = textarea.value.split('\n');
|
|
||||||
var columns = textarea.cols;
|
|
||||||
var lineCount = 0;
|
|
||||||
$.each(lines, function() {
|
|
||||||
lineCount += Math.ceil(this.length / columns) || 1;
|
|
||||||
});
|
|
||||||
var height = lineHeight * (lineCount + 1);
|
|
||||||
$(textarea).css('height', height);
|
|
||||||
};
|
|
||||||
})(jQuery);
|
|
||||||
|
|
||||||
(function($) {
|
|
||||||
var comp, by;
|
|
||||||
|
|
||||||
function init() {
|
|
||||||
initEvents();
|
|
||||||
initComparator();
|
|
||||||
}
|
|
||||||
|
|
||||||
function initEvents() {
|
|
||||||
$(document).on("click", 'a.comment-close', function(event) {
|
|
||||||
event.preventDefault();
|
|
||||||
hide($(this).attr('id').substring(2));
|
|
||||||
});
|
|
||||||
$(document).on("click", 'a.vote', function(event) {
|
|
||||||
event.preventDefault();
|
|
||||||
handleVote($(this));
|
|
||||||
});
|
|
||||||
$(document).on("click", 'a.reply', function(event) {
|
|
||||||
event.preventDefault();
|
|
||||||
openReply($(this).attr('id').substring(2));
|
|
||||||
});
|
|
||||||
$(document).on("click", 'a.close-reply', function(event) {
|
|
||||||
event.preventDefault();
|
|
||||||
closeReply($(this).attr('id').substring(2));
|
|
||||||
});
|
|
||||||
$(document).on("click", 'a.sort-option', function(event) {
|
|
||||||
event.preventDefault();
|
|
||||||
handleReSort($(this));
|
|
||||||
});
|
|
||||||
$(document).on("click", 'a.show-proposal', function(event) {
|
|
||||||
event.preventDefault();
|
|
||||||
showProposal($(this).attr('id').substring(2));
|
|
||||||
});
|
|
||||||
$(document).on("click", 'a.hide-proposal', function(event) {
|
|
||||||
event.preventDefault();
|
|
||||||
hideProposal($(this).attr('id').substring(2));
|
|
||||||
});
|
|
||||||
$(document).on("click", 'a.show-propose-change', function(event) {
|
|
||||||
event.preventDefault();
|
|
||||||
showProposeChange($(this).attr('id').substring(2));
|
|
||||||
});
|
|
||||||
$(document).on("click", 'a.hide-propose-change', function(event) {
|
|
||||||
event.preventDefault();
|
|
||||||
hideProposeChange($(this).attr('id').substring(2));
|
|
||||||
});
|
|
||||||
$(document).on("click", 'a.accept-comment', function(event) {
|
|
||||||
event.preventDefault();
|
|
||||||
acceptComment($(this).attr('id').substring(2));
|
|
||||||
});
|
|
||||||
$(document).on("click", 'a.delete-comment', function(event) {
|
|
||||||
event.preventDefault();
|
|
||||||
deleteComment($(this).attr('id').substring(2));
|
|
||||||
});
|
|
||||||
$(document).on("click", 'a.comment-markup', function(event) {
|
|
||||||
event.preventDefault();
|
|
||||||
toggleCommentMarkupBox($(this).attr('id').substring(2));
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Set comp, which is a comparator function used for sorting and
|
|
||||||
* inserting comments into the list.
|
|
||||||
*/
|
|
||||||
function setComparator() {
|
|
||||||
// If the first three letters are "asc", sort in ascending order
|
|
||||||
// and remove the prefix.
|
|
||||||
if (by.substring(0,3) == 'asc') {
|
|
||||||
var i = by.substring(3);
|
|
||||||
comp = function(a, b) { return a[i] - b[i]; };
|
|
||||||
} else {
|
|
||||||
// Otherwise sort in descending order.
|
|
||||||
comp = function(a, b) { return b[by] - a[by]; };
|
|
||||||
}
|
|
||||||
|
|
||||||
// Reset link styles and format the selected sort option.
|
|
||||||
$('a.sel').attr('href', '#').removeClass('sel');
|
|
||||||
$('a.by' + by).removeAttr('href').addClass('sel');
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Create a comp function. If the user has preferences stored in
|
|
||||||
* the sortBy cookie, use those, otherwise use the default.
|
|
||||||
*/
|
|
||||||
function initComparator() {
|
|
||||||
by = 'rating'; // Default to sort by rating.
|
|
||||||
// If the sortBy cookie is set, use that instead.
|
|
||||||
if (document.cookie.length > 0) {
|
|
||||||
var start = document.cookie.indexOf('sortBy=');
|
|
||||||
if (start != -1) {
|
|
||||||
start = start + 7;
|
|
||||||
var end = document.cookie.indexOf(";", start);
|
|
||||||
if (end == -1) {
|
|
||||||
end = document.cookie.length;
|
|
||||||
by = unescape(document.cookie.substring(start, end));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
setComparator();
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Show a comment div.
|
|
||||||
*/
|
|
||||||
function show(id) {
|
|
||||||
$('#ao' + id).hide();
|
|
||||||
$('#ah' + id).show();
|
|
||||||
var context = $.extend({id: id}, opts);
|
|
||||||
var popup = $(renderTemplate(popupTemplate, context)).hide();
|
|
||||||
popup.find('textarea[name="proposal"]').hide();
|
|
||||||
popup.find('a.by' + by).addClass('sel');
|
|
||||||
var form = popup.find('#cf' + id);
|
|
||||||
form.submit(function(event) {
|
|
||||||
event.preventDefault();
|
|
||||||
addComment(form);
|
|
||||||
});
|
|
||||||
$('#s' + id).after(popup);
|
|
||||||
popup.slideDown('fast', function() {
|
|
||||||
getComments(id);
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Hide a comment div.
|
|
||||||
*/
|
|
||||||
function hide(id) {
|
|
||||||
$('#ah' + id).hide();
|
|
||||||
$('#ao' + id).show();
|
|
||||||
var div = $('#sc' + id);
|
|
||||||
div.slideUp('fast', function() {
|
|
||||||
div.remove();
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Perform an ajax request to get comments for a node
|
|
||||||
* and insert the comments into the comments tree.
|
|
||||||
*/
|
|
||||||
function getComments(id) {
|
|
||||||
$.ajax({
|
|
||||||
type: 'GET',
|
|
||||||
url: opts.getCommentsURL,
|
|
||||||
data: {node: id},
|
|
||||||
success: function(data, textStatus, request) {
|
|
||||||
var ul = $('#cl' + id);
|
|
||||||
var speed = 100;
|
|
||||||
$('#cf' + id)
|
|
||||||
.find('textarea[name="proposal"]')
|
|
||||||
.data('source', data.source);
|
|
||||||
|
|
||||||
if (data.comments.length === 0) {
|
|
||||||
ul.html('<li>No comments yet.</li>');
|
|
||||||
ul.data('empty', true);
|
|
||||||
} else {
|
|
||||||
// If there are comments, sort them and put them in the list.
|
|
||||||
var comments = sortComments(data.comments);
|
|
||||||
speed = data.comments.length * 100;
|
|
||||||
appendComments(comments, ul);
|
|
||||||
ul.data('empty', false);
|
|
||||||
}
|
|
||||||
$('#cn' + id).slideUp(speed + 200);
|
|
||||||
ul.slideDown(speed);
|
|
||||||
},
|
|
||||||
error: function(request, textStatus, error) {
|
|
||||||
showError('Oops, there was a problem retrieving the comments.');
|
|
||||||
},
|
|
||||||
dataType: 'json'
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Add a comment via ajax and insert the comment into the comment tree.
|
|
||||||
*/
|
|
||||||
function addComment(form) {
|
|
||||||
var node_id = form.find('input[name="node"]').val();
|
|
||||||
var parent_id = form.find('input[name="parent"]').val();
|
|
||||||
var text = form.find('textarea[name="comment"]').val();
|
|
||||||
var proposal = form.find('textarea[name="proposal"]').val();
|
|
||||||
|
|
||||||
if (text == '') {
|
|
||||||
showError('Please enter a comment.');
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Disable the form that is being submitted.
|
|
||||||
form.find('textarea,input').attr('disabled', 'disabled');
|
|
||||||
|
|
||||||
// Send the comment to the server.
|
|
||||||
$.ajax({
|
|
||||||
type: "POST",
|
|
||||||
url: opts.addCommentURL,
|
|
||||||
dataType: 'json',
|
|
||||||
data: {
|
|
||||||
node: node_id,
|
|
||||||
parent: parent_id,
|
|
||||||
text: text,
|
|
||||||
proposal: proposal
|
|
||||||
},
|
|
||||||
success: function(data, textStatus, error) {
|
|
||||||
// Reset the form.
|
|
||||||
if (node_id) {
|
|
||||||
hideProposeChange(node_id);
|
|
||||||
}
|
|
||||||
form.find('textarea')
|
|
||||||
.val('')
|
|
||||||
.add(form.find('input'))
|
|
||||||
.removeAttr('disabled');
|
|
||||||
var ul = $('#cl' + (node_id || parent_id));
|
|
||||||
if (ul.data('empty')) {
|
|
||||||
$(ul).empty();
|
|
||||||
ul.data('empty', false);
|
|
||||||
}
|
|
||||||
insertComment(data.comment);
|
|
||||||
var ao = $('#ao' + node_id);
|
|
||||||
ao.find('img').attr({'src': opts.commentBrightImage});
|
|
||||||
if (node_id) {
|
|
||||||
// if this was a "root" comment, remove the commenting box
|
|
||||||
// (the user can get it back by reopening the comment popup)
|
|
||||||
$('#ca' + node_id).slideUp();
|
|
||||||
}
|
|
||||||
},
|
|
||||||
error: function(request, textStatus, error) {
|
|
||||||
form.find('textarea,input').removeAttr('disabled');
|
|
||||||
showError('Oops, there was a problem adding the comment.');
|
|
||||||
}
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Recursively append comments to the main comment list and children
|
|
||||||
* lists, creating the comment tree.
|
|
||||||
*/
|
|
||||||
function appendComments(comments, ul) {
|
|
||||||
$.each(comments, function() {
|
|
||||||
var div = createCommentDiv(this);
|
|
||||||
ul.append($(document.createElement('li')).html(div));
|
|
||||||
appendComments(this.children, div.find('ul.comment-children'));
|
|
||||||
// To avoid stagnating data, don't store the comments children in data.
|
|
||||||
this.children = null;
|
|
||||||
div.data('comment', this);
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* After adding a new comment, it must be inserted in the correct
|
|
||||||
* location in the comment tree.
|
|
||||||
*/
|
|
||||||
function insertComment(comment) {
|
|
||||||
var div = createCommentDiv(comment);
|
|
||||||
|
|
||||||
// To avoid stagnating data, don't store the comments children in data.
|
|
||||||
comment.children = null;
|
|
||||||
div.data('comment', comment);
|
|
||||||
|
|
||||||
var ul = $('#cl' + (comment.node || comment.parent));
|
|
||||||
var siblings = getChildren(ul);
|
|
||||||
|
|
||||||
var li = $(document.createElement('li'));
|
|
||||||
li.hide();
|
|
||||||
|
|
||||||
// Determine where in the parents children list to insert this comment.
|
|
||||||
for(var i=0; i < siblings.length; i++) {
|
|
||||||
if (comp(comment, siblings[i]) <= 0) {
|
|
||||||
$('#cd' + siblings[i].id)
|
|
||||||
.parent()
|
|
||||||
.before(li.html(div));
|
|
||||||
li.slideDown('fast');
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// If we get here, this comment rates lower than all the others,
|
|
||||||
// or it is the only comment in the list.
|
|
||||||
ul.append(li.html(div));
|
|
||||||
li.slideDown('fast');
|
|
||||||
}
|
|
||||||
|
|
||||||
function acceptComment(id) {
|
|
||||||
$.ajax({
|
|
||||||
type: 'POST',
|
|
||||||
url: opts.acceptCommentURL,
|
|
||||||
data: {id: id},
|
|
||||||
success: function(data, textStatus, request) {
|
|
||||||
$('#cm' + id).fadeOut('fast');
|
|
||||||
$('#cd' + id).removeClass('moderate');
|
|
||||||
},
|
|
||||||
error: function(request, textStatus, error) {
|
|
||||||
showError('Oops, there was a problem accepting the comment.');
|
|
||||||
}
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
function deleteComment(id) {
|
|
||||||
$.ajax({
|
|
||||||
type: 'POST',
|
|
||||||
url: opts.deleteCommentURL,
|
|
||||||
data: {id: id},
|
|
||||||
success: function(data, textStatus, request) {
|
|
||||||
var div = $('#cd' + id);
|
|
||||||
if (data == 'delete') {
|
|
||||||
// Moderator mode: remove the comment and all children immediately
|
|
||||||
div.slideUp('fast', function() {
|
|
||||||
div.remove();
|
|
||||||
});
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
// User mode: only mark the comment as deleted
|
|
||||||
div
|
|
||||||
.find('span.user-id:first')
|
|
||||||
.text('[deleted]').end()
|
|
||||||
.find('div.comment-text:first')
|
|
||||||
.text('[deleted]').end()
|
|
||||||
.find('#cm' + id + ', #dc' + id + ', #ac' + id + ', #rc' + id +
|
|
||||||
', #sp' + id + ', #hp' + id + ', #cr' + id + ', #rl' + id)
|
|
||||||
.remove();
|
|
||||||
var comment = div.data('comment');
|
|
||||||
comment.username = '[deleted]';
|
|
||||||
comment.text = '[deleted]';
|
|
||||||
div.data('comment', comment);
|
|
||||||
},
|
|
||||||
error: function(request, textStatus, error) {
|
|
||||||
showError('Oops, there was a problem deleting the comment.');
|
|
||||||
}
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
function showProposal(id) {
|
|
||||||
$('#sp' + id).hide();
|
|
||||||
$('#hp' + id).show();
|
|
||||||
$('#pr' + id).slideDown('fast');
|
|
||||||
}
|
|
||||||
|
|
||||||
function hideProposal(id) {
|
|
||||||
$('#hp' + id).hide();
|
|
||||||
$('#sp' + id).show();
|
|
||||||
$('#pr' + id).slideUp('fast');
|
|
||||||
}
|
|
||||||
|
|
||||||
function showProposeChange(id) {
|
|
||||||
$('#pc' + id).hide();
|
|
||||||
$('#hc' + id).show();
|
|
||||||
var textarea = $('#pt' + id);
|
|
||||||
textarea.val(textarea.data('source'));
|
|
||||||
$.fn.autogrow.resize(textarea[0]);
|
|
||||||
textarea.slideDown('fast');
|
|
||||||
}
|
|
||||||
|
|
||||||
function hideProposeChange(id) {
|
|
||||||
$('#hc' + id).hide();
|
|
||||||
$('#pc' + id).show();
|
|
||||||
var textarea = $('#pt' + id);
|
|
||||||
textarea.val('').removeAttr('disabled');
|
|
||||||
textarea.slideUp('fast');
|
|
||||||
}
|
|
||||||
|
|
||||||
function toggleCommentMarkupBox(id) {
|
|
||||||
$('#mb' + id).toggle();
|
|
||||||
}
|
|
||||||
|
|
||||||
/** Handle when the user clicks on a sort by link. */
|
|
||||||
function handleReSort(link) {
|
|
||||||
var classes = link.attr('class').split(/\s+/);
|
|
||||||
for (var i=0; i<classes.length; i++) {
|
|
||||||
if (classes[i] != 'sort-option') {
|
|
||||||
by = classes[i].substring(2);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
setComparator();
|
|
||||||
// Save/update the sortBy cookie.
|
|
||||||
var expiration = new Date();
|
|
||||||
expiration.setDate(expiration.getDate() + 365);
|
|
||||||
document.cookie= 'sortBy=' + escape(by) +
|
|
||||||
';expires=' + expiration.toUTCString();
|
|
||||||
$('ul.comment-ul').each(function(index, ul) {
|
|
||||||
var comments = getChildren($(ul), true);
|
|
||||||
comments = sortComments(comments);
|
|
||||||
appendComments(comments, $(ul).empty());
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Function to process a vote when a user clicks an arrow.
|
|
||||||
*/
|
|
||||||
function handleVote(link) {
|
|
||||||
if (!opts.voting) {
|
|
||||||
showError("You'll need to login to vote.");
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
var id = link.attr('id');
|
|
||||||
if (!id) {
|
|
||||||
// Didn't click on one of the voting arrows.
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
// If it is an unvote, the new vote value is 0,
|
|
||||||
// Otherwise it's 1 for an upvote, or -1 for a downvote.
|
|
||||||
var value = 0;
|
|
||||||
if (id.charAt(1) != 'u') {
|
|
||||||
value = id.charAt(0) == 'u' ? 1 : -1;
|
|
||||||
}
|
|
||||||
// The data to be sent to the server.
|
|
||||||
var d = {
|
|
||||||
comment_id: id.substring(2),
|
|
||||||
value: value
|
|
||||||
};
|
|
||||||
|
|
||||||
// Swap the vote and unvote links.
|
|
||||||
link.hide();
|
|
||||||
$('#' + id.charAt(0) + (id.charAt(1) == 'u' ? 'v' : 'u') + d.comment_id)
|
|
||||||
.show();
|
|
||||||
|
|
||||||
// The div the comment is displayed in.
|
|
||||||
var div = $('div#cd' + d.comment_id);
|
|
||||||
var data = div.data('comment');
|
|
||||||
|
|
||||||
// If this is not an unvote, and the other vote arrow has
|
|
||||||
// already been pressed, unpress it.
|
|
||||||
if ((d.value !== 0) && (data.vote === d.value * -1)) {
|
|
||||||
$('#' + (d.value == 1 ? 'd' : 'u') + 'u' + d.comment_id).hide();
|
|
||||||
$('#' + (d.value == 1 ? 'd' : 'u') + 'v' + d.comment_id).show();
|
|
||||||
}
|
|
||||||
|
|
||||||
// Update the comments rating in the local data.
|
|
||||||
data.rating += (data.vote === 0) ? d.value : (d.value - data.vote);
|
|
||||||
data.vote = d.value;
|
|
||||||
div.data('comment', data);
|
|
||||||
|
|
||||||
// Change the rating text.
|
|
||||||
div.find('.rating:first')
|
|
||||||
.text(data.rating + ' point' + (data.rating == 1 ? '' : 's'));
|
|
||||||
|
|
||||||
// Send the vote information to the server.
|
|
||||||
$.ajax({
|
|
||||||
type: "POST",
|
|
||||||
url: opts.processVoteURL,
|
|
||||||
data: d,
|
|
||||||
error: function(request, textStatus, error) {
|
|
||||||
showError('Oops, there was a problem casting that vote.');
|
|
||||||
}
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Open a reply form used to reply to an existing comment.
|
|
||||||
*/
|
|
||||||
function openReply(id) {
|
|
||||||
// Swap out the reply link for the hide link
|
|
||||||
$('#rl' + id).hide();
|
|
||||||
$('#cr' + id).show();
|
|
||||||
|
|
||||||
// Add the reply li to the children ul.
|
|
||||||
var div = $(renderTemplate(replyTemplate, {id: id})).hide();
|
|
||||||
$('#cl' + id)
|
|
||||||
.prepend(div)
|
|
||||||
// Setup the submit handler for the reply form.
|
|
||||||
.find('#rf' + id)
|
|
||||||
.submit(function(event) {
|
|
||||||
event.preventDefault();
|
|
||||||
addComment($('#rf' + id));
|
|
||||||
closeReply(id);
|
|
||||||
})
|
|
||||||
.find('input[type=button]')
|
|
||||||
.click(function() {
|
|
||||||
closeReply(id);
|
|
||||||
});
|
|
||||||
div.slideDown('fast', function() {
|
|
||||||
$('#rf' + id).find('textarea').focus();
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Close the reply form opened with openReply.
|
|
||||||
*/
|
|
||||||
function closeReply(id) {
|
|
||||||
// Remove the reply div from the DOM.
|
|
||||||
$('#rd' + id).slideUp('fast', function() {
|
|
||||||
$(this).remove();
|
|
||||||
});
|
|
||||||
|
|
||||||
// Swap out the hide link for the reply link
|
|
||||||
$('#cr' + id).hide();
|
|
||||||
$('#rl' + id).show();
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Recursively sort a tree of comments using the comp comparator.
|
|
||||||
*/
|
|
||||||
function sortComments(comments) {
|
|
||||||
comments.sort(comp);
|
|
||||||
$.each(comments, function() {
|
|
||||||
this.children = sortComments(this.children);
|
|
||||||
});
|
|
||||||
return comments;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Get the children comments from a ul. If recursive is true,
|
|
||||||
* recursively include childrens' children.
|
|
||||||
*/
|
|
||||||
function getChildren(ul, recursive) {
|
|
||||||
var children = [];
|
|
||||||
ul.children().children("[id^='cd']")
|
|
||||||
.each(function() {
|
|
||||||
var comment = $(this).data('comment');
|
|
||||||
if (recursive)
|
|
||||||
comment.children = getChildren($(this).find('#cl' + comment.id), true);
|
|
||||||
children.push(comment);
|
|
||||||
});
|
|
||||||
return children;
|
|
||||||
}
|
|
||||||
|
|
||||||
/** Create a div to display a comment in. */
|
|
||||||
function createCommentDiv(comment) {
|
|
||||||
if (!comment.displayed && !opts.moderator) {
|
|
||||||
return $('<div class="moderate">Thank you! Your comment will show up '
|
|
||||||
+ 'once it is has been approved by a moderator.</div>');
|
|
||||||
}
|
|
||||||
// Prettify the comment rating.
|
|
||||||
comment.pretty_rating = comment.rating + ' point' +
|
|
||||||
(comment.rating == 1 ? '' : 's');
|
|
||||||
// Make a class (for displaying not yet moderated comments differently)
|
|
||||||
comment.css_class = comment.displayed ? '' : ' moderate';
|
|
||||||
// Create a div for this comment.
|
|
||||||
var context = $.extend({}, opts, comment);
|
|
||||||
var div = $(renderTemplate(commentTemplate, context));
|
|
||||||
|
|
||||||
// If the user has voted on this comment, highlight the correct arrow.
|
|
||||||
if (comment.vote) {
|
|
||||||
var direction = (comment.vote == 1) ? 'u' : 'd';
|
|
||||||
div.find('#' + direction + 'v' + comment.id).hide();
|
|
||||||
div.find('#' + direction + 'u' + comment.id).show();
|
|
||||||
}
|
|
||||||
|
|
||||||
if (opts.moderator || comment.text != '[deleted]') {
|
|
||||||
div.find('a.reply').show();
|
|
||||||
if (comment.proposal_diff)
|
|
||||||
div.find('#sp' + comment.id).show();
|
|
||||||
if (opts.moderator && !comment.displayed)
|
|
||||||
div.find('#cm' + comment.id).show();
|
|
||||||
if (opts.moderator || (opts.username == comment.username))
|
|
||||||
div.find('#dc' + comment.id).show();
|
|
||||||
}
|
|
||||||
return div;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* A simple template renderer. Placeholders such as <%id%> are replaced
|
|
||||||
* by context['id'] with items being escaped. Placeholders such as <#id#>
|
|
||||||
* are not escaped.
|
|
||||||
*/
|
|
||||||
function renderTemplate(template, context) {
|
|
||||||
var esc = $(document.createElement('div'));
|
|
||||||
|
|
||||||
function handle(ph, escape) {
|
|
||||||
var cur = context;
|
|
||||||
$.each(ph.split('.'), function() {
|
|
||||||
cur = cur[this];
|
|
||||||
});
|
|
||||||
return escape ? esc.text(cur || "").html() : cur;
|
|
||||||
}
|
|
||||||
|
|
||||||
return template.replace(/<([%#])([\w\.]*)\1>/g, function() {
|
|
||||||
return handle(arguments[2], arguments[1] == '%' ? true : false);
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
/** Flash an error message briefly. */
|
|
||||||
function showError(message) {
|
|
||||||
$(document.createElement('div')).attr({'class': 'popup-error'})
|
|
||||||
.append($(document.createElement('div'))
|
|
||||||
.attr({'class': 'error-message'}).text(message))
|
|
||||||
.appendTo('body')
|
|
||||||
.fadeIn("slow")
|
|
||||||
.delay(2000)
|
|
||||||
.fadeOut("slow");
|
|
||||||
}
|
|
||||||
|
|
||||||
/** Add a link the user uses to open the comments popup. */
|
|
||||||
$.fn.comment = function() {
|
|
||||||
return this.each(function() {
|
|
||||||
var id = $(this).attr('id').substring(1);
|
|
||||||
var count = COMMENT_METADATA[id];
|
|
||||||
var title = count + ' comment' + (count == 1 ? '' : 's');
|
|
||||||
var image = count > 0 ? opts.commentBrightImage : opts.commentImage;
|
|
||||||
var addcls = count == 0 ? ' nocomment' : '';
|
|
||||||
$(this)
|
|
||||||
.append(
|
|
||||||
$(document.createElement('a')).attr({
|
|
||||||
href: '#',
|
|
||||||
'class': 'sphinx-comment-open' + addcls,
|
|
||||||
id: 'ao' + id
|
|
||||||
})
|
|
||||||
.append($(document.createElement('img')).attr({
|
|
||||||
src: image,
|
|
||||||
alt: 'comment',
|
|
||||||
title: title
|
|
||||||
}))
|
|
||||||
.click(function(event) {
|
|
||||||
event.preventDefault();
|
|
||||||
show($(this).attr('id').substring(2));
|
|
||||||
})
|
|
||||||
)
|
|
||||||
.append(
|
|
||||||
$(document.createElement('a')).attr({
|
|
||||||
href: '#',
|
|
||||||
'class': 'sphinx-comment-close hidden',
|
|
||||||
id: 'ah' + id
|
|
||||||
})
|
|
||||||
.append($(document.createElement('img')).attr({
|
|
||||||
src: opts.closeCommentImage,
|
|
||||||
alt: 'close',
|
|
||||||
title: 'close'
|
|
||||||
}))
|
|
||||||
.click(function(event) {
|
|
||||||
event.preventDefault();
|
|
||||||
hide($(this).attr('id').substring(2));
|
|
||||||
})
|
|
||||||
);
|
|
||||||
});
|
|
||||||
};
|
|
||||||
|
|
||||||
var opts = {
|
|
||||||
processVoteURL: '/_process_vote',
|
|
||||||
addCommentURL: '/_add_comment',
|
|
||||||
getCommentsURL: '/_get_comments',
|
|
||||||
acceptCommentURL: '/_accept_comment',
|
|
||||||
deleteCommentURL: '/_delete_comment',
|
|
||||||
commentImage: '/static/_static/comment.png',
|
|
||||||
closeCommentImage: '/static/_static/comment-close.png',
|
|
||||||
loadingImage: '/static/_static/ajax-loader.gif',
|
|
||||||
commentBrightImage: '/static/_static/comment-bright.png',
|
|
||||||
upArrow: '/static/_static/up.png',
|
|
||||||
downArrow: '/static/_static/down.png',
|
|
||||||
upArrowPressed: '/static/_static/up-pressed.png',
|
|
||||||
downArrowPressed: '/static/_static/down-pressed.png',
|
|
||||||
voting: false,
|
|
||||||
moderator: false
|
|
||||||
};
|
|
||||||
|
|
||||||
if (typeof COMMENT_OPTIONS != "undefined") {
|
|
||||||
opts = jQuery.extend(opts, COMMENT_OPTIONS);
|
|
||||||
}
|
|
||||||
|
|
||||||
var popupTemplate = '\
|
|
||||||
<div class="sphinx-comments" id="sc<%id%>">\
|
|
||||||
<p class="sort-options">\
|
|
||||||
Sort by:\
|
|
||||||
<a href="#" class="sort-option byrating">best rated</a>\
|
|
||||||
<a href="#" class="sort-option byascage">newest</a>\
|
|
||||||
<a href="#" class="sort-option byage">oldest</a>\
|
|
||||||
</p>\
|
|
||||||
<div class="comment-header">Comments</div>\
|
|
||||||
<div class="comment-loading" id="cn<%id%>">\
|
|
||||||
loading comments... <img src="<%loadingImage%>" alt="" /></div>\
|
|
||||||
<ul id="cl<%id%>" class="comment-ul"></ul>\
|
|
||||||
<div id="ca<%id%>">\
|
|
||||||
<p class="add-a-comment">Add a comment\
|
|
||||||
(<a href="#" class="comment-markup" id="ab<%id%>">markup</a>):</p>\
|
|
||||||
<div class="comment-markup-box" id="mb<%id%>">\
|
|
||||||
reStructured text markup: <i>*emph*</i>, <b>**strong**</b>, \
|
|
||||||
<code>``code``</code>, \
|
|
||||||
code blocks: <code>::</code> and an indented block after blank line</div>\
|
|
||||||
<form method="post" id="cf<%id%>" class="comment-form" action="">\
|
|
||||||
<textarea name="comment" cols="80"></textarea>\
|
|
||||||
<p class="propose-button">\
|
|
||||||
<a href="#" id="pc<%id%>" class="show-propose-change">\
|
|
||||||
Propose a change ▹\
|
|
||||||
</a>\
|
|
||||||
<a href="#" id="hc<%id%>" class="hide-propose-change">\
|
|
||||||
Propose a change ▿\
|
|
||||||
</a>\
|
|
||||||
</p>\
|
|
||||||
<textarea name="proposal" id="pt<%id%>" cols="80"\
|
|
||||||
spellcheck="false"></textarea>\
|
|
||||||
<input type="submit" value="Add comment" />\
|
|
||||||
<input type="hidden" name="node" value="<%id%>" />\
|
|
||||||
<input type="hidden" name="parent" value="" />\
|
|
||||||
</form>\
|
|
||||||
</div>\
|
|
||||||
</div>';
|
|
||||||
|
|
||||||
var commentTemplate = '\
|
|
||||||
<div id="cd<%id%>" class="sphinx-comment<%css_class%>">\
|
|
||||||
<div class="vote">\
|
|
||||||
<div class="arrow">\
|
|
||||||
<a href="#" id="uv<%id%>" class="vote" title="vote up">\
|
|
||||||
<img src="<%upArrow%>" />\
|
|
||||||
</a>\
|
|
||||||
<a href="#" id="uu<%id%>" class="un vote" title="vote up">\
|
|
||||||
<img src="<%upArrowPressed%>" />\
|
|
||||||
</a>\
|
|
||||||
</div>\
|
|
||||||
<div class="arrow">\
|
|
||||||
<a href="#" id="dv<%id%>" class="vote" title="vote down">\
|
|
||||||
<img src="<%downArrow%>" id="da<%id%>" />\
|
|
||||||
</a>\
|
|
||||||
<a href="#" id="du<%id%>" class="un vote" title="vote down">\
|
|
||||||
<img src="<%downArrowPressed%>" />\
|
|
||||||
</a>\
|
|
||||||
</div>\
|
|
||||||
</div>\
|
|
||||||
<div class="comment-content">\
|
|
||||||
<p class="tagline comment">\
|
|
||||||
<span class="user-id"><%username%></span>\
|
|
||||||
<span class="rating"><%pretty_rating%></span>\
|
|
||||||
<span class="delta"><%time.delta%></span>\
|
|
||||||
</p>\
|
|
||||||
<div class="comment-text comment"><#text#></div>\
|
|
||||||
<p class="comment-opts comment">\
|
|
||||||
<a href="#" class="reply hidden" id="rl<%id%>">reply ▹</a>\
|
|
||||||
<a href="#" class="close-reply" id="cr<%id%>">reply ▿</a>\
|
|
||||||
<a href="#" id="sp<%id%>" class="show-proposal">proposal ▹</a>\
|
|
||||||
<a href="#" id="hp<%id%>" class="hide-proposal">proposal ▿</a>\
|
|
||||||
<a href="#" id="dc<%id%>" class="delete-comment hidden">delete</a>\
|
|
||||||
<span id="cm<%id%>" class="moderation hidden">\
|
|
||||||
<a href="#" id="ac<%id%>" class="accept-comment">accept</a>\
|
|
||||||
</span>\
|
|
||||||
</p>\
|
|
||||||
<pre class="proposal" id="pr<%id%>">\
|
|
||||||
<#proposal_diff#>\
|
|
||||||
</pre>\
|
|
||||||
<ul class="comment-children" id="cl<%id%>"></ul>\
|
|
||||||
</div>\
|
|
||||||
<div class="clearleft"></div>\
|
|
||||||
</div>\
|
|
||||||
</div>';
|
|
||||||
|
|
||||||
var replyTemplate = '\
|
|
||||||
<li>\
|
|
||||||
<div class="reply-div" id="rd<%id%>">\
|
|
||||||
<form id="rf<%id%>">\
|
|
||||||
<textarea name="comment" cols="80"></textarea>\
|
|
||||||
<input type="submit" value="Add reply" />\
|
|
||||||
<input type="button" value="Cancel" />\
|
|
||||||
<input type="hidden" name="parent" value="<%id%>" />\
|
|
||||||
<input type="hidden" name="node" value="" />\
|
|
||||||
</form>\
|
|
||||||
</div>\
|
|
||||||
</li>';
|
|
||||||
|
|
||||||
$(document).ready(function() {
|
|
||||||
init();
|
|
||||||
});
|
|
||||||
})(jQuery);
|
|
||||||
|
|
||||||
$(document).ready(function() {
|
|
||||||
// add comment anchors for all paragraphs that are commentable
|
|
||||||
$('.sphinx-has-comment').comment();
|
|
||||||
|
|
||||||
// highlight search words in search results
|
|
||||||
$("div.context").each(function() {
|
|
||||||
var params = $.getQueryParameters();
|
|
||||||
var terms = (params.q) ? params.q[0].split(/\s+/) : [];
|
|
||||||
var result = $(this);
|
|
||||||
$.each(terms, function() {
|
|
||||||
result.highlightText(this.toLowerCase(), 'highlighted');
|
|
||||||
});
|
|
||||||
});
|
|
||||||
|
|
||||||
// directly open comment window if requested
|
|
||||||
var anchor = document.location.hash;
|
|
||||||
if (anchor.substring(0, 9) == '#comment-') {
|
|
||||||
$('#ao' + anchor.substring(9)).click();
|
|
||||||
document.location.hash = '#s' + anchor.substring(9);
|
|
||||||
}
|
|
||||||
});
|
|
4
docs/build/html/genindex.html
vendored
@ -772,6 +772,8 @@
|
|||||||
<li><a href="pyFTS.models.multivariate.html#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_multivariate">(pyFTS.models.multivariate.cmvfts.ClusteredMVFTS method)</a>
|
<li><a href="pyFTS.models.multivariate.html#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_multivariate">(pyFTS.models.multivariate.cmvfts.ClusteredMVFTS method)</a>
|
||||||
</li>
|
</li>
|
||||||
</ul></li>
|
</ul></li>
|
||||||
|
<li><a href="pyFTS.common.html#pyFTS.common.fts.FTS.forecast_step">forecast_step() (pyFTS.common.fts.FTS method)</a>
|
||||||
|
</li>
|
||||||
<li><a href="pyFTS.models.multivariate.html#pyFTS.models.multivariate.mvfts.MVFTS.format_data">format_data() (pyFTS.models.multivariate.mvfts.MVFTS method)</a>
|
<li><a href="pyFTS.models.multivariate.html#pyFTS.models.multivariate.mvfts.MVFTS.format_data">format_data() (pyFTS.models.multivariate.mvfts.MVFTS method)</a>
|
||||||
|
|
||||||
<ul>
|
<ul>
|
||||||
@ -2014,6 +2016,8 @@
|
|||||||
<li><a href="pyFTS.common.html#pyFTS.common.fts.FTS.predict">predict() (pyFTS.common.fts.FTS method)</a>
|
<li><a href="pyFTS.common.html#pyFTS.common.fts.FTS.predict">predict() (pyFTS.common.fts.FTS method)</a>
|
||||||
</li>
|
</li>
|
||||||
<li><a href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner.prefix">prefix (pyFTS.partitioners.partitioner.Partitioner attribute)</a>
|
<li><a href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner.prefix">prefix (pyFTS.partitioners.partitioner.Partitioner attribute)</a>
|
||||||
|
</li>
|
||||||
|
<li><a href="pyFTS.partitioners.html#pyFTS.partitioners.Grid.PreFixedGridPartitioner">PreFixedGridPartitioner (class in pyFTS.partitioners.Grid)</a>
|
||||||
</li>
|
</li>
|
||||||
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.print_distribution_statistics">print_distribution_statistics() (in module pyFTS.benchmarks.benchmarks)</a>
|
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.print_distribution_statistics">print_distribution_statistics() (in module pyFTS.benchmarks.benchmarks)</a>
|
||||||
</li>
|
</li>
|
||||||
|
BIN
docs/build/html/objects.inv
vendored
18
docs/build/html/pyFTS.benchmarks.html
vendored
@ -1400,7 +1400,7 @@ of the metric ‘measure’ with the same ‘tag’, returning a Pandas DataFram
|
|||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.benchmarks.arima.ARIMA.forecast_ahead_distribution">
|
<dt id="pyFTS.benchmarks.arima.ARIMA.forecast_ahead_distribution">
|
||||||
<code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/arima.html#ARIMA.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.arima.ARIMA.forecast_ahead_distribution" title="Permalink to this definition">¶</a></dt>
|
<code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/arima.html#ARIMA.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.arima.ARIMA.forecast_ahead_distribution" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Probabilistic forecast n steps ahead</p>
|
<dd><p>Probabilistic forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
|
||||||
<dl class="field-list simple">
|
<dl class="field-list simple">
|
||||||
<dt class="field-odd">Parameters</dt>
|
<dt class="field-odd">Parameters</dt>
|
||||||
<dd class="field-odd"><ul class="simple">
|
<dd class="field-odd"><ul class="simple">
|
||||||
@ -1418,7 +1418,7 @@ of the metric ‘measure’ with the same ‘tag’, returning a Pandas DataFram
|
|||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.benchmarks.arima.ARIMA.forecast_ahead_interval">
|
<dt id="pyFTS.benchmarks.arima.ARIMA.forecast_ahead_interval">
|
||||||
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">ndata</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/arima.html#ARIMA.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.arima.ARIMA.forecast_ahead_interval" title="Permalink to this definition">¶</a></dt>
|
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">ndata</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/arima.html#ARIMA.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.arima.ARIMA.forecast_ahead_interval" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Interval forecast n steps ahead</p>
|
<dd><p>Interval forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
|
||||||
<dl class="field-list simple">
|
<dl class="field-list simple">
|
||||||
<dt class="field-odd">Parameters</dt>
|
<dt class="field-odd">Parameters</dt>
|
||||||
<dd class="field-odd"><ul class="simple">
|
<dd class="field-odd"><ul class="simple">
|
||||||
@ -1516,7 +1516,7 @@ of the metric ‘measure’ with the same ‘tag’, returning a Pandas DataFram
|
|||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.benchmarks.knn.KNearestNeighbors.forecast_ahead_distribution">
|
<dt id="pyFTS.benchmarks.knn.KNearestNeighbors.forecast_ahead_distribution">
|
||||||
<code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/knn.html#KNearestNeighbors.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.knn.KNearestNeighbors.forecast_ahead_distribution" title="Permalink to this definition">¶</a></dt>
|
<code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/knn.html#KNearestNeighbors.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.knn.KNearestNeighbors.forecast_ahead_distribution" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Probabilistic forecast n steps ahead</p>
|
<dd><p>Probabilistic forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
|
||||||
<dl class="field-list simple">
|
<dl class="field-list simple">
|
||||||
<dt class="field-odd">Parameters</dt>
|
<dt class="field-odd">Parameters</dt>
|
||||||
<dd class="field-odd"><ul class="simple">
|
<dd class="field-odd"><ul class="simple">
|
||||||
@ -1534,7 +1534,7 @@ of the metric ‘measure’ with the same ‘tag’, returning a Pandas DataFram
|
|||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.benchmarks.knn.KNearestNeighbors.forecast_ahead_interval">
|
<dt id="pyFTS.benchmarks.knn.KNearestNeighbors.forecast_ahead_interval">
|
||||||
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/knn.html#KNearestNeighbors.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.knn.KNearestNeighbors.forecast_ahead_interval" title="Permalink to this definition">¶</a></dt>
|
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/knn.html#KNearestNeighbors.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.knn.KNearestNeighbors.forecast_ahead_interval" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Interval forecast n steps ahead</p>
|
<dd><p>Interval forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
|
||||||
<dl class="field-list simple">
|
<dl class="field-list simple">
|
||||||
<dt class="field-odd">Parameters</dt>
|
<dt class="field-odd">Parameters</dt>
|
||||||
<dd class="field-odd"><ul class="simple">
|
<dd class="field-odd"><ul class="simple">
|
||||||
@ -1659,7 +1659,7 @@ of the metric ‘measure’ with the same ‘tag’, returning a Pandas DataFram
|
|||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.benchmarks.quantreg.QuantileRegression.forecast_ahead_distribution">
|
<dt id="pyFTS.benchmarks.quantreg.QuantileRegression.forecast_ahead_distribution">
|
||||||
<code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">ndata</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/quantreg.html#QuantileRegression.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.quantreg.QuantileRegression.forecast_ahead_distribution" title="Permalink to this definition">¶</a></dt>
|
<code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">ndata</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/quantreg.html#QuantileRegression.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.quantreg.QuantileRegression.forecast_ahead_distribution" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Probabilistic forecast n steps ahead</p>
|
<dd><p>Probabilistic forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
|
||||||
<dl class="field-list simple">
|
<dl class="field-list simple">
|
||||||
<dt class="field-odd">Parameters</dt>
|
<dt class="field-odd">Parameters</dt>
|
||||||
<dd class="field-odd"><ul class="simple">
|
<dd class="field-odd"><ul class="simple">
|
||||||
@ -1677,7 +1677,7 @@ of the metric ‘measure’ with the same ‘tag’, returning a Pandas DataFram
|
|||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.benchmarks.quantreg.QuantileRegression.forecast_ahead_interval">
|
<dt id="pyFTS.benchmarks.quantreg.QuantileRegression.forecast_ahead_interval">
|
||||||
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">ndata</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/quantreg.html#QuantileRegression.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.quantreg.QuantileRegression.forecast_ahead_interval" title="Permalink to this definition">¶</a></dt>
|
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">ndata</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/quantreg.html#QuantileRegression.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.quantreg.QuantileRegression.forecast_ahead_interval" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Interval forecast n steps ahead</p>
|
<dd><p>Interval forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
|
||||||
<dl class="field-list simple">
|
<dl class="field-list simple">
|
||||||
<dt class="field-odd">Parameters</dt>
|
<dt class="field-odd">Parameters</dt>
|
||||||
<dd class="field-odd"><ul class="simple">
|
<dd class="field-odd"><ul class="simple">
|
||||||
@ -1788,7 +1788,7 @@ of the metric ‘measure’ with the same ‘tag’, returning a Pandas DataFram
|
|||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead">
|
<dt id="pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead">
|
||||||
<code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/BSTS.html#ARIMA.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead" title="Permalink to this definition">¶</a></dt>
|
<code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/BSTS.html#ARIMA.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Point forecast n steps ahead</p>
|
<dd><p>Point forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
|
||||||
<dl class="field-list simple">
|
<dl class="field-list simple">
|
||||||
<dt class="field-odd">Parameters</dt>
|
<dt class="field-odd">Parameters</dt>
|
||||||
<dd class="field-odd"><ul class="simple">
|
<dd class="field-odd"><ul class="simple">
|
||||||
@ -1806,7 +1806,7 @@ of the metric ‘measure’ with the same ‘tag’, returning a Pandas DataFram
|
|||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead_distribution">
|
<dt id="pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead_distribution">
|
||||||
<code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/BSTS.html#ARIMA.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead_distribution" title="Permalink to this definition">¶</a></dt>
|
<code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/BSTS.html#ARIMA.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead_distribution" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Probabilistic forecast n steps ahead</p>
|
<dd><p>Probabilistic forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
|
||||||
<dl class="field-list simple">
|
<dl class="field-list simple">
|
||||||
<dt class="field-odd">Parameters</dt>
|
<dt class="field-odd">Parameters</dt>
|
||||||
<dd class="field-odd"><ul class="simple">
|
<dd class="field-odd"><ul class="simple">
|
||||||
@ -1824,7 +1824,7 @@ of the metric ‘measure’ with the same ‘tag’, returning a Pandas DataFram
|
|||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead_interval">
|
<dt id="pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead_interval">
|
||||||
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">ndata</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/BSTS.html#ARIMA.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead_interval" title="Permalink to this definition">¶</a></dt>
|
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">ndata</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/BSTS.html#ARIMA.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead_interval" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Interval forecast n steps ahead</p>
|
<dd><p>Interval forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
|
||||||
<dl class="field-list simple">
|
<dl class="field-list simple">
|
||||||
<dt class="field-odd">Parameters</dt>
|
<dt class="field-odd">Parameters</dt>
|
||||||
<dd class="field-odd"><ul class="simple">
|
<dd class="field-odd"><ul class="simple">
|
||||||
|
43
docs/build/html/pyFTS.common.html
vendored
@ -150,7 +150,7 @@
|
|||||||
<dl class="py class">
|
<dl class="py class">
|
||||||
<dt id="pyFTS.common.FLR.FLR">
|
<dt id="pyFTS.common.FLR.FLR">
|
||||||
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.common.FLR.</code><code class="sig-name descname">FLR</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">LHS</span></em>, <em class="sig-param"><span class="n">RHS</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/FLR.html#FLR"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.FLR.FLR" title="Permalink to this definition">¶</a></dt>
|
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.common.FLR.</code><code class="sig-name descname">FLR</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">LHS</span></em>, <em class="sig-param"><span class="n">RHS</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/FLR.html#FLR"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.FLR.FLR" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
|
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.9)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
|
||||||
<p>Fuzzy Logical Relationship</p>
|
<p>Fuzzy Logical Relationship</p>
|
||||||
<p>Represents a temporal transition of the fuzzy set LHS on time t for the fuzzy set RHS on time t+1.</p>
|
<p>Represents a temporal transition of the fuzzy set LHS on time t for the fuzzy set RHS on time t+1.</p>
|
||||||
<dl class="py attribute">
|
<dl class="py attribute">
|
||||||
@ -246,7 +246,7 @@
|
|||||||
<dl class="py class">
|
<dl class="py class">
|
||||||
<dt id="pyFTS.common.FuzzySet.FuzzySet">
|
<dt id="pyFTS.common.FuzzySet.FuzzySet">
|
||||||
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.common.FuzzySet.</code><code class="sig-name descname">FuzzySet</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">name</span></em>, <em class="sig-param"><span class="n">mf</span></em>, <em class="sig-param"><span class="n">parameters</span></em>, <em class="sig-param"><span class="n">centroid</span></em>, <em class="sig-param"><span class="n">alpha</span><span class="o">=</span><span class="default_value">1.0</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/FuzzySet.html#FuzzySet"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.FuzzySet.FuzzySet" title="Permalink to this definition">¶</a></dt>
|
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.common.FuzzySet.</code><code class="sig-name descname">FuzzySet</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">name</span></em>, <em class="sig-param"><span class="n">mf</span></em>, <em class="sig-param"><span class="n">parameters</span></em>, <em class="sig-param"><span class="n">centroid</span></em>, <em class="sig-param"><span class="n">alpha</span><span class="o">=</span><span class="default_value">1.0</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/FuzzySet.html#FuzzySet"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.FuzzySet.FuzzySet" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
|
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.9)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
|
||||||
<p>Fuzzy Set</p>
|
<p>Fuzzy Set</p>
|
||||||
<dl class="py attribute">
|
<dl class="py attribute">
|
||||||
<dt id="pyFTS.common.FuzzySet.FuzzySet.Z">
|
<dt id="pyFTS.common.FuzzySet.FuzzySet.Z">
|
||||||
@ -600,7 +600,7 @@
|
|||||||
<dl class="py class">
|
<dl class="py class">
|
||||||
<dt id="pyFTS.common.SortedCollection.SortedCollection">
|
<dt id="pyFTS.common.SortedCollection.SortedCollection">
|
||||||
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.common.SortedCollection.</code><code class="sig-name descname">SortedCollection</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">iterable</span><span class="o">=</span><span class="default_value">()</span></em>, <em class="sig-param"><span class="n">key</span><span class="o">=</span><span class="default_value">None</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/SortedCollection.html#SortedCollection"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.SortedCollection.SortedCollection" title="Permalink to this definition">¶</a></dt>
|
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.common.SortedCollection.</code><code class="sig-name descname">SortedCollection</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">iterable</span><span class="o">=</span><span class="default_value">()</span></em>, <em class="sig-param"><span class="n">key</span><span class="o">=</span><span class="default_value">None</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/SortedCollection.html#SortedCollection"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.SortedCollection.SortedCollection" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
|
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.9)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
|
||||||
<p>Sequence sorted by a key function.</p>
|
<p>Sequence sorted by a key function.</p>
|
||||||
<p>SortedCollection() is much easier to work with than using bisect() directly.
|
<p>SortedCollection() is much easier to work with than using bisect() directly.
|
||||||
It supports key functions like those use in sorted(), min(), and max().
|
It supports key functions like those use in sorted(), min(), and max().
|
||||||
@ -1096,7 +1096,7 @@ y(t) = ( y(t-1) * y’(t) ) + y(t-1)</p>
|
|||||||
<dl class="py class">
|
<dl class="py class">
|
||||||
<dt id="pyFTS.common.Transformations.Transformation">
|
<dt id="pyFTS.common.Transformations.Transformation">
|
||||||
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.common.Transformations.</code><code class="sig-name descname">Transformation</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/Transformations.html#Transformation"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.Transformations.Transformation" title="Permalink to this definition">¶</a></dt>
|
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.common.Transformations.</code><code class="sig-name descname">Transformation</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/Transformations.html#Transformation"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.Transformations.Transformation" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
|
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.9)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
|
||||||
<p>Data transformation used on pre and post processing of the FTS</p>
|
<p>Data transformation used on pre and post processing of the FTS</p>
|
||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.common.Transformations.Transformation.apply">
|
<dt id="pyFTS.common.Transformations.Transformation.apply">
|
||||||
@ -1413,7 +1413,7 @@ y(t) = ( y(t-1) * y’(t) ) + y(t-1)</p>
|
|||||||
<dl class="py class">
|
<dl class="py class">
|
||||||
<dt id="pyFTS.common.flrg.FLRG">
|
<dt id="pyFTS.common.flrg.FLRG">
|
||||||
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.common.flrg.</code><code class="sig-name descname">FLRG</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">order</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/flrg.html#FLRG"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.flrg.FLRG" title="Permalink to this definition">¶</a></dt>
|
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.common.flrg.</code><code class="sig-name descname">FLRG</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">order</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/flrg.html#FLRG"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.flrg.FLRG" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
|
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.9)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
|
||||||
<p>Fuzzy Logical Relationship Group</p>
|
<p>Fuzzy Logical Relationship Group</p>
|
||||||
<p>Group a set of FLR’s with the same LHS. Represents the temporal patterns for time t+1 (the RHS fuzzy sets)
|
<p>Group a set of FLR’s with the same LHS. Represents the temporal patterns for time t+1 (the RHS fuzzy sets)
|
||||||
when the LHS pattern is identified on time t.</p>
|
when the LHS pattern is identified on time t.</p>
|
||||||
@ -1523,7 +1523,7 @@ when the LHS pattern is identified on time t.</p>
|
|||||||
<dl class="py class">
|
<dl class="py class">
|
||||||
<dt id="pyFTS.common.fts.FTS">
|
<dt id="pyFTS.common.fts.FTS">
|
||||||
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.common.fts.</code><code class="sig-name descname">FTS</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/fts.html#FTS"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.fts.FTS" title="Permalink to this definition">¶</a></dt>
|
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.common.fts.</code><code class="sig-name descname">FTS</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/fts.html#FTS"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.fts.FTS" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
|
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.9)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
|
||||||
<p>Fuzzy Time Series object model</p>
|
<p>Fuzzy Time Series object model</p>
|
||||||
<dl class="py attribute">
|
<dl class="py attribute">
|
||||||
<dt id="pyFTS.common.fts.FTS.alpha_cut">
|
<dt id="pyFTS.common.fts.FTS.alpha_cut">
|
||||||
@ -1673,7 +1673,7 @@ when the LHS pattern is identified on time t.</p>
|
|||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.common.fts.FTS.forecast_ahead">
|
<dt id="pyFTS.common.fts.FTS.forecast_ahead">
|
||||||
<code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/fts.html#FTS.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.fts.FTS.forecast_ahead" title="Permalink to this definition">¶</a></dt>
|
<code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/fts.html#FTS.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.fts.FTS.forecast_ahead" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Point forecast n steps ahead</p>
|
<dd><p>Point forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
|
||||||
<dl class="field-list simple">
|
<dl class="field-list simple">
|
||||||
<dt class="field-odd">Parameters</dt>
|
<dt class="field-odd">Parameters</dt>
|
||||||
<dd class="field-odd"><ul class="simple">
|
<dd class="field-odd"><ul class="simple">
|
||||||
@ -1691,7 +1691,7 @@ when the LHS pattern is identified on time t.</p>
|
|||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.common.fts.FTS.forecast_ahead_distribution">
|
<dt id="pyFTS.common.fts.FTS.forecast_ahead_distribution">
|
||||||
<code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/fts.html#FTS.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.fts.FTS.forecast_ahead_distribution" title="Permalink to this definition">¶</a></dt>
|
<code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/fts.html#FTS.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.fts.FTS.forecast_ahead_distribution" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Probabilistic forecast n steps ahead</p>
|
<dd><p>Probabilistic forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
|
||||||
<dl class="field-list simple">
|
<dl class="field-list simple">
|
||||||
<dt class="field-odd">Parameters</dt>
|
<dt class="field-odd">Parameters</dt>
|
||||||
<dd class="field-odd"><ul class="simple">
|
<dd class="field-odd"><ul class="simple">
|
||||||
@ -1709,7 +1709,7 @@ when the LHS pattern is identified on time t.</p>
|
|||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.common.fts.FTS.forecast_ahead_interval">
|
<dt id="pyFTS.common.fts.FTS.forecast_ahead_interval">
|
||||||
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/fts.html#FTS.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.fts.FTS.forecast_ahead_interval" title="Permalink to this definition">¶</a></dt>
|
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/fts.html#FTS.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.fts.FTS.forecast_ahead_interval" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Interval forecast n steps ahead</p>
|
<dd><p>Interval forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
|
||||||
<dl class="field-list simple">
|
<dl class="field-list simple">
|
||||||
<dt class="field-odd">Parameters</dt>
|
<dt class="field-odd">Parameters</dt>
|
||||||
<dd class="field-odd"><ul class="simple">
|
<dd class="field-odd"><ul class="simple">
|
||||||
@ -1793,6 +1793,24 @@ when the LHS pattern is identified on time t.</p>
|
|||||||
</dl>
|
</dl>
|
||||||
</dd></dl>
|
</dd></dl>
|
||||||
|
|
||||||
|
<dl class="py method">
|
||||||
|
<dt id="pyFTS.common.fts.FTS.forecast_step">
|
||||||
|
<code class="sig-name descname">forecast_step</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">step</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/fts.html#FTS.forecast_step"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.fts.FTS.forecast_step" title="Permalink to this definition">¶</a></dt>
|
||||||
|
<dd><p>Point forecast for H steps ahead, where H is given by the step parameter</p>
|
||||||
|
<dl class="field-list simple">
|
||||||
|
<dt class="field-odd">Parameters</dt>
|
||||||
|
<dd class="field-odd"><ul class="simple">
|
||||||
|
<li><p><strong>data</strong> – time series data with the minimal length equal to the max_lag of the model</p></li>
|
||||||
|
<li><p><strong>step</strong> – the forecasting horizon (default: 1)</p></li>
|
||||||
|
<li><p><strong>start_at</strong> – in the multi step forecasting, the index of the data where to start forecasting (default: 0)</p></li>
|
||||||
|
</ul>
|
||||||
|
</dd>
|
||||||
|
<dt class="field-even">Returns</dt>
|
||||||
|
<dd class="field-even"><p>a list with the forecasted values</p>
|
||||||
|
</dd>
|
||||||
|
</dl>
|
||||||
|
</dd></dl>
|
||||||
|
|
||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.common.fts.FTS.fuzzy">
|
<dt id="pyFTS.common.fts.FTS.fuzzy">
|
||||||
<code class="sig-name descname">fuzzy</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/fts.html#FTS.fuzzy"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.fts.FTS.fuzzy" title="Permalink to this definition">¶</a></dt>
|
<code class="sig-name descname">fuzzy</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/fts.html#FTS.fuzzy"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.fts.FTS.fuzzy" title="Permalink to this definition">¶</a></dt>
|
||||||
@ -1981,7 +1999,8 @@ model, among other parameters.</p>
|
|||||||
<dd class="field-odd"><ul class="simple">
|
<dd class="field-odd"><ul class="simple">
|
||||||
<li><p><strong>data</strong> – time series with minimal length to the order of the model</p></li>
|
<li><p><strong>data</strong> – time series with minimal length to the order of the model</p></li>
|
||||||
<li><p><strong>type</strong> – the forecasting type, one of these values: point(default), interval, distribution or multivariate.</p></li>
|
<li><p><strong>type</strong> – the forecasting type, one of these values: point(default), interval, distribution or multivariate.</p></li>
|
||||||
<li><p><strong>steps_ahead</strong> – The forecasting horizon, i. e., the number of steps ahead to forecast (default value: 1)</p></li>
|
<li><p><strong>steps_ahead</strong> – The forecasting path H, i. e., tell the model to forecast from t+1 to t+H.</p></li>
|
||||||
|
<li><p><strong>step_to</strong> – The forecasting step H, i. e., tell the model to forecast to t+H for each input sample</p></li>
|
||||||
<li><p><strong>start_at</strong> – in the multi step forecasting, the index of the data where to start forecasting (default value: 0)</p></li>
|
<li><p><strong>start_at</strong> – in the multi step forecasting, the index of the data where to start forecasting (default value: 0)</p></li>
|
||||||
<li><p><strong>distributed</strong> – boolean, indicate if the forecasting procedure will be distributed in a dispy cluster (default value: False)</p></li>
|
<li><p><strong>distributed</strong> – boolean, indicate if the forecasting procedure will be distributed in a dispy cluster (default value: False)</p></li>
|
||||||
<li><p><strong>nodes</strong> – a list with the dispy cluster nodes addresses</p></li>
|
<li><p><strong>nodes</strong> – a list with the dispy cluster nodes addresses</p></li>
|
||||||
@ -2056,14 +2075,14 @@ models that accept the actual values and forecast new ones.</p></li>
|
|||||||
<dl class="py class">
|
<dl class="py class">
|
||||||
<dt id="pyFTS.common.tree.FLRGTree">
|
<dt id="pyFTS.common.tree.FLRGTree">
|
||||||
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.common.tree.</code><code class="sig-name descname">FLRGTree</code><a class="reference internal" href="_modules/pyFTS/common/tree.html#FLRGTree"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.tree.FLRGTree" title="Permalink to this definition">¶</a></dt>
|
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.common.tree.</code><code class="sig-name descname">FLRGTree</code><a class="reference internal" href="_modules/pyFTS/common/tree.html#FLRGTree"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.tree.FLRGTree" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
|
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.9)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
|
||||||
<p>Represents a FLRG set with a tree structure</p>
|
<p>Represents a FLRG set with a tree structure</p>
|
||||||
</dd></dl>
|
</dd></dl>
|
||||||
|
|
||||||
<dl class="py class">
|
<dl class="py class">
|
||||||
<dt id="pyFTS.common.tree.FLRGTreeNode">
|
<dt id="pyFTS.common.tree.FLRGTreeNode">
|
||||||
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.common.tree.</code><code class="sig-name descname">FLRGTreeNode</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">value</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/tree.html#FLRGTreeNode"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.tree.FLRGTreeNode" title="Permalink to this definition">¶</a></dt>
|
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.common.tree.</code><code class="sig-name descname">FLRGTreeNode</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">value</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/tree.html#FLRGTreeNode"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.tree.FLRGTreeNode" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
|
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.9)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
|
||||||
<p>Tree node for</p>
|
<p>Tree node for</p>
|
||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.common.tree.FLRGTreeNode.appendChild">
|
<dt id="pyFTS.common.tree.FLRGTreeNode.appendChild">
|
||||||
|
2
docs/build/html/pyFTS.data.html
vendored
@ -106,7 +106,7 @@ If the file don’t already exists, it will be downloaded and decompressed.</p>
|
|||||||
<dl class="py class">
|
<dl class="py class">
|
||||||
<dt id="pyFTS.data.artificial.SignalEmulator">
|
<dt id="pyFTS.data.artificial.SignalEmulator">
|
||||||
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.data.artificial.</code><code class="sig-name descname">SignalEmulator</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/data/artificial.html#SignalEmulator"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.data.artificial.SignalEmulator" title="Permalink to this definition">¶</a></dt>
|
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.data.artificial.</code><code class="sig-name descname">SignalEmulator</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/data/artificial.html#SignalEmulator"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.data.artificial.SignalEmulator" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
|
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.9)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
|
||||||
<p>Emulate a complex signal built from several additive and non-additive components</p>
|
<p>Emulate a complex signal built from several additive and non-additive components</p>
|
||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.data.artificial.SignalEmulator.blip">
|
<dt id="pyFTS.data.artificial.SignalEmulator.blip">
|
||||||
|
4
docs/build/html/pyFTS.models.ensemble.html
vendored
@ -143,7 +143,7 @@ XIII Brazilian Congress on Computational Intelligence, 2017. Rio de Janeiro, Bra
|
|||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.models.ensemble.ensemble.EnsembleFTS.forecast_ahead_distribution">
|
<dt id="pyFTS.models.ensemble.ensemble.EnsembleFTS.forecast_ahead_distribution">
|
||||||
<code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ensemble/ensemble.html#EnsembleFTS.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.EnsembleFTS.forecast_ahead_distribution" title="Permalink to this definition">¶</a></dt>
|
<code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ensemble/ensemble.html#EnsembleFTS.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.EnsembleFTS.forecast_ahead_distribution" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Probabilistic forecast n steps ahead</p>
|
<dd><p>Probabilistic forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
|
||||||
<dl class="field-list simple">
|
<dl class="field-list simple">
|
||||||
<dt class="field-odd">Parameters</dt>
|
<dt class="field-odd">Parameters</dt>
|
||||||
<dd class="field-odd"><ul class="simple">
|
<dd class="field-odd"><ul class="simple">
|
||||||
@ -161,7 +161,7 @@ XIII Brazilian Congress on Computational Intelligence, 2017. Rio de Janeiro, Bra
|
|||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.models.ensemble.ensemble.EnsembleFTS.forecast_ahead_interval">
|
<dt id="pyFTS.models.ensemble.ensemble.EnsembleFTS.forecast_ahead_interval">
|
||||||
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ensemble/ensemble.html#EnsembleFTS.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.EnsembleFTS.forecast_ahead_interval" title="Permalink to this definition">¶</a></dt>
|
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ensemble/ensemble.html#EnsembleFTS.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.EnsembleFTS.forecast_ahead_interval" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Interval forecast n steps ahead</p>
|
<dd><p>Interval forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
|
||||||
<dl class="field-list simple">
|
<dl class="field-list simple">
|
||||||
<dt class="field-odd">Parameters</dt>
|
<dt class="field-odd">Parameters</dt>
|
||||||
<dd class="field-odd"><ul class="simple">
|
<dd class="field-odd"><ul class="simple">
|
||||||
|
10
docs/build/html/pyFTS.models.html
vendored
@ -572,7 +572,7 @@ In: Computational Intelligence (SSCI), 2016 IEEE Symposium Series on. IEEE, 2016
|
|||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.models.ifts.IntervalFTS.forecast_ahead_interval">
|
<dt id="pyFTS.models.ifts.IntervalFTS.forecast_ahead_interval">
|
||||||
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ifts.html#IntervalFTS.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ifts.IntervalFTS.forecast_ahead_interval" title="Permalink to this definition">¶</a></dt>
|
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ifts.html#IntervalFTS.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ifts.IntervalFTS.forecast_ahead_interval" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Interval forecast n steps ahead</p>
|
<dd><p>Interval forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
|
||||||
<dl class="field-list simple">
|
<dl class="field-list simple">
|
||||||
<dt class="field-odd">Parameters</dt>
|
<dt class="field-odd">Parameters</dt>
|
||||||
<dd class="field-odd"><ul class="simple">
|
<dd class="field-odd"><ul class="simple">
|
||||||
@ -629,7 +629,7 @@ In: Computational Intelligence (SSCI), 2016 IEEE Symposium Series on. IEEE, 2016
|
|||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.models.ifts.WeightedIntervalFTS.forecast_ahead_interval">
|
<dt id="pyFTS.models.ifts.WeightedIntervalFTS.forecast_ahead_interval">
|
||||||
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ifts.html#WeightedIntervalFTS.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ifts.WeightedIntervalFTS.forecast_ahead_interval" title="Permalink to this definition">¶</a></dt>
|
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ifts.html#WeightedIntervalFTS.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ifts.WeightedIntervalFTS.forecast_ahead_interval" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Interval forecast n steps ahead</p>
|
<dd><p>Interval forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
|
||||||
<dl class="field-list simple">
|
<dl class="field-list simple">
|
||||||
<dt class="field-odd">Parameters</dt>
|
<dt class="field-odd">Parameters</dt>
|
||||||
<dd class="field-odd"><ul class="simple">
|
<dd class="field-odd"><ul class="simple">
|
||||||
@ -885,7 +885,7 @@ US Dollar to Ringgit Malaysia,” Int. J. Comput. Intell. Appl., vol. 12, no. 1,
|
|||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead">
|
<dt id="pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead">
|
||||||
<code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead" title="Permalink to this definition">¶</a></dt>
|
<code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Point forecast n steps ahead</p>
|
<dd><p>Point forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
|
||||||
<dl class="field-list simple">
|
<dl class="field-list simple">
|
||||||
<dt class="field-odd">Parameters</dt>
|
<dt class="field-odd">Parameters</dt>
|
||||||
<dd class="field-odd"><ul class="simple">
|
<dd class="field-odd"><ul class="simple">
|
||||||
@ -903,7 +903,7 @@ US Dollar to Ringgit Malaysia,” Int. J. Comput. Intell. Appl., vol. 12, no. 1,
|
|||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead_distribution">
|
<dt id="pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead_distribution">
|
||||||
<code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">ndata</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead_distribution" title="Permalink to this definition">¶</a></dt>
|
<code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">ndata</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead_distribution" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Probabilistic forecast n steps ahead</p>
|
<dd><p>Probabilistic forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
|
||||||
<dl class="field-list simple">
|
<dl class="field-list simple">
|
||||||
<dt class="field-odd">Parameters</dt>
|
<dt class="field-odd">Parameters</dt>
|
||||||
<dd class="field-odd"><ul class="simple">
|
<dd class="field-odd"><ul class="simple">
|
||||||
@ -921,7 +921,7 @@ US Dollar to Ringgit Malaysia,” Int. J. Comput. Intell. Appl., vol. 12, no. 1,
|
|||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead_interval">
|
<dt id="pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead_interval">
|
||||||
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead_interval" title="Permalink to this definition">¶</a></dt>
|
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead_interval" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Interval forecast n steps ahead</p>
|
<dd><p>Interval forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
|
||||||
<dl class="field-list simple">
|
<dl class="field-list simple">
|
||||||
<dt class="field-odd">Parameters</dt>
|
<dt class="field-odd">Parameters</dt>
|
||||||
<dd class="field-odd"><ul class="simple">
|
<dd class="field-odd"><ul class="simple">
|
||||||
|
@ -116,7 +116,7 @@ window of recent lags, whose size is controlled by the parameter ‘window_lengt
|
|||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.models.incremental.TimeVariant.Retrainer.forecast_ahead">
|
<dt id="pyFTS.models.incremental.TimeVariant.Retrainer.forecast_ahead">
|
||||||
<code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/incremental/TimeVariant.html#Retrainer.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.incremental.TimeVariant.Retrainer.forecast_ahead" title="Permalink to this definition">¶</a></dt>
|
<code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/incremental/TimeVariant.html#Retrainer.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.incremental.TimeVariant.Retrainer.forecast_ahead" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Point forecast n steps ahead</p>
|
<dd><p>Point forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
|
||||||
<dl class="field-list simple">
|
<dl class="field-list simple">
|
||||||
<dt class="field-odd">Parameters</dt>
|
<dt class="field-odd">Parameters</dt>
|
||||||
<dd class="field-odd"><ul class="simple">
|
<dd class="field-odd"><ul class="simple">
|
||||||
@ -237,7 +237,7 @@ model, among other parameters.</p>
|
|||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.forecast_ahead">
|
<dt id="pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.forecast_ahead">
|
||||||
<code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/incremental/IncrementalEnsemble.html#IncrementalEnsembleFTS.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.forecast_ahead" title="Permalink to this definition">¶</a></dt>
|
<code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/incremental/IncrementalEnsemble.html#IncrementalEnsembleFTS.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.forecast_ahead" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Point forecast n steps ahead</p>
|
<dd><p>Point forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
|
||||||
<dl class="field-list simple">
|
<dl class="field-list simple">
|
||||||
<dt class="field-odd">Parameters</dt>
|
<dt class="field-odd">Parameters</dt>
|
||||||
<dd class="field-odd"><ul class="simple">
|
<dd class="field-odd"><ul class="simple">
|
||||||
|
10
docs/build/html/pyFTS.models.multivariate.html
vendored
@ -78,7 +78,7 @@
|
|||||||
<dl class="py class">
|
<dl class="py class">
|
||||||
<dt id="pyFTS.models.multivariate.FLR.FLR">
|
<dt id="pyFTS.models.multivariate.FLR.FLR">
|
||||||
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.models.multivariate.FLR.</code><code class="sig-name descname">FLR</code><a class="reference internal" href="_modules/pyFTS/models/multivariate/FLR.html#FLR"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.multivariate.FLR.FLR" title="Permalink to this definition">¶</a></dt>
|
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.models.multivariate.FLR.</code><code class="sig-name descname">FLR</code><a class="reference internal" href="_modules/pyFTS/models/multivariate/FLR.html#FLR"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.multivariate.FLR.FLR" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
|
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.9)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
|
||||||
<p>Multivariate Fuzzy Logical Relationship</p>
|
<p>Multivariate Fuzzy Logical Relationship</p>
|
||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.models.multivariate.FLR.FLR.set_lhs">
|
<dt id="pyFTS.models.multivariate.FLR.FLR.set_lhs">
|
||||||
@ -151,7 +151,7 @@
|
|||||||
<dl class="py class">
|
<dl class="py class">
|
||||||
<dt id="pyFTS.models.multivariate.variable.Variable">
|
<dt id="pyFTS.models.multivariate.variable.Variable">
|
||||||
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.models.multivariate.variable.</code><code class="sig-name descname">Variable</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">name</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/variable.html#Variable"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.multivariate.variable.Variable" title="Permalink to this definition">¶</a></dt>
|
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.models.multivariate.variable.</code><code class="sig-name descname">Variable</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">name</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/variable.html#Variable"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.multivariate.variable.Variable" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
|
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.9)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
|
||||||
<p>A variable of a fuzzy time series multivariate model. Each variable contains its own
|
<p>A variable of a fuzzy time series multivariate model. Each variable contains its own
|
||||||
transformations and partitioners.</p>
|
transformations and partitioners.</p>
|
||||||
<dl class="py attribute">
|
<dl class="py attribute">
|
||||||
@ -514,7 +514,7 @@ multivariate fuzzy set base.</p>
|
|||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.models.multivariate.mvfts.MVFTS.forecast_ahead">
|
<dt id="pyFTS.models.multivariate.mvfts.MVFTS.forecast_ahead">
|
||||||
<code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/mvfts.html#MVFTS.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.forecast_ahead" title="Permalink to this definition">¶</a></dt>
|
<code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/mvfts.html#MVFTS.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.forecast_ahead" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Point forecast n steps ahead</p>
|
<dd><p>Point forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
|
||||||
<dl class="field-list simple">
|
<dl class="field-list simple">
|
||||||
<dt class="field-odd">Parameters</dt>
|
<dt class="field-odd">Parameters</dt>
|
||||||
<dd class="field-odd"><ul class="simple">
|
<dd class="field-odd"><ul class="simple">
|
||||||
@ -532,7 +532,7 @@ multivariate fuzzy set base.</p>
|
|||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.models.multivariate.mvfts.MVFTS.forecast_ahead_interval">
|
<dt id="pyFTS.models.multivariate.mvfts.MVFTS.forecast_ahead_interval">
|
||||||
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/mvfts.html#MVFTS.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.forecast_ahead_interval" title="Permalink to this definition">¶</a></dt>
|
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/mvfts.html#MVFTS.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.forecast_ahead_interval" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Interval forecast n steps ahead</p>
|
<dd><p>Interval forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
|
||||||
<dl class="field-list simple">
|
<dl class="field-list simple">
|
||||||
<dt class="field-odd">Parameters</dt>
|
<dt class="field-odd">Parameters</dt>
|
||||||
<dd class="field-odd"><ul class="simple">
|
<dd class="field-odd"><ul class="simple">
|
||||||
@ -715,7 +715,7 @@ multivariate fuzzy set base.</p>
|
|||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_ahead_distribution">
|
<dt id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_ahead_distribution">
|
||||||
<code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/cmvfts.html#ClusteredMVFTS.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_ahead_distribution" title="Permalink to this definition">¶</a></dt>
|
<code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/cmvfts.html#ClusteredMVFTS.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_ahead_distribution" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Probabilistic forecast n steps ahead</p>
|
<dd><p>Probabilistic forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
|
||||||
<dl class="field-list simple">
|
<dl class="field-list simple">
|
||||||
<dt class="field-odd">Parameters</dt>
|
<dt class="field-odd">Parameters</dt>
|
||||||
<dd class="field-odd"><ul class="simple">
|
<dd class="field-odd"><ul class="simple">
|
||||||
|
@ -733,7 +733,7 @@ IEEE Transactions on Fuzzy Systems, v. 16, n. 4, p. 1072-1086, 2008.</p>
|
|||||||
<span id="pyfts-models-nonstationary-util-module"></span><h2>pyFTS.models.nonstationary.util module<a class="headerlink" href="#module-pyFTS.models.nonstationary.util" title="Permalink to this headline">¶</a></h2>
|
<span id="pyfts-models-nonstationary-util-module"></span><h2>pyFTS.models.nonstationary.util module<a class="headerlink" href="#module-pyFTS.models.nonstationary.util" title="Permalink to this headline">¶</a></h2>
|
||||||
<dl class="py function">
|
<dl class="py function">
|
||||||
<dt id="pyFTS.models.nonstationary.util.plot_sets">
|
<dt id="pyFTS.models.nonstationary.util.plot_sets">
|
||||||
<code class="sig-prename descclassname">pyFTS.models.nonstationary.util.</code><code class="sig-name descname">plot_sets</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">partitioner</span></em>, <em class="sig-param"><span class="n">start</span><span class="o">=</span><span class="default_value">0</span></em>, <em class="sig-param"><span class="n">end</span><span class="o">=</span><span class="default_value">10</span></em>, <em class="sig-param"><span class="n">step</span><span class="o">=</span><span class="default_value">1</span></em>, <em class="sig-param"><span class="n">tam</span><span class="o">=</span><span class="default_value">[5, 5]</span></em>, <em class="sig-param"><span class="n">colors</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">save</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">file</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">axes</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">data</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">window_size</span><span class="o">=</span><span class="default_value">1</span></em>, <em class="sig-param"><span class="n">only_lines</span><span class="o">=</span><span class="default_value">False</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/util.html#plot_sets"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.nonstationary.util.plot_sets" title="Permalink to this definition">¶</a></dt>
|
<code class="sig-prename descclassname">pyFTS.models.nonstationary.util.</code><code class="sig-name descname">plot_sets</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">partitioner</span></em>, <em class="sig-param"><span class="n">start</span><span class="o">=</span><span class="default_value">0</span></em>, <em class="sig-param"><span class="n">end</span><span class="o">=</span><span class="default_value">10</span></em>, <em class="sig-param"><span class="n">step</span><span class="o">=</span><span class="default_value">1</span></em>, <em class="sig-param"><span class="n">tam</span><span class="o">=</span><span class="default_value">[5, 5]</span></em>, <em class="sig-param"><span class="n">colors</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">save</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">file</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">axes</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">data</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">window_size</span><span class="o">=</span><span class="default_value">1</span></em>, <em class="sig-param"><span class="n">only_lines</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">legend</span><span class="o">=</span><span class="default_value">True</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/util.html#plot_sets"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.nonstationary.util.plot_sets" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd></dd></dl>
|
<dd></dd></dl>
|
||||||
|
|
||||||
<dl class="py function">
|
<dl class="py function">
|
||||||
|
8
docs/build/html/pyFTS.models.seasonal.html
vendored
@ -180,7 +180,7 @@
|
|||||||
<dl class="py class">
|
<dl class="py class">
|
||||||
<dt id="pyFTS.models.seasonal.SeasonalIndexer.SeasonalIndexer">
|
<dt id="pyFTS.models.seasonal.SeasonalIndexer.SeasonalIndexer">
|
||||||
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.models.seasonal.SeasonalIndexer.</code><code class="sig-name descname">SeasonalIndexer</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">num_seasons</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/seasonal/SeasonalIndexer.html#SeasonalIndexer"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.seasonal.SeasonalIndexer.SeasonalIndexer" title="Permalink to this definition">¶</a></dt>
|
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.models.seasonal.SeasonalIndexer.</code><code class="sig-name descname">SeasonalIndexer</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">num_seasons</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/seasonal/SeasonalIndexer.html#SeasonalIndexer"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.seasonal.SeasonalIndexer.SeasonalIndexer" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
|
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.9)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
|
||||||
<p>Seasonal Indexer. Responsible to find the seasonal index of a data point inside its data set</p>
|
<p>Seasonal Indexer. Responsible to find the seasonal index of a data point inside its data set</p>
|
||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.models.seasonal.SeasonalIndexer.SeasonalIndexer.get_data">
|
<dt id="pyFTS.models.seasonal.SeasonalIndexer.SeasonalIndexer.get_data">
|
||||||
@ -242,7 +242,7 @@
|
|||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.models.seasonal.cmsfts.ContextualMultiSeasonalFTS.forecast_ahead">
|
<dt id="pyFTS.models.seasonal.cmsfts.ContextualMultiSeasonalFTS.forecast_ahead">
|
||||||
<code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/seasonal/cmsfts.html#ContextualMultiSeasonalFTS.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.seasonal.cmsfts.ContextualMultiSeasonalFTS.forecast_ahead" title="Permalink to this definition">¶</a></dt>
|
<code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/seasonal/cmsfts.html#ContextualMultiSeasonalFTS.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.seasonal.cmsfts.ContextualMultiSeasonalFTS.forecast_ahead" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Point forecast n steps ahead</p>
|
<dd><p>Point forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
|
||||||
<dl class="field-list simple">
|
<dl class="field-list simple">
|
||||||
<dt class="field-odd">Parameters</dt>
|
<dt class="field-odd">Parameters</dt>
|
||||||
<dd class="field-odd"><ul class="simple">
|
<dd class="field-odd"><ul class="simple">
|
||||||
@ -301,7 +301,7 @@
|
|||||||
<dl class="py class">
|
<dl class="py class">
|
||||||
<dt id="pyFTS.models.seasonal.common.DateTime">
|
<dt id="pyFTS.models.seasonal.common.DateTime">
|
||||||
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.models.seasonal.common.</code><code class="sig-name descname">DateTime</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">value</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/seasonal/common.html#DateTime"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.seasonal.common.DateTime" title="Permalink to this definition">¶</a></dt>
|
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.models.seasonal.common.</code><code class="sig-name descname">DateTime</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">value</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/seasonal/common.html#DateTime"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.seasonal.common.DateTime" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/enum.html#enum.Enum" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">enum.Enum</span></code></a></p>
|
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/enum.html#enum.Enum" title="(in Python v3.9)"><code class="xref py py-class docutils literal notranslate"><span class="pre">enum.Enum</span></code></a></p>
|
||||||
<p>Data and Time granularity for time granularity and seasonality identification</p>
|
<p>Data and Time granularity for time granularity and seasonality identification</p>
|
||||||
<dl class="py attribute">
|
<dl class="py attribute">
|
||||||
<dt id="pyFTS.models.seasonal.common.DateTime.day_of_month">
|
<dt id="pyFTS.models.seasonal.common.DateTime.day_of_month">
|
||||||
@ -479,7 +479,7 @@
|
|||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.models.seasonal.msfts.MultiSeasonalFTS.forecast_ahead">
|
<dt id="pyFTS.models.seasonal.msfts.MultiSeasonalFTS.forecast_ahead">
|
||||||
<code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/seasonal/msfts.html#MultiSeasonalFTS.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.seasonal.msfts.MultiSeasonalFTS.forecast_ahead" title="Permalink to this definition">¶</a></dt>
|
<code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/seasonal/msfts.html#MultiSeasonalFTS.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.seasonal.msfts.MultiSeasonalFTS.forecast_ahead" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Point forecast n steps ahead</p>
|
<dd><p>Point forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
|
||||||
<dl class="field-list simple">
|
<dl class="field-list simple">
|
||||||
<dt class="field-odd">Parameters</dt>
|
<dt class="field-odd">Parameters</dt>
|
||||||
<dd class="field-odd"><ul class="simple">
|
<dd class="field-odd"><ul class="simple">
|
||||||
|
11
docs/build/html/pyFTS.partitioners.html
vendored
@ -77,7 +77,7 @@
|
|||||||
<dl class="py class">
|
<dl class="py class">
|
||||||
<dt id="pyFTS.partitioners.partitioner.Partitioner">
|
<dt id="pyFTS.partitioners.partitioner.Partitioner">
|
||||||
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.partitioners.partitioner.</code><code class="sig-name descname">Partitioner</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/partitioners/partitioner.html#Partitioner"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.partitioners.partitioner.Partitioner" title="Permalink to this definition">¶</a></dt>
|
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.partitioners.partitioner.</code><code class="sig-name descname">Partitioner</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/partitioners/partitioner.html#Partitioner"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.partitioners.partitioner.Partitioner" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
|
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.9)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
|
||||||
<p>Universe of Discourse partitioner. Split data on several fuzzy sets</p>
|
<p>Universe of Discourse partitioner. Split data on several fuzzy sets</p>
|
||||||
<dl class="py method">
|
<dl class="py method">
|
||||||
<dt id="pyFTS.partitioners.partitioner.Partitioner.build">
|
<dt id="pyFTS.partitioners.partitioner.Partitioner.build">
|
||||||
@ -419,7 +419,7 @@ Comput. Math. Appl., vol. 56, no. 12, pp. 3052–3063, Dec. 2008. DOI: 10.1016/j
|
|||||||
|
|
||||||
<dl class="py function">
|
<dl class="py function">
|
||||||
<dt id="pyFTS.partitioners.FCM.fuzzy_cmeans">
|
<dt id="pyFTS.partitioners.FCM.fuzzy_cmeans">
|
||||||
<code class="sig-prename descclassname">pyFTS.partitioners.FCM.</code><code class="sig-name descname">fuzzy_cmeans</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">k</span></em>, <em class="sig-param"><span class="n">dados</span></em>, <em class="sig-param"><span class="n">tam</span></em>, <em class="sig-param"><span class="n">m</span></em>, <em class="sig-param"><span class="n">deltadist</span><span class="o">=</span><span class="default_value">0.001</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/partitioners/FCM.html#fuzzy_cmeans"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.partitioners.FCM.fuzzy_cmeans" title="Permalink to this definition">¶</a></dt>
|
<code class="sig-prename descclassname">pyFTS.partitioners.FCM.</code><code class="sig-name descname">fuzzy_cmeans</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">k</span></em>, <em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">size</span></em>, <em class="sig-param"><span class="n">m</span></em>, <em class="sig-param"><span class="n">deltadist</span><span class="o">=</span><span class="default_value">0.001</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/partitioners/FCM.html#fuzzy_cmeans"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.partitioners.FCM.fuzzy_cmeans" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd></dd></dl>
|
<dd></dd></dl>
|
||||||
|
|
||||||
<dl class="py function">
|
<dl class="py function">
|
||||||
@ -457,6 +457,13 @@ Comput. Math. Appl., vol. 56, no. 12, pp. 3052–3063, Dec. 2008. DOI: 10.1016/j
|
|||||||
|
|
||||||
</dd></dl>
|
</dd></dl>
|
||||||
|
|
||||||
|
<dl class="py class">
|
||||||
|
<dt id="pyFTS.partitioners.Grid.PreFixedGridPartitioner">
|
||||||
|
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.partitioners.Grid.</code><code class="sig-name descname">PreFixedGridPartitioner</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/partitioners/Grid.html#PreFixedGridPartitioner"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.partitioners.Grid.PreFixedGridPartitioner" title="Permalink to this definition">¶</a></dt>
|
||||||
|
<dd><p>Bases: <a class="reference internal" href="#pyFTS.partitioners.Grid.GridPartitioner" title="pyFTS.partitioners.Grid.GridPartitioner"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.partitioners.Grid.GridPartitioner</span></code></a></p>
|
||||||
|
<p>Prefixed UoD with Even Length Grid Partitioner</p>
|
||||||
|
</dd></dl>
|
||||||
|
|
||||||
</div>
|
</div>
|
||||||
<div class="section" id="module-pyFTS.partitioners.Huarng">
|
<div class="section" id="module-pyFTS.partitioners.Huarng">
|
||||||
<span id="pyfts-partitioners-huarng-module"></span><h2>pyFTS.partitioners.Huarng module<a class="headerlink" href="#module-pyFTS.partitioners.Huarng" title="Permalink to this headline">¶</a></h2>
|
<span id="pyfts-partitioners-huarng-module"></span><h2>pyFTS.partitioners.Huarng module<a class="headerlink" href="#module-pyFTS.partitioners.Huarng" title="Permalink to this headline">¶</a></h2>
|
||||||
|
4
docs/build/html/pyFTS.probabilistic.html
vendored
@ -73,7 +73,7 @@
|
|||||||
<dl class="py class">
|
<dl class="py class">
|
||||||
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution">
|
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution">
|
||||||
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.probabilistic.ProbabilityDistribution.</code><code class="sig-name descname">ProbabilityDistribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">type</span><span class="o">=</span><span class="default_value">'KDE'</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution" title="Permalink to this definition">¶</a></dt>
|
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.probabilistic.ProbabilityDistribution.</code><code class="sig-name descname">ProbabilityDistribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">type</span><span class="o">=</span><span class="default_value">'KDE'</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
|
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.9)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
|
||||||
<p>Represents a discrete or continous probability distribution
|
<p>Represents a discrete or continous probability distribution
|
||||||
If type is histogram, the PDF is discrete
|
If type is histogram, the PDF is discrete
|
||||||
If type is KDE the PDF is continuous</p>
|
If type is KDE the PDF is continuous</p>
|
||||||
@ -319,7 +319,7 @@ If type is KDE the PDF is continuous</p>
|
|||||||
<dl class="py class">
|
<dl class="py class">
|
||||||
<dt id="pyFTS.probabilistic.kde.KernelSmoothing">
|
<dt id="pyFTS.probabilistic.kde.KernelSmoothing">
|
||||||
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.probabilistic.kde.</code><code class="sig-name descname">KernelSmoothing</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/kde.html#KernelSmoothing"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.kde.KernelSmoothing" title="Permalink to this definition">¶</a></dt>
|
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.probabilistic.kde.</code><code class="sig-name descname">KernelSmoothing</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/kde.html#KernelSmoothing"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.kde.KernelSmoothing" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
|
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.9)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
|
||||||
<p>Kernel Density Estimation</p>
|
<p>Kernel Density Estimation</p>
|
||||||
<dl class="py attribute">
|
<dl class="py attribute">
|
||||||
<dt id="pyFTS.probabilistic.kde.KernelSmoothing.h">
|
<dt id="pyFTS.probabilistic.kde.KernelSmoothing.h">
|
||||||
|
2
docs/build/html/searchindex.js
vendored
@ -72,6 +72,7 @@ class FTS(object):
|
|||||||
""""""
|
""""""
|
||||||
self.is_time_variant = False
|
self.is_time_variant = False
|
||||||
"""A boolean value indicating if this model is time variant"""
|
"""A boolean value indicating if this model is time variant"""
|
||||||
|
|
||||||
|
|
||||||
def fuzzy(self, data):
|
def fuzzy(self, data):
|
||||||
"""
|
"""
|
||||||
@ -104,7 +105,8 @@ class FTS(object):
|
|||||||
:param data: time series with minimal length to the order of the model
|
:param data: time series with minimal length to the order of the model
|
||||||
|
|
||||||
:keyword type: the forecasting type, one of these values: point(default), interval, distribution or multivariate.
|
:keyword type: the forecasting type, one of these values: point(default), interval, distribution or multivariate.
|
||||||
:keyword steps_ahead: The forecasting horizon, i. e., the number of steps ahead to forecast (default value: 1)
|
:keyword steps_ahead: The forecasting path H, i. e., tell the model to forecast from t+1 to t+H.
|
||||||
|
:keyword step_to: The forecasting step H, i. e., tell the model to forecast to t+H for each input sample
|
||||||
:keyword start_at: in the multi step forecasting, the index of the data where to start forecasting (default value: 0)
|
:keyword start_at: in the multi step forecasting, the index of the data where to start forecasting (default value: 0)
|
||||||
:keyword distributed: boolean, indicate if the forecasting procedure will be distributed in a dispy cluster (default value: False)
|
:keyword distributed: boolean, indicate if the forecasting procedure will be distributed in a dispy cluster (default value: False)
|
||||||
:keyword nodes: a list with the dispy cluster nodes addresses
|
:keyword nodes: a list with the dispy cluster nodes addresses
|
||||||
@ -141,7 +143,9 @@ class FTS(object):
|
|||||||
|
|
||||||
steps_ahead = kw.get("steps_ahead", None)
|
steps_ahead = kw.get("steps_ahead", None)
|
||||||
|
|
||||||
if steps_ahead == None or steps_ahead == 1:
|
step_to = kw.get("step_to", None)
|
||||||
|
|
||||||
|
if (steps_ahead == None and step_to == None) or (steps_ahead == 1 or step_to ==1):
|
||||||
if type == 'point':
|
if type == 'point':
|
||||||
ret = self.forecast(ndata, **kw)
|
ret = self.forecast(ndata, **kw)
|
||||||
elif type == 'interval':
|
elif type == 'interval':
|
||||||
@ -150,7 +154,7 @@ class FTS(object):
|
|||||||
ret = self.forecast_distribution(ndata, **kw)
|
ret = self.forecast_distribution(ndata, **kw)
|
||||||
elif type == 'multivariate':
|
elif type == 'multivariate':
|
||||||
ret = self.forecast_multivariate(ndata, **kw)
|
ret = self.forecast_multivariate(ndata, **kw)
|
||||||
elif steps_ahead > 1:
|
elif step_to == None and steps_ahead > 1:
|
||||||
if type == 'point':
|
if type == 'point':
|
||||||
ret = self.forecast_ahead(ndata, steps_ahead, **kw)
|
ret = self.forecast_ahead(ndata, steps_ahead, **kw)
|
||||||
elif type == 'interval':
|
elif type == 'interval':
|
||||||
@ -159,6 +163,11 @@ class FTS(object):
|
|||||||
ret = self.forecast_ahead_distribution(ndata, steps_ahead, **kw)
|
ret = self.forecast_ahead_distribution(ndata, steps_ahead, **kw)
|
||||||
elif type == 'multivariate':
|
elif type == 'multivariate':
|
||||||
ret = self.forecast_ahead_multivariate(ndata, steps_ahead, **kw)
|
ret = self.forecast_ahead_multivariate(ndata, steps_ahead, **kw)
|
||||||
|
elif step_to > 1:
|
||||||
|
if type == 'point':
|
||||||
|
ret = self.forecast_step(ndata, step_to, **kw)
|
||||||
|
else:
|
||||||
|
raise NotImplementedError('This model only perform point step ahead forecasts!')
|
||||||
|
|
||||||
if not ['point', 'interval', 'distribution', 'multivariate'].__contains__(type):
|
if not ['point', 'interval', 'distribution', 'multivariate'].__contains__(type):
|
||||||
raise ValueError('The argument \'type\' has an unknown value.')
|
raise ValueError('The argument \'type\' has an unknown value.')
|
||||||
@ -227,9 +236,10 @@ class FTS(object):
|
|||||||
"""
|
"""
|
||||||
raise NotImplementedError('This model do not perform one step ahead multivariate forecasts!')
|
raise NotImplementedError('This model do not perform one step ahead multivariate forecasts!')
|
||||||
|
|
||||||
|
|
||||||
def forecast_ahead(self, data, steps, **kwargs):
|
def forecast_ahead(self, data, steps, **kwargs):
|
||||||
"""
|
"""
|
||||||
Point forecast n steps ahead
|
Point forecast from 1 to H steps ahead, where H is given by the steps parameter
|
||||||
|
|
||||||
:param data: time series data with the minimal length equal to the max_lag of the model
|
:param data: time series data with the minimal length equal to the max_lag of the model
|
||||||
:param steps: the number of steps ahead to forecast (default: 1)
|
:param steps: the number of steps ahead to forecast (default: 1)
|
||||||
@ -259,7 +269,7 @@ class FTS(object):
|
|||||||
|
|
||||||
def forecast_ahead_interval(self, data, steps, **kwargs):
|
def forecast_ahead_interval(self, data, steps, **kwargs):
|
||||||
"""
|
"""
|
||||||
Interval forecast n steps ahead
|
Interval forecast from 1 to H steps ahead, where H is given by the steps parameter
|
||||||
|
|
||||||
:param data: time series data with the minimal length equal to the max_lag of the model
|
:param data: time series data with the minimal length equal to the max_lag of the model
|
||||||
:param steps: the number of steps ahead to forecast
|
:param steps: the number of steps ahead to forecast
|
||||||
@ -270,7 +280,7 @@ class FTS(object):
|
|||||||
|
|
||||||
def forecast_ahead_distribution(self, data, steps, **kwargs):
|
def forecast_ahead_distribution(self, data, steps, **kwargs):
|
||||||
"""
|
"""
|
||||||
Probabilistic forecast n steps ahead
|
Probabilistic forecast from 1 to H steps ahead, where H is given by the steps parameter
|
||||||
|
|
||||||
:param data: time series data with the minimal length equal to the max_lag of the model
|
:param data: time series data with the minimal length equal to the max_lag of the model
|
||||||
:param steps: the number of steps ahead to forecast
|
:param steps: the number of steps ahead to forecast
|
||||||
@ -290,6 +300,39 @@ class FTS(object):
|
|||||||
"""
|
"""
|
||||||
raise NotImplementedError('This model do not perform one step ahead multivariate forecasts!')
|
raise NotImplementedError('This model do not perform one step ahead multivariate forecasts!')
|
||||||
|
|
||||||
|
def forecast_step(self, data, step, **kwargs):
|
||||||
|
"""
|
||||||
|
Point forecast for H steps ahead, where H is given by the step parameter
|
||||||
|
|
||||||
|
:param data: time series data with the minimal length equal to the max_lag of the model
|
||||||
|
:param step: the forecasting horizon (default: 1)
|
||||||
|
:keyword start_at: in the multi step forecasting, the index of the data where to start forecasting (default: 0)
|
||||||
|
:return: a list with the forecasted values
|
||||||
|
"""
|
||||||
|
|
||||||
|
l = len(data)
|
||||||
|
|
||||||
|
ret = []
|
||||||
|
|
||||||
|
if l < self.max_lag:
|
||||||
|
return data
|
||||||
|
|
||||||
|
if isinstance(data, np.ndarray):
|
||||||
|
data = data.tolist()
|
||||||
|
|
||||||
|
start = kwargs.get('start_at',0)
|
||||||
|
|
||||||
|
for k in np.arange(start+self.max_lag, l):
|
||||||
|
sample = data[k-self.max_lag:k]
|
||||||
|
tmp = self.forecast_ahead(sample, step, **kwargs)
|
||||||
|
|
||||||
|
if isinstance(tmp,(list, np.ndarray)):
|
||||||
|
tmp = tmp[-1]
|
||||||
|
|
||||||
|
ret.append(tmp)
|
||||||
|
|
||||||
|
return ret
|
||||||
|
|
||||||
def train(self, data, **kwargs):
|
def train(self, data, **kwargs):
|
||||||
"""
|
"""
|
||||||
Method specific parameter fitting
|
Method specific parameter fitting
|
||||||
|
@ -14,7 +14,7 @@ from pyFTS.benchmarks import benchmarks as bchmk, Measures
|
|||||||
from pyFTS.models import chen, yu, cheng, ismailefendi, hofts, pwfts, tsaur, song, sadaei, ifts
|
from pyFTS.models import chen, yu, cheng, ismailefendi, hofts, pwfts, tsaur, song, sadaei, ifts
|
||||||
from pyFTS.models.ensemble import ensemble
|
from pyFTS.models.ensemble import ensemble
|
||||||
from pyFTS.common import Transformations, Membership, Util
|
from pyFTS.common import Transformations, Membership, Util
|
||||||
from pyFTS.benchmarks import arima, quantreg, BSTS, gaussianproc, knn
|
from pyFTS.benchmarks import arima, quantreg #BSTS, gaussianproc, knn
|
||||||
from pyFTS.fcm import fts, common, GA
|
from pyFTS.fcm import fts, common, GA
|
||||||
from pyFTS.common import Transformations
|
from pyFTS.common import Transformations
|
||||||
|
|
||||||
@ -22,32 +22,26 @@ tdiff = Transformations.Differential(1)
|
|||||||
|
|
||||||
boxcox = Transformations.BoxCox(0)
|
boxcox = Transformations.BoxCox(0)
|
||||||
|
|
||||||
df = pd.read_csv('https://query.data.world/s/l3u4gqbrbm5ymo6ghxl7jmxed7sgyk')
|
df = pd.read_csv('https://query.data.world/s/z2xo3t32pkl4mdzp63x6lyne53obmi')
|
||||||
dados = df.iloc[2710:2960 , 0:1].values # somente a 1 coluna sera usada
|
#dados = df.iloc[2710:2960 , 0:1].values # somente a 1 coluna sera usada
|
||||||
dados = dados.flatten().tolist()
|
dados = df['temperature'].values
|
||||||
|
#dados = dados.flatten().tolist()
|
||||||
|
|
||||||
qtde_dt_tr = 150
|
l = len(dados)
|
||||||
dados_treino = dados[:qtde_dt_tr]
|
|
||||||
|
|
||||||
#print(dados_treino)
|
dados_treino = dados[:int(l*.7)]
|
||||||
|
dados_teste = dados[int(l*.7):]
|
||||||
|
|
||||||
ttr = list(range(len(dados_treino)))
|
particionador = Grid.GridPartitioner(data = dados_treino, npart = 15, func = Membership.trimf)
|
||||||
|
|
||||||
ordem = 1 # ordem do modelo, indica quantos ultimos valores serao usados
|
modelo = pwfts.ProbabilisticWeightedFTS(partitioner = particionador, order = 2)
|
||||||
|
|
||||||
dados_teste = dados[qtde_dt_tr - ordem:250]
|
|
||||||
tts = list(range(len(dados_treino) - ordem, len(dados_treino) + len(dados_teste) - ordem))
|
|
||||||
|
|
||||||
particionador = Grid.GridPartitioner(data = dados_treino, npart = 30, func = Membership.trimf)
|
|
||||||
|
|
||||||
modelo = pwfts.ProbabilisticWeightedFTS(partitioner = particionador, order = ordem)
|
|
||||||
|
|
||||||
modelo.fit(dados_treino)
|
modelo.fit(dados_treino)
|
||||||
|
|
||||||
print(modelo)
|
# print(modelo)
|
||||||
|
|
||||||
# Todo o procedimento de inferência é feito pelo método predict
|
# Todo o procedimento de inferência é feito pelo método predict
|
||||||
predicoes = modelo.predict(dados_teste[38:40])
|
predicoes = modelo.predict(dados_teste, step_to=30)
|
||||||
|
|
||||||
print(predicoes)
|
print(predicoes)
|
||||||
|
|
||||||
|