step_to parameter in predict function

This commit is contained in:
Petrônio Cândido 2020-11-23 15:25:14 -03:00
parent e2438afee3
commit 4a05587485
36 changed files with 137 additions and 11131 deletions

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 673 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 756 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 829 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 641 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 222 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 202 B

File diff suppressed because it is too large Load Diff

Binary file not shown.

Before

Width:  |  Height:  |  Size: 214 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 203 B

View File

@ -1,808 +0,0 @@
/*
* websupport.js
* ~~~~~~~~~~~~~
*
* sphinx.websupport utilities for all documentation.
*
* :copyright: Copyright 2007-2018 by the Sphinx team, see AUTHORS.
* :license: BSD, see LICENSE for details.
*
*/
(function($) {
$.fn.autogrow = function() {
return this.each(function() {
var textarea = this;
$.fn.autogrow.resize(textarea);
$(textarea)
.focus(function() {
textarea.interval = setInterval(function() {
$.fn.autogrow.resize(textarea);
}, 500);
})
.blur(function() {
clearInterval(textarea.interval);
});
});
};
$.fn.autogrow.resize = function(textarea) {
var lineHeight = parseInt($(textarea).css('line-height'), 10);
var lines = textarea.value.split('\n');
var columns = textarea.cols;
var lineCount = 0;
$.each(lines, function() {
lineCount += Math.ceil(this.length / columns) || 1;
});
var height = lineHeight * (lineCount + 1);
$(textarea).css('height', height);
};
})(jQuery);
(function($) {
var comp, by;
function init() {
initEvents();
initComparator();
}
function initEvents() {
$(document).on("click", 'a.comment-close', function(event) {
event.preventDefault();
hide($(this).attr('id').substring(2));
});
$(document).on("click", 'a.vote', function(event) {
event.preventDefault();
handleVote($(this));
});
$(document).on("click", 'a.reply', function(event) {
event.preventDefault();
openReply($(this).attr('id').substring(2));
});
$(document).on("click", 'a.close-reply', function(event) {
event.preventDefault();
closeReply($(this).attr('id').substring(2));
});
$(document).on("click", 'a.sort-option', function(event) {
event.preventDefault();
handleReSort($(this));
});
$(document).on("click", 'a.show-proposal', function(event) {
event.preventDefault();
showProposal($(this).attr('id').substring(2));
});
$(document).on("click", 'a.hide-proposal', function(event) {
event.preventDefault();
hideProposal($(this).attr('id').substring(2));
});
$(document).on("click", 'a.show-propose-change', function(event) {
event.preventDefault();
showProposeChange($(this).attr('id').substring(2));
});
$(document).on("click", 'a.hide-propose-change', function(event) {
event.preventDefault();
hideProposeChange($(this).attr('id').substring(2));
});
$(document).on("click", 'a.accept-comment', function(event) {
event.preventDefault();
acceptComment($(this).attr('id').substring(2));
});
$(document).on("click", 'a.delete-comment', function(event) {
event.preventDefault();
deleteComment($(this).attr('id').substring(2));
});
$(document).on("click", 'a.comment-markup', function(event) {
event.preventDefault();
toggleCommentMarkupBox($(this).attr('id').substring(2));
});
}
/**
* Set comp, which is a comparator function used for sorting and
* inserting comments into the list.
*/
function setComparator() {
// If the first three letters are "asc", sort in ascending order
// and remove the prefix.
if (by.substring(0,3) == 'asc') {
var i = by.substring(3);
comp = function(a, b) { return a[i] - b[i]; };
} else {
// Otherwise sort in descending order.
comp = function(a, b) { return b[by] - a[by]; };
}
// Reset link styles and format the selected sort option.
$('a.sel').attr('href', '#').removeClass('sel');
$('a.by' + by).removeAttr('href').addClass('sel');
}
/**
* Create a comp function. If the user has preferences stored in
* the sortBy cookie, use those, otherwise use the default.
*/
function initComparator() {
by = 'rating'; // Default to sort by rating.
// If the sortBy cookie is set, use that instead.
if (document.cookie.length > 0) {
var start = document.cookie.indexOf('sortBy=');
if (start != -1) {
start = start + 7;
var end = document.cookie.indexOf(";", start);
if (end == -1) {
end = document.cookie.length;
by = unescape(document.cookie.substring(start, end));
}
}
}
setComparator();
}
/**
* Show a comment div.
*/
function show(id) {
$('#ao' + id).hide();
$('#ah' + id).show();
var context = $.extend({id: id}, opts);
var popup = $(renderTemplate(popupTemplate, context)).hide();
popup.find('textarea[name="proposal"]').hide();
popup.find('a.by' + by).addClass('sel');
var form = popup.find('#cf' + id);
form.submit(function(event) {
event.preventDefault();
addComment(form);
});
$('#s' + id).after(popup);
popup.slideDown('fast', function() {
getComments(id);
});
}
/**
* Hide a comment div.
*/
function hide(id) {
$('#ah' + id).hide();
$('#ao' + id).show();
var div = $('#sc' + id);
div.slideUp('fast', function() {
div.remove();
});
}
/**
* Perform an ajax request to get comments for a node
* and insert the comments into the comments tree.
*/
function getComments(id) {
$.ajax({
type: 'GET',
url: opts.getCommentsURL,
data: {node: id},
success: function(data, textStatus, request) {
var ul = $('#cl' + id);
var speed = 100;
$('#cf' + id)
.find('textarea[name="proposal"]')
.data('source', data.source);
if (data.comments.length === 0) {
ul.html('<li>No comments yet.</li>');
ul.data('empty', true);
} else {
// If there are comments, sort them and put them in the list.
var comments = sortComments(data.comments);
speed = data.comments.length * 100;
appendComments(comments, ul);
ul.data('empty', false);
}
$('#cn' + id).slideUp(speed + 200);
ul.slideDown(speed);
},
error: function(request, textStatus, error) {
showError('Oops, there was a problem retrieving the comments.');
},
dataType: 'json'
});
}
/**
* Add a comment via ajax and insert the comment into the comment tree.
*/
function addComment(form) {
var node_id = form.find('input[name="node"]').val();
var parent_id = form.find('input[name="parent"]').val();
var text = form.find('textarea[name="comment"]').val();
var proposal = form.find('textarea[name="proposal"]').val();
if (text == '') {
showError('Please enter a comment.');
return;
}
// Disable the form that is being submitted.
form.find('textarea,input').attr('disabled', 'disabled');
// Send the comment to the server.
$.ajax({
type: "POST",
url: opts.addCommentURL,
dataType: 'json',
data: {
node: node_id,
parent: parent_id,
text: text,
proposal: proposal
},
success: function(data, textStatus, error) {
// Reset the form.
if (node_id) {
hideProposeChange(node_id);
}
form.find('textarea')
.val('')
.add(form.find('input'))
.removeAttr('disabled');
var ul = $('#cl' + (node_id || parent_id));
if (ul.data('empty')) {
$(ul).empty();
ul.data('empty', false);
}
insertComment(data.comment);
var ao = $('#ao' + node_id);
ao.find('img').attr({'src': opts.commentBrightImage});
if (node_id) {
// if this was a "root" comment, remove the commenting box
// (the user can get it back by reopening the comment popup)
$('#ca' + node_id).slideUp();
}
},
error: function(request, textStatus, error) {
form.find('textarea,input').removeAttr('disabled');
showError('Oops, there was a problem adding the comment.');
}
});
}
/**
* Recursively append comments to the main comment list and children
* lists, creating the comment tree.
*/
function appendComments(comments, ul) {
$.each(comments, function() {
var div = createCommentDiv(this);
ul.append($(document.createElement('li')).html(div));
appendComments(this.children, div.find('ul.comment-children'));
// To avoid stagnating data, don't store the comments children in data.
this.children = null;
div.data('comment', this);
});
}
/**
* After adding a new comment, it must be inserted in the correct
* location in the comment tree.
*/
function insertComment(comment) {
var div = createCommentDiv(comment);
// To avoid stagnating data, don't store the comments children in data.
comment.children = null;
div.data('comment', comment);
var ul = $('#cl' + (comment.node || comment.parent));
var siblings = getChildren(ul);
var li = $(document.createElement('li'));
li.hide();
// Determine where in the parents children list to insert this comment.
for(var i=0; i < siblings.length; i++) {
if (comp(comment, siblings[i]) <= 0) {
$('#cd' + siblings[i].id)
.parent()
.before(li.html(div));
li.slideDown('fast');
return;
}
}
// If we get here, this comment rates lower than all the others,
// or it is the only comment in the list.
ul.append(li.html(div));
li.slideDown('fast');
}
function acceptComment(id) {
$.ajax({
type: 'POST',
url: opts.acceptCommentURL,
data: {id: id},
success: function(data, textStatus, request) {
$('#cm' + id).fadeOut('fast');
$('#cd' + id).removeClass('moderate');
},
error: function(request, textStatus, error) {
showError('Oops, there was a problem accepting the comment.');
}
});
}
function deleteComment(id) {
$.ajax({
type: 'POST',
url: opts.deleteCommentURL,
data: {id: id},
success: function(data, textStatus, request) {
var div = $('#cd' + id);
if (data == 'delete') {
// Moderator mode: remove the comment and all children immediately
div.slideUp('fast', function() {
div.remove();
});
return;
}
// User mode: only mark the comment as deleted
div
.find('span.user-id:first')
.text('[deleted]').end()
.find('div.comment-text:first')
.text('[deleted]').end()
.find('#cm' + id + ', #dc' + id + ', #ac' + id + ', #rc' + id +
', #sp' + id + ', #hp' + id + ', #cr' + id + ', #rl' + id)
.remove();
var comment = div.data('comment');
comment.username = '[deleted]';
comment.text = '[deleted]';
div.data('comment', comment);
},
error: function(request, textStatus, error) {
showError('Oops, there was a problem deleting the comment.');
}
});
}
function showProposal(id) {
$('#sp' + id).hide();
$('#hp' + id).show();
$('#pr' + id).slideDown('fast');
}
function hideProposal(id) {
$('#hp' + id).hide();
$('#sp' + id).show();
$('#pr' + id).slideUp('fast');
}
function showProposeChange(id) {
$('#pc' + id).hide();
$('#hc' + id).show();
var textarea = $('#pt' + id);
textarea.val(textarea.data('source'));
$.fn.autogrow.resize(textarea[0]);
textarea.slideDown('fast');
}
function hideProposeChange(id) {
$('#hc' + id).hide();
$('#pc' + id).show();
var textarea = $('#pt' + id);
textarea.val('').removeAttr('disabled');
textarea.slideUp('fast');
}
function toggleCommentMarkupBox(id) {
$('#mb' + id).toggle();
}
/** Handle when the user clicks on a sort by link. */
function handleReSort(link) {
var classes = link.attr('class').split(/\s+/);
for (var i=0; i<classes.length; i++) {
if (classes[i] != 'sort-option') {
by = classes[i].substring(2);
}
}
setComparator();
// Save/update the sortBy cookie.
var expiration = new Date();
expiration.setDate(expiration.getDate() + 365);
document.cookie= 'sortBy=' + escape(by) +
';expires=' + expiration.toUTCString();
$('ul.comment-ul').each(function(index, ul) {
var comments = getChildren($(ul), true);
comments = sortComments(comments);
appendComments(comments, $(ul).empty());
});
}
/**
* Function to process a vote when a user clicks an arrow.
*/
function handleVote(link) {
if (!opts.voting) {
showError("You'll need to login to vote.");
return;
}
var id = link.attr('id');
if (!id) {
// Didn't click on one of the voting arrows.
return;
}
// If it is an unvote, the new vote value is 0,
// Otherwise it's 1 for an upvote, or -1 for a downvote.
var value = 0;
if (id.charAt(1) != 'u') {
value = id.charAt(0) == 'u' ? 1 : -1;
}
// The data to be sent to the server.
var d = {
comment_id: id.substring(2),
value: value
};
// Swap the vote and unvote links.
link.hide();
$('#' + id.charAt(0) + (id.charAt(1) == 'u' ? 'v' : 'u') + d.comment_id)
.show();
// The div the comment is displayed in.
var div = $('div#cd' + d.comment_id);
var data = div.data('comment');
// If this is not an unvote, and the other vote arrow has
// already been pressed, unpress it.
if ((d.value !== 0) && (data.vote === d.value * -1)) {
$('#' + (d.value == 1 ? 'd' : 'u') + 'u' + d.comment_id).hide();
$('#' + (d.value == 1 ? 'd' : 'u') + 'v' + d.comment_id).show();
}
// Update the comments rating in the local data.
data.rating += (data.vote === 0) ? d.value : (d.value - data.vote);
data.vote = d.value;
div.data('comment', data);
// Change the rating text.
div.find('.rating:first')
.text(data.rating + ' point' + (data.rating == 1 ? '' : 's'));
// Send the vote information to the server.
$.ajax({
type: "POST",
url: opts.processVoteURL,
data: d,
error: function(request, textStatus, error) {
showError('Oops, there was a problem casting that vote.');
}
});
}
/**
* Open a reply form used to reply to an existing comment.
*/
function openReply(id) {
// Swap out the reply link for the hide link
$('#rl' + id).hide();
$('#cr' + id).show();
// Add the reply li to the children ul.
var div = $(renderTemplate(replyTemplate, {id: id})).hide();
$('#cl' + id)
.prepend(div)
// Setup the submit handler for the reply form.
.find('#rf' + id)
.submit(function(event) {
event.preventDefault();
addComment($('#rf' + id));
closeReply(id);
})
.find('input[type=button]')
.click(function() {
closeReply(id);
});
div.slideDown('fast', function() {
$('#rf' + id).find('textarea').focus();
});
}
/**
* Close the reply form opened with openReply.
*/
function closeReply(id) {
// Remove the reply div from the DOM.
$('#rd' + id).slideUp('fast', function() {
$(this).remove();
});
// Swap out the hide link for the reply link
$('#cr' + id).hide();
$('#rl' + id).show();
}
/**
* Recursively sort a tree of comments using the comp comparator.
*/
function sortComments(comments) {
comments.sort(comp);
$.each(comments, function() {
this.children = sortComments(this.children);
});
return comments;
}
/**
* Get the children comments from a ul. If recursive is true,
* recursively include childrens' children.
*/
function getChildren(ul, recursive) {
var children = [];
ul.children().children("[id^='cd']")
.each(function() {
var comment = $(this).data('comment');
if (recursive)
comment.children = getChildren($(this).find('#cl' + comment.id), true);
children.push(comment);
});
return children;
}
/** Create a div to display a comment in. */
function createCommentDiv(comment) {
if (!comment.displayed && !opts.moderator) {
return $('<div class="moderate">Thank you! Your comment will show up '
+ 'once it is has been approved by a moderator.</div>');
}
// Prettify the comment rating.
comment.pretty_rating = comment.rating + ' point' +
(comment.rating == 1 ? '' : 's');
// Make a class (for displaying not yet moderated comments differently)
comment.css_class = comment.displayed ? '' : ' moderate';
// Create a div for this comment.
var context = $.extend({}, opts, comment);
var div = $(renderTemplate(commentTemplate, context));
// If the user has voted on this comment, highlight the correct arrow.
if (comment.vote) {
var direction = (comment.vote == 1) ? 'u' : 'd';
div.find('#' + direction + 'v' + comment.id).hide();
div.find('#' + direction + 'u' + comment.id).show();
}
if (opts.moderator || comment.text != '[deleted]') {
div.find('a.reply').show();
if (comment.proposal_diff)
div.find('#sp' + comment.id).show();
if (opts.moderator && !comment.displayed)
div.find('#cm' + comment.id).show();
if (opts.moderator || (opts.username == comment.username))
div.find('#dc' + comment.id).show();
}
return div;
}
/**
* A simple template renderer. Placeholders such as <%id%> are replaced
* by context['id'] with items being escaped. Placeholders such as <#id#>
* are not escaped.
*/
function renderTemplate(template, context) {
var esc = $(document.createElement('div'));
function handle(ph, escape) {
var cur = context;
$.each(ph.split('.'), function() {
cur = cur[this];
});
return escape ? esc.text(cur || "").html() : cur;
}
return template.replace(/<([%#])([\w\.]*)\1>/g, function() {
return handle(arguments[2], arguments[1] == '%' ? true : false);
});
}
/** Flash an error message briefly. */
function showError(message) {
$(document.createElement('div')).attr({'class': 'popup-error'})
.append($(document.createElement('div'))
.attr({'class': 'error-message'}).text(message))
.appendTo('body')
.fadeIn("slow")
.delay(2000)
.fadeOut("slow");
}
/** Add a link the user uses to open the comments popup. */
$.fn.comment = function() {
return this.each(function() {
var id = $(this).attr('id').substring(1);
var count = COMMENT_METADATA[id];
var title = count + ' comment' + (count == 1 ? '' : 's');
var image = count > 0 ? opts.commentBrightImage : opts.commentImage;
var addcls = count == 0 ? ' nocomment' : '';
$(this)
.append(
$(document.createElement('a')).attr({
href: '#',
'class': 'sphinx-comment-open' + addcls,
id: 'ao' + id
})
.append($(document.createElement('img')).attr({
src: image,
alt: 'comment',
title: title
}))
.click(function(event) {
event.preventDefault();
show($(this).attr('id').substring(2));
})
)
.append(
$(document.createElement('a')).attr({
href: '#',
'class': 'sphinx-comment-close hidden',
id: 'ah' + id
})
.append($(document.createElement('img')).attr({
src: opts.closeCommentImage,
alt: 'close',
title: 'close'
}))
.click(function(event) {
event.preventDefault();
hide($(this).attr('id').substring(2));
})
);
});
};
var opts = {
processVoteURL: '/_process_vote',
addCommentURL: '/_add_comment',
getCommentsURL: '/_get_comments',
acceptCommentURL: '/_accept_comment',
deleteCommentURL: '/_delete_comment',
commentImage: '/static/_static/comment.png',
closeCommentImage: '/static/_static/comment-close.png',
loadingImage: '/static/_static/ajax-loader.gif',
commentBrightImage: '/static/_static/comment-bright.png',
upArrow: '/static/_static/up.png',
downArrow: '/static/_static/down.png',
upArrowPressed: '/static/_static/up-pressed.png',
downArrowPressed: '/static/_static/down-pressed.png',
voting: false,
moderator: false
};
if (typeof COMMENT_OPTIONS != "undefined") {
opts = jQuery.extend(opts, COMMENT_OPTIONS);
}
var popupTemplate = '\
<div class="sphinx-comments" id="sc<%id%>">\
<p class="sort-options">\
Sort by:\
<a href="#" class="sort-option byrating">best rated</a>\
<a href="#" class="sort-option byascage">newest</a>\
<a href="#" class="sort-option byage">oldest</a>\
</p>\
<div class="comment-header">Comments</div>\
<div class="comment-loading" id="cn<%id%>">\
loading comments... <img src="<%loadingImage%>" alt="" /></div>\
<ul id="cl<%id%>" class="comment-ul"></ul>\
<div id="ca<%id%>">\
<p class="add-a-comment">Add a comment\
(<a href="#" class="comment-markup" id="ab<%id%>">markup</a>):</p>\
<div class="comment-markup-box" id="mb<%id%>">\
reStructured text markup: <i>*emph*</i>, <b>**strong**</b>, \
<code>``code``</code>, \
code blocks: <code>::</code> and an indented block after blank line</div>\
<form method="post" id="cf<%id%>" class="comment-form" action="">\
<textarea name="comment" cols="80"></textarea>\
<p class="propose-button">\
<a href="#" id="pc<%id%>" class="show-propose-change">\
Propose a change &#9657;\
</a>\
<a href="#" id="hc<%id%>" class="hide-propose-change">\
Propose a change &#9663;\
</a>\
</p>\
<textarea name="proposal" id="pt<%id%>" cols="80"\
spellcheck="false"></textarea>\
<input type="submit" value="Add comment" />\
<input type="hidden" name="node" value="<%id%>" />\
<input type="hidden" name="parent" value="" />\
</form>\
</div>\
</div>';
var commentTemplate = '\
<div id="cd<%id%>" class="sphinx-comment<%css_class%>">\
<div class="vote">\
<div class="arrow">\
<a href="#" id="uv<%id%>" class="vote" title="vote up">\
<img src="<%upArrow%>" />\
</a>\
<a href="#" id="uu<%id%>" class="un vote" title="vote up">\
<img src="<%upArrowPressed%>" />\
</a>\
</div>\
<div class="arrow">\
<a href="#" id="dv<%id%>" class="vote" title="vote down">\
<img src="<%downArrow%>" id="da<%id%>" />\
</a>\
<a href="#" id="du<%id%>" class="un vote" title="vote down">\
<img src="<%downArrowPressed%>" />\
</a>\
</div>\
</div>\
<div class="comment-content">\
<p class="tagline comment">\
<span class="user-id"><%username%></span>\
<span class="rating"><%pretty_rating%></span>\
<span class="delta"><%time.delta%></span>\
</p>\
<div class="comment-text comment"><#text#></div>\
<p class="comment-opts comment">\
<a href="#" class="reply hidden" id="rl<%id%>">reply &#9657;</a>\
<a href="#" class="close-reply" id="cr<%id%>">reply &#9663;</a>\
<a href="#" id="sp<%id%>" class="show-proposal">proposal &#9657;</a>\
<a href="#" id="hp<%id%>" class="hide-proposal">proposal &#9663;</a>\
<a href="#" id="dc<%id%>" class="delete-comment hidden">delete</a>\
<span id="cm<%id%>" class="moderation hidden">\
<a href="#" id="ac<%id%>" class="accept-comment">accept</a>\
</span>\
</p>\
<pre class="proposal" id="pr<%id%>">\
<#proposal_diff#>\
</pre>\
<ul class="comment-children" id="cl<%id%>"></ul>\
</div>\
<div class="clearleft"></div>\
</div>\
</div>';
var replyTemplate = '\
<li>\
<div class="reply-div" id="rd<%id%>">\
<form id="rf<%id%>">\
<textarea name="comment" cols="80"></textarea>\
<input type="submit" value="Add reply" />\
<input type="button" value="Cancel" />\
<input type="hidden" name="parent" value="<%id%>" />\
<input type="hidden" name="node" value="" />\
</form>\
</div>\
</li>';
$(document).ready(function() {
init();
});
})(jQuery);
$(document).ready(function() {
// add comment anchors for all paragraphs that are commentable
$('.sphinx-has-comment').comment();
// highlight search words in search results
$("div.context").each(function() {
var params = $.getQueryParameters();
var terms = (params.q) ? params.q[0].split(/\s+/) : [];
var result = $(this);
$.each(terms, function() {
result.highlightText(this.toLowerCase(), 'highlighted');
});
});
// directly open comment window if requested
var anchor = document.location.hash;
if (anchor.substring(0, 9) == '#comment-') {
$('#ao' + anchor.substring(9)).click();
document.location.hash = '#s' + anchor.substring(9);
}
});

View File

@ -772,6 +772,8 @@
<li><a href="pyFTS.models.multivariate.html#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_multivariate">(pyFTS.models.multivariate.cmvfts.ClusteredMVFTS method)</a> <li><a href="pyFTS.models.multivariate.html#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_multivariate">(pyFTS.models.multivariate.cmvfts.ClusteredMVFTS method)</a>
</li> </li>
</ul></li> </ul></li>
<li><a href="pyFTS.common.html#pyFTS.common.fts.FTS.forecast_step">forecast_step() (pyFTS.common.fts.FTS method)</a>
</li>
<li><a href="pyFTS.models.multivariate.html#pyFTS.models.multivariate.mvfts.MVFTS.format_data">format_data() (pyFTS.models.multivariate.mvfts.MVFTS method)</a> <li><a href="pyFTS.models.multivariate.html#pyFTS.models.multivariate.mvfts.MVFTS.format_data">format_data() (pyFTS.models.multivariate.mvfts.MVFTS method)</a>
<ul> <ul>
@ -2014,6 +2016,8 @@
<li><a href="pyFTS.common.html#pyFTS.common.fts.FTS.predict">predict() (pyFTS.common.fts.FTS method)</a> <li><a href="pyFTS.common.html#pyFTS.common.fts.FTS.predict">predict() (pyFTS.common.fts.FTS method)</a>
</li> </li>
<li><a href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner.prefix">prefix (pyFTS.partitioners.partitioner.Partitioner attribute)</a> <li><a href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner.prefix">prefix (pyFTS.partitioners.partitioner.Partitioner attribute)</a>
</li>
<li><a href="pyFTS.partitioners.html#pyFTS.partitioners.Grid.PreFixedGridPartitioner">PreFixedGridPartitioner (class in pyFTS.partitioners.Grid)</a>
</li> </li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.print_distribution_statistics">print_distribution_statistics() (in module pyFTS.benchmarks.benchmarks)</a> <li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.print_distribution_statistics">print_distribution_statistics() (in module pyFTS.benchmarks.benchmarks)</a>
</li> </li>

Binary file not shown.

View File

@ -1400,7 +1400,7 @@ of the metric measure with the same tag, returning a Pandas DataFram
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.benchmarks.arima.ARIMA.forecast_ahead_distribution"> <dt id="pyFTS.benchmarks.arima.ARIMA.forecast_ahead_distribution">
<code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/arima.html#ARIMA.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.arima.ARIMA.forecast_ahead_distribution" title="Permalink to this definition"></a></dt> <code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/arima.html#ARIMA.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.arima.ARIMA.forecast_ahead_distribution" title="Permalink to this definition"></a></dt>
<dd><p>Probabilistic forecast n steps ahead</p> <dd><p>Probabilistic forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters</dt> <dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple"> <dd class="field-odd"><ul class="simple">
@ -1418,7 +1418,7 @@ of the metric measure with the same tag, returning a Pandas DataFram
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.benchmarks.arima.ARIMA.forecast_ahead_interval"> <dt id="pyFTS.benchmarks.arima.ARIMA.forecast_ahead_interval">
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">ndata</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/arima.html#ARIMA.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.arima.ARIMA.forecast_ahead_interval" title="Permalink to this definition"></a></dt> <code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">ndata</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/arima.html#ARIMA.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.arima.ARIMA.forecast_ahead_interval" title="Permalink to this definition"></a></dt>
<dd><p>Interval forecast n steps ahead</p> <dd><p>Interval forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters</dt> <dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple"> <dd class="field-odd"><ul class="simple">
@ -1516,7 +1516,7 @@ of the metric measure with the same tag, returning a Pandas DataFram
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.benchmarks.knn.KNearestNeighbors.forecast_ahead_distribution"> <dt id="pyFTS.benchmarks.knn.KNearestNeighbors.forecast_ahead_distribution">
<code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/knn.html#KNearestNeighbors.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.knn.KNearestNeighbors.forecast_ahead_distribution" title="Permalink to this definition"></a></dt> <code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/knn.html#KNearestNeighbors.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.knn.KNearestNeighbors.forecast_ahead_distribution" title="Permalink to this definition"></a></dt>
<dd><p>Probabilistic forecast n steps ahead</p> <dd><p>Probabilistic forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters</dt> <dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple"> <dd class="field-odd"><ul class="simple">
@ -1534,7 +1534,7 @@ of the metric measure with the same tag, returning a Pandas DataFram
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.benchmarks.knn.KNearestNeighbors.forecast_ahead_interval"> <dt id="pyFTS.benchmarks.knn.KNearestNeighbors.forecast_ahead_interval">
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/knn.html#KNearestNeighbors.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.knn.KNearestNeighbors.forecast_ahead_interval" title="Permalink to this definition"></a></dt> <code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/knn.html#KNearestNeighbors.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.knn.KNearestNeighbors.forecast_ahead_interval" title="Permalink to this definition"></a></dt>
<dd><p>Interval forecast n steps ahead</p> <dd><p>Interval forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters</dt> <dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple"> <dd class="field-odd"><ul class="simple">
@ -1659,7 +1659,7 @@ of the metric measure with the same tag, returning a Pandas DataFram
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.benchmarks.quantreg.QuantileRegression.forecast_ahead_distribution"> <dt id="pyFTS.benchmarks.quantreg.QuantileRegression.forecast_ahead_distribution">
<code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">ndata</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/quantreg.html#QuantileRegression.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.quantreg.QuantileRegression.forecast_ahead_distribution" title="Permalink to this definition"></a></dt> <code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">ndata</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/quantreg.html#QuantileRegression.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.quantreg.QuantileRegression.forecast_ahead_distribution" title="Permalink to this definition"></a></dt>
<dd><p>Probabilistic forecast n steps ahead</p> <dd><p>Probabilistic forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters</dt> <dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple"> <dd class="field-odd"><ul class="simple">
@ -1677,7 +1677,7 @@ of the metric measure with the same tag, returning a Pandas DataFram
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.benchmarks.quantreg.QuantileRegression.forecast_ahead_interval"> <dt id="pyFTS.benchmarks.quantreg.QuantileRegression.forecast_ahead_interval">
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">ndata</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/quantreg.html#QuantileRegression.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.quantreg.QuantileRegression.forecast_ahead_interval" title="Permalink to this definition"></a></dt> <code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">ndata</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/quantreg.html#QuantileRegression.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.quantreg.QuantileRegression.forecast_ahead_interval" title="Permalink to this definition"></a></dt>
<dd><p>Interval forecast n steps ahead</p> <dd><p>Interval forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters</dt> <dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple"> <dd class="field-odd"><ul class="simple">
@ -1788,7 +1788,7 @@ of the metric measure with the same tag, returning a Pandas DataFram
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead"> <dt id="pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead">
<code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/BSTS.html#ARIMA.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead" title="Permalink to this definition"></a></dt> <code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/BSTS.html#ARIMA.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead" title="Permalink to this definition"></a></dt>
<dd><p>Point forecast n steps ahead</p> <dd><p>Point forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters</dt> <dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple"> <dd class="field-odd"><ul class="simple">
@ -1806,7 +1806,7 @@ of the metric measure with the same tag, returning a Pandas DataFram
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead_distribution"> <dt id="pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead_distribution">
<code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/BSTS.html#ARIMA.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead_distribution" title="Permalink to this definition"></a></dt> <code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/BSTS.html#ARIMA.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead_distribution" title="Permalink to this definition"></a></dt>
<dd><p>Probabilistic forecast n steps ahead</p> <dd><p>Probabilistic forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters</dt> <dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple"> <dd class="field-odd"><ul class="simple">
@ -1824,7 +1824,7 @@ of the metric measure with the same tag, returning a Pandas DataFram
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead_interval"> <dt id="pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead_interval">
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">ndata</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/BSTS.html#ARIMA.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead_interval" title="Permalink to this definition"></a></dt> <code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">ndata</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/BSTS.html#ARIMA.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead_interval" title="Permalink to this definition"></a></dt>
<dd><p>Interval forecast n steps ahead</p> <dd><p>Interval forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters</dt> <dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple"> <dd class="field-odd"><ul class="simple">

View File

@ -150,7 +150,7 @@
<dl class="py class"> <dl class="py class">
<dt id="pyFTS.common.FLR.FLR"> <dt id="pyFTS.common.FLR.FLR">
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.common.FLR.</code><code class="sig-name descname">FLR</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">LHS</span></em>, <em class="sig-param"><span class="n">RHS</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/FLR.html#FLR"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.FLR.FLR" title="Permalink to this definition"></a></dt> <em class="property">class </em><code class="sig-prename descclassname">pyFTS.common.FLR.</code><code class="sig-name descname">FLR</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">LHS</span></em>, <em class="sig-param"><span class="n">RHS</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/FLR.html#FLR"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.FLR.FLR" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p> <dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.9)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
<p>Fuzzy Logical Relationship</p> <p>Fuzzy Logical Relationship</p>
<p>Represents a temporal transition of the fuzzy set LHS on time t for the fuzzy set RHS on time t+1.</p> <p>Represents a temporal transition of the fuzzy set LHS on time t for the fuzzy set RHS on time t+1.</p>
<dl class="py attribute"> <dl class="py attribute">
@ -246,7 +246,7 @@
<dl class="py class"> <dl class="py class">
<dt id="pyFTS.common.FuzzySet.FuzzySet"> <dt id="pyFTS.common.FuzzySet.FuzzySet">
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.common.FuzzySet.</code><code class="sig-name descname">FuzzySet</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">name</span></em>, <em class="sig-param"><span class="n">mf</span></em>, <em class="sig-param"><span class="n">parameters</span></em>, <em class="sig-param"><span class="n">centroid</span></em>, <em class="sig-param"><span class="n">alpha</span><span class="o">=</span><span class="default_value">1.0</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/FuzzySet.html#FuzzySet"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.FuzzySet.FuzzySet" title="Permalink to this definition"></a></dt> <em class="property">class </em><code class="sig-prename descclassname">pyFTS.common.FuzzySet.</code><code class="sig-name descname">FuzzySet</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">name</span></em>, <em class="sig-param"><span class="n">mf</span></em>, <em class="sig-param"><span class="n">parameters</span></em>, <em class="sig-param"><span class="n">centroid</span></em>, <em class="sig-param"><span class="n">alpha</span><span class="o">=</span><span class="default_value">1.0</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/FuzzySet.html#FuzzySet"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.FuzzySet.FuzzySet" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p> <dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.9)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
<p>Fuzzy Set</p> <p>Fuzzy Set</p>
<dl class="py attribute"> <dl class="py attribute">
<dt id="pyFTS.common.FuzzySet.FuzzySet.Z"> <dt id="pyFTS.common.FuzzySet.FuzzySet.Z">
@ -600,7 +600,7 @@
<dl class="py class"> <dl class="py class">
<dt id="pyFTS.common.SortedCollection.SortedCollection"> <dt id="pyFTS.common.SortedCollection.SortedCollection">
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.common.SortedCollection.</code><code class="sig-name descname">SortedCollection</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">iterable</span><span class="o">=</span><span class="default_value">()</span></em>, <em class="sig-param"><span class="n">key</span><span class="o">=</span><span class="default_value">None</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/SortedCollection.html#SortedCollection"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.SortedCollection.SortedCollection" title="Permalink to this definition"></a></dt> <em class="property">class </em><code class="sig-prename descclassname">pyFTS.common.SortedCollection.</code><code class="sig-name descname">SortedCollection</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">iterable</span><span class="o">=</span><span class="default_value">()</span></em>, <em class="sig-param"><span class="n">key</span><span class="o">=</span><span class="default_value">None</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/SortedCollection.html#SortedCollection"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.SortedCollection.SortedCollection" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p> <dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.9)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
<p>Sequence sorted by a key function.</p> <p>Sequence sorted by a key function.</p>
<p>SortedCollection() is much easier to work with than using bisect() directly. <p>SortedCollection() is much easier to work with than using bisect() directly.
It supports key functions like those use in sorted(), min(), and max(). It supports key functions like those use in sorted(), min(), and max().
@ -1096,7 +1096,7 @@ y(t) = ( y(t-1) * y(t) ) + y(t-1)</p>
<dl class="py class"> <dl class="py class">
<dt id="pyFTS.common.Transformations.Transformation"> <dt id="pyFTS.common.Transformations.Transformation">
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.common.Transformations.</code><code class="sig-name descname">Transformation</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/Transformations.html#Transformation"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.Transformations.Transformation" title="Permalink to this definition"></a></dt> <em class="property">class </em><code class="sig-prename descclassname">pyFTS.common.Transformations.</code><code class="sig-name descname">Transformation</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/Transformations.html#Transformation"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.Transformations.Transformation" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p> <dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.9)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
<p>Data transformation used on pre and post processing of the FTS</p> <p>Data transformation used on pre and post processing of the FTS</p>
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.common.Transformations.Transformation.apply"> <dt id="pyFTS.common.Transformations.Transformation.apply">
@ -1413,7 +1413,7 @@ y(t) = ( y(t-1) * y(t) ) + y(t-1)</p>
<dl class="py class"> <dl class="py class">
<dt id="pyFTS.common.flrg.FLRG"> <dt id="pyFTS.common.flrg.FLRG">
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.common.flrg.</code><code class="sig-name descname">FLRG</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">order</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/flrg.html#FLRG"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.flrg.FLRG" title="Permalink to this definition"></a></dt> <em class="property">class </em><code class="sig-prename descclassname">pyFTS.common.flrg.</code><code class="sig-name descname">FLRG</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">order</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/flrg.html#FLRG"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.flrg.FLRG" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p> <dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.9)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
<p>Fuzzy Logical Relationship Group</p> <p>Fuzzy Logical Relationship Group</p>
<p>Group a set of FLRs with the same LHS. Represents the temporal patterns for time t+1 (the RHS fuzzy sets) <p>Group a set of FLRs with the same LHS. Represents the temporal patterns for time t+1 (the RHS fuzzy sets)
when the LHS pattern is identified on time t.</p> when the LHS pattern is identified on time t.</p>
@ -1523,7 +1523,7 @@ when the LHS pattern is identified on time t.</p>
<dl class="py class"> <dl class="py class">
<dt id="pyFTS.common.fts.FTS"> <dt id="pyFTS.common.fts.FTS">
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.common.fts.</code><code class="sig-name descname">FTS</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/fts.html#FTS"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.fts.FTS" title="Permalink to this definition"></a></dt> <em class="property">class </em><code class="sig-prename descclassname">pyFTS.common.fts.</code><code class="sig-name descname">FTS</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/fts.html#FTS"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.fts.FTS" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p> <dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.9)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
<p>Fuzzy Time Series object model</p> <p>Fuzzy Time Series object model</p>
<dl class="py attribute"> <dl class="py attribute">
<dt id="pyFTS.common.fts.FTS.alpha_cut"> <dt id="pyFTS.common.fts.FTS.alpha_cut">
@ -1673,7 +1673,7 @@ when the LHS pattern is identified on time t.</p>
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.common.fts.FTS.forecast_ahead"> <dt id="pyFTS.common.fts.FTS.forecast_ahead">
<code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/fts.html#FTS.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.fts.FTS.forecast_ahead" title="Permalink to this definition"></a></dt> <code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/fts.html#FTS.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.fts.FTS.forecast_ahead" title="Permalink to this definition"></a></dt>
<dd><p>Point forecast n steps ahead</p> <dd><p>Point forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters</dt> <dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple"> <dd class="field-odd"><ul class="simple">
@ -1691,7 +1691,7 @@ when the LHS pattern is identified on time t.</p>
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.common.fts.FTS.forecast_ahead_distribution"> <dt id="pyFTS.common.fts.FTS.forecast_ahead_distribution">
<code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/fts.html#FTS.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.fts.FTS.forecast_ahead_distribution" title="Permalink to this definition"></a></dt> <code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/fts.html#FTS.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.fts.FTS.forecast_ahead_distribution" title="Permalink to this definition"></a></dt>
<dd><p>Probabilistic forecast n steps ahead</p> <dd><p>Probabilistic forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters</dt> <dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple"> <dd class="field-odd"><ul class="simple">
@ -1709,7 +1709,7 @@ when the LHS pattern is identified on time t.</p>
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.common.fts.FTS.forecast_ahead_interval"> <dt id="pyFTS.common.fts.FTS.forecast_ahead_interval">
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/fts.html#FTS.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.fts.FTS.forecast_ahead_interval" title="Permalink to this definition"></a></dt> <code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/fts.html#FTS.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.fts.FTS.forecast_ahead_interval" title="Permalink to this definition"></a></dt>
<dd><p>Interval forecast n steps ahead</p> <dd><p>Interval forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters</dt> <dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple"> <dd class="field-odd"><ul class="simple">
@ -1793,6 +1793,24 @@ when the LHS pattern is identified on time t.</p>
</dl> </dl>
</dd></dl> </dd></dl>
<dl class="py method">
<dt id="pyFTS.common.fts.FTS.forecast_step">
<code class="sig-name descname">forecast_step</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">step</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/fts.html#FTS.forecast_step"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.fts.FTS.forecast_step" title="Permalink to this definition"></a></dt>
<dd><p>Point forecast for H steps ahead, where H is given by the step parameter</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>step</strong> the forecasting horizon (default: 1)</p></li>
<li><p><strong>start_at</strong> in the multi step forecasting, the index of the data where to start forecasting (default: 0)</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the forecasted values</p>
</dd>
</dl>
</dd></dl>
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.common.fts.FTS.fuzzy"> <dt id="pyFTS.common.fts.FTS.fuzzy">
<code class="sig-name descname">fuzzy</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/fts.html#FTS.fuzzy"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.fts.FTS.fuzzy" title="Permalink to this definition"></a></dt> <code class="sig-name descname">fuzzy</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/fts.html#FTS.fuzzy"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.fts.FTS.fuzzy" title="Permalink to this definition"></a></dt>
@ -1981,7 +1999,8 @@ model, among other parameters.</p>
<dd class="field-odd"><ul class="simple"> <dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series with minimal length to the order of the model</p></li> <li><p><strong>data</strong> time series with minimal length to the order of the model</p></li>
<li><p><strong>type</strong> the forecasting type, one of these values: point(default), interval, distribution or multivariate.</p></li> <li><p><strong>type</strong> the forecasting type, one of these values: point(default), interval, distribution or multivariate.</p></li>
<li><p><strong>steps_ahead</strong> The forecasting horizon, i. e., the number of steps ahead to forecast (default value: 1)</p></li> <li><p><strong>steps_ahead</strong> The forecasting path H, i. e., tell the model to forecast from t+1 to t+H.</p></li>
<li><p><strong>step_to</strong> The forecasting step H, i. e., tell the model to forecast to t+H for each input sample</p></li>
<li><p><strong>start_at</strong> in the multi step forecasting, the index of the data where to start forecasting (default value: 0)</p></li> <li><p><strong>start_at</strong> in the multi step forecasting, the index of the data where to start forecasting (default value: 0)</p></li>
<li><p><strong>distributed</strong> boolean, indicate if the forecasting procedure will be distributed in a dispy cluster (default value: False)</p></li> <li><p><strong>distributed</strong> boolean, indicate if the forecasting procedure will be distributed in a dispy cluster (default value: False)</p></li>
<li><p><strong>nodes</strong> a list with the dispy cluster nodes addresses</p></li> <li><p><strong>nodes</strong> a list with the dispy cluster nodes addresses</p></li>
@ -2056,14 +2075,14 @@ models that accept the actual values and forecast new ones.</p></li>
<dl class="py class"> <dl class="py class">
<dt id="pyFTS.common.tree.FLRGTree"> <dt id="pyFTS.common.tree.FLRGTree">
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.common.tree.</code><code class="sig-name descname">FLRGTree</code><a class="reference internal" href="_modules/pyFTS/common/tree.html#FLRGTree"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.tree.FLRGTree" title="Permalink to this definition"></a></dt> <em class="property">class </em><code class="sig-prename descclassname">pyFTS.common.tree.</code><code class="sig-name descname">FLRGTree</code><a class="reference internal" href="_modules/pyFTS/common/tree.html#FLRGTree"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.tree.FLRGTree" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p> <dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.9)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
<p>Represents a FLRG set with a tree structure</p> <p>Represents a FLRG set with a tree structure</p>
</dd></dl> </dd></dl>
<dl class="py class"> <dl class="py class">
<dt id="pyFTS.common.tree.FLRGTreeNode"> <dt id="pyFTS.common.tree.FLRGTreeNode">
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.common.tree.</code><code class="sig-name descname">FLRGTreeNode</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">value</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/tree.html#FLRGTreeNode"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.tree.FLRGTreeNode" title="Permalink to this definition"></a></dt> <em class="property">class </em><code class="sig-prename descclassname">pyFTS.common.tree.</code><code class="sig-name descname">FLRGTreeNode</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">value</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/tree.html#FLRGTreeNode"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.tree.FLRGTreeNode" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p> <dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.9)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
<p>Tree node for</p> <p>Tree node for</p>
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.common.tree.FLRGTreeNode.appendChild"> <dt id="pyFTS.common.tree.FLRGTreeNode.appendChild">

View File

@ -106,7 +106,7 @@ If the file dont already exists, it will be downloaded and decompressed.</p>
<dl class="py class"> <dl class="py class">
<dt id="pyFTS.data.artificial.SignalEmulator"> <dt id="pyFTS.data.artificial.SignalEmulator">
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.data.artificial.</code><code class="sig-name descname">SignalEmulator</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/data/artificial.html#SignalEmulator"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.data.artificial.SignalEmulator" title="Permalink to this definition"></a></dt> <em class="property">class </em><code class="sig-prename descclassname">pyFTS.data.artificial.</code><code class="sig-name descname">SignalEmulator</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/data/artificial.html#SignalEmulator"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.data.artificial.SignalEmulator" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p> <dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.9)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
<p>Emulate a complex signal built from several additive and non-additive components</p> <p>Emulate a complex signal built from several additive and non-additive components</p>
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.data.artificial.SignalEmulator.blip"> <dt id="pyFTS.data.artificial.SignalEmulator.blip">

View File

@ -143,7 +143,7 @@ XIII Brazilian Congress on Computational Intelligence, 2017. Rio de Janeiro, Bra
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.models.ensemble.ensemble.EnsembleFTS.forecast_ahead_distribution"> <dt id="pyFTS.models.ensemble.ensemble.EnsembleFTS.forecast_ahead_distribution">
<code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ensemble/ensemble.html#EnsembleFTS.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.EnsembleFTS.forecast_ahead_distribution" title="Permalink to this definition"></a></dt> <code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ensemble/ensemble.html#EnsembleFTS.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.EnsembleFTS.forecast_ahead_distribution" title="Permalink to this definition"></a></dt>
<dd><p>Probabilistic forecast n steps ahead</p> <dd><p>Probabilistic forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters</dt> <dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple"> <dd class="field-odd"><ul class="simple">
@ -161,7 +161,7 @@ XIII Brazilian Congress on Computational Intelligence, 2017. Rio de Janeiro, Bra
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.models.ensemble.ensemble.EnsembleFTS.forecast_ahead_interval"> <dt id="pyFTS.models.ensemble.ensemble.EnsembleFTS.forecast_ahead_interval">
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ensemble/ensemble.html#EnsembleFTS.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.EnsembleFTS.forecast_ahead_interval" title="Permalink to this definition"></a></dt> <code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ensemble/ensemble.html#EnsembleFTS.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.EnsembleFTS.forecast_ahead_interval" title="Permalink to this definition"></a></dt>
<dd><p>Interval forecast n steps ahead</p> <dd><p>Interval forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters</dt> <dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple"> <dd class="field-odd"><ul class="simple">

View File

@ -572,7 +572,7 @@ In: Computational Intelligence (SSCI), 2016 IEEE Symposium Series on. IEEE, 2016
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.models.ifts.IntervalFTS.forecast_ahead_interval"> <dt id="pyFTS.models.ifts.IntervalFTS.forecast_ahead_interval">
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ifts.html#IntervalFTS.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ifts.IntervalFTS.forecast_ahead_interval" title="Permalink to this definition"></a></dt> <code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ifts.html#IntervalFTS.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ifts.IntervalFTS.forecast_ahead_interval" title="Permalink to this definition"></a></dt>
<dd><p>Interval forecast n steps ahead</p> <dd><p>Interval forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters</dt> <dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple"> <dd class="field-odd"><ul class="simple">
@ -629,7 +629,7 @@ In: Computational Intelligence (SSCI), 2016 IEEE Symposium Series on. IEEE, 2016
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.models.ifts.WeightedIntervalFTS.forecast_ahead_interval"> <dt id="pyFTS.models.ifts.WeightedIntervalFTS.forecast_ahead_interval">
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ifts.html#WeightedIntervalFTS.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ifts.WeightedIntervalFTS.forecast_ahead_interval" title="Permalink to this definition"></a></dt> <code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ifts.html#WeightedIntervalFTS.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ifts.WeightedIntervalFTS.forecast_ahead_interval" title="Permalink to this definition"></a></dt>
<dd><p>Interval forecast n steps ahead</p> <dd><p>Interval forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters</dt> <dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple"> <dd class="field-odd"><ul class="simple">
@ -885,7 +885,7 @@ US Dollar to Ringgit Malaysia,” Int. J. Comput. Intell. Appl., vol. 12, no. 1,
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead"> <dt id="pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead">
<code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead" title="Permalink to this definition"></a></dt> <code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead" title="Permalink to this definition"></a></dt>
<dd><p>Point forecast n steps ahead</p> <dd><p>Point forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters</dt> <dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple"> <dd class="field-odd"><ul class="simple">
@ -903,7 +903,7 @@ US Dollar to Ringgit Malaysia,” Int. J. Comput. Intell. Appl., vol. 12, no. 1,
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead_distribution"> <dt id="pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead_distribution">
<code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">ndata</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead_distribution" title="Permalink to this definition"></a></dt> <code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">ndata</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead_distribution" title="Permalink to this definition"></a></dt>
<dd><p>Probabilistic forecast n steps ahead</p> <dd><p>Probabilistic forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters</dt> <dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple"> <dd class="field-odd"><ul class="simple">
@ -921,7 +921,7 @@ US Dollar to Ringgit Malaysia,” Int. J. Comput. Intell. Appl., vol. 12, no. 1,
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead_interval"> <dt id="pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead_interval">
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead_interval" title="Permalink to this definition"></a></dt> <code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead_interval" title="Permalink to this definition"></a></dt>
<dd><p>Interval forecast n steps ahead</p> <dd><p>Interval forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters</dt> <dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple"> <dd class="field-odd"><ul class="simple">

View File

@ -116,7 +116,7 @@ window of recent lags, whose size is controlled by the parameter window_lengt
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.models.incremental.TimeVariant.Retrainer.forecast_ahead"> <dt id="pyFTS.models.incremental.TimeVariant.Retrainer.forecast_ahead">
<code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/incremental/TimeVariant.html#Retrainer.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.incremental.TimeVariant.Retrainer.forecast_ahead" title="Permalink to this definition"></a></dt> <code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/incremental/TimeVariant.html#Retrainer.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.incremental.TimeVariant.Retrainer.forecast_ahead" title="Permalink to this definition"></a></dt>
<dd><p>Point forecast n steps ahead</p> <dd><p>Point forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters</dt> <dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple"> <dd class="field-odd"><ul class="simple">
@ -237,7 +237,7 @@ model, among other parameters.</p>
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.forecast_ahead"> <dt id="pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.forecast_ahead">
<code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/incremental/IncrementalEnsemble.html#IncrementalEnsembleFTS.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.forecast_ahead" title="Permalink to this definition"></a></dt> <code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/incremental/IncrementalEnsemble.html#IncrementalEnsembleFTS.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.forecast_ahead" title="Permalink to this definition"></a></dt>
<dd><p>Point forecast n steps ahead</p> <dd><p>Point forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters</dt> <dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple"> <dd class="field-odd"><ul class="simple">

View File

@ -78,7 +78,7 @@
<dl class="py class"> <dl class="py class">
<dt id="pyFTS.models.multivariate.FLR.FLR"> <dt id="pyFTS.models.multivariate.FLR.FLR">
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.models.multivariate.FLR.</code><code class="sig-name descname">FLR</code><a class="reference internal" href="_modules/pyFTS/models/multivariate/FLR.html#FLR"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.multivariate.FLR.FLR" title="Permalink to this definition"></a></dt> <em class="property">class </em><code class="sig-prename descclassname">pyFTS.models.multivariate.FLR.</code><code class="sig-name descname">FLR</code><a class="reference internal" href="_modules/pyFTS/models/multivariate/FLR.html#FLR"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.multivariate.FLR.FLR" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p> <dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.9)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
<p>Multivariate Fuzzy Logical Relationship</p> <p>Multivariate Fuzzy Logical Relationship</p>
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.models.multivariate.FLR.FLR.set_lhs"> <dt id="pyFTS.models.multivariate.FLR.FLR.set_lhs">
@ -151,7 +151,7 @@
<dl class="py class"> <dl class="py class">
<dt id="pyFTS.models.multivariate.variable.Variable"> <dt id="pyFTS.models.multivariate.variable.Variable">
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.models.multivariate.variable.</code><code class="sig-name descname">Variable</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">name</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/variable.html#Variable"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.multivariate.variable.Variable" title="Permalink to this definition"></a></dt> <em class="property">class </em><code class="sig-prename descclassname">pyFTS.models.multivariate.variable.</code><code class="sig-name descname">Variable</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">name</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/variable.html#Variable"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.multivariate.variable.Variable" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p> <dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.9)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
<p>A variable of a fuzzy time series multivariate model. Each variable contains its own <p>A variable of a fuzzy time series multivariate model. Each variable contains its own
transformations and partitioners.</p> transformations and partitioners.</p>
<dl class="py attribute"> <dl class="py attribute">
@ -514,7 +514,7 @@ multivariate fuzzy set base.</p>
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.models.multivariate.mvfts.MVFTS.forecast_ahead"> <dt id="pyFTS.models.multivariate.mvfts.MVFTS.forecast_ahead">
<code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/mvfts.html#MVFTS.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.forecast_ahead" title="Permalink to this definition"></a></dt> <code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/mvfts.html#MVFTS.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.forecast_ahead" title="Permalink to this definition"></a></dt>
<dd><p>Point forecast n steps ahead</p> <dd><p>Point forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters</dt> <dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple"> <dd class="field-odd"><ul class="simple">
@ -532,7 +532,7 @@ multivariate fuzzy set base.</p>
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.models.multivariate.mvfts.MVFTS.forecast_ahead_interval"> <dt id="pyFTS.models.multivariate.mvfts.MVFTS.forecast_ahead_interval">
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/mvfts.html#MVFTS.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.forecast_ahead_interval" title="Permalink to this definition"></a></dt> <code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/mvfts.html#MVFTS.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.forecast_ahead_interval" title="Permalink to this definition"></a></dt>
<dd><p>Interval forecast n steps ahead</p> <dd><p>Interval forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters</dt> <dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple"> <dd class="field-odd"><ul class="simple">
@ -715,7 +715,7 @@ multivariate fuzzy set base.</p>
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_ahead_distribution"> <dt id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_ahead_distribution">
<code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/cmvfts.html#ClusteredMVFTS.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_ahead_distribution" title="Permalink to this definition"></a></dt> <code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/cmvfts.html#ClusteredMVFTS.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_ahead_distribution" title="Permalink to this definition"></a></dt>
<dd><p>Probabilistic forecast n steps ahead</p> <dd><p>Probabilistic forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters</dt> <dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple"> <dd class="field-odd"><ul class="simple">

View File

@ -733,7 +733,7 @@ IEEE Transactions on Fuzzy Systems, v. 16, n. 4, p. 1072-1086, 2008.</p>
<span id="pyfts-models-nonstationary-util-module"></span><h2>pyFTS.models.nonstationary.util module<a class="headerlink" href="#module-pyFTS.models.nonstationary.util" title="Permalink to this headline"></a></h2> <span id="pyfts-models-nonstationary-util-module"></span><h2>pyFTS.models.nonstationary.util module<a class="headerlink" href="#module-pyFTS.models.nonstationary.util" title="Permalink to this headline"></a></h2>
<dl class="py function"> <dl class="py function">
<dt id="pyFTS.models.nonstationary.util.plot_sets"> <dt id="pyFTS.models.nonstationary.util.plot_sets">
<code class="sig-prename descclassname">pyFTS.models.nonstationary.util.</code><code class="sig-name descname">plot_sets</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">partitioner</span></em>, <em class="sig-param"><span class="n">start</span><span class="o">=</span><span class="default_value">0</span></em>, <em class="sig-param"><span class="n">end</span><span class="o">=</span><span class="default_value">10</span></em>, <em class="sig-param"><span class="n">step</span><span class="o">=</span><span class="default_value">1</span></em>, <em class="sig-param"><span class="n">tam</span><span class="o">=</span><span class="default_value">[5, 5]</span></em>, <em class="sig-param"><span class="n">colors</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">save</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">file</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">axes</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">data</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">window_size</span><span class="o">=</span><span class="default_value">1</span></em>, <em class="sig-param"><span class="n">only_lines</span><span class="o">=</span><span class="default_value">False</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/util.html#plot_sets"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.nonstationary.util.plot_sets" title="Permalink to this definition"></a></dt> <code class="sig-prename descclassname">pyFTS.models.nonstationary.util.</code><code class="sig-name descname">plot_sets</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">partitioner</span></em>, <em class="sig-param"><span class="n">start</span><span class="o">=</span><span class="default_value">0</span></em>, <em class="sig-param"><span class="n">end</span><span class="o">=</span><span class="default_value">10</span></em>, <em class="sig-param"><span class="n">step</span><span class="o">=</span><span class="default_value">1</span></em>, <em class="sig-param"><span class="n">tam</span><span class="o">=</span><span class="default_value">[5, 5]</span></em>, <em class="sig-param"><span class="n">colors</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">save</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">file</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">axes</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">data</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">window_size</span><span class="o">=</span><span class="default_value">1</span></em>, <em class="sig-param"><span class="n">only_lines</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">legend</span><span class="o">=</span><span class="default_value">True</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/util.html#plot_sets"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.nonstationary.util.plot_sets" title="Permalink to this definition"></a></dt>
<dd></dd></dl> <dd></dd></dl>
<dl class="py function"> <dl class="py function">

View File

@ -180,7 +180,7 @@
<dl class="py class"> <dl class="py class">
<dt id="pyFTS.models.seasonal.SeasonalIndexer.SeasonalIndexer"> <dt id="pyFTS.models.seasonal.SeasonalIndexer.SeasonalIndexer">
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.models.seasonal.SeasonalIndexer.</code><code class="sig-name descname">SeasonalIndexer</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">num_seasons</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/seasonal/SeasonalIndexer.html#SeasonalIndexer"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.seasonal.SeasonalIndexer.SeasonalIndexer" title="Permalink to this definition"></a></dt> <em class="property">class </em><code class="sig-prename descclassname">pyFTS.models.seasonal.SeasonalIndexer.</code><code class="sig-name descname">SeasonalIndexer</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">num_seasons</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/seasonal/SeasonalIndexer.html#SeasonalIndexer"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.seasonal.SeasonalIndexer.SeasonalIndexer" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p> <dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.9)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
<p>Seasonal Indexer. Responsible to find the seasonal index of a data point inside its data set</p> <p>Seasonal Indexer. Responsible to find the seasonal index of a data point inside its data set</p>
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.models.seasonal.SeasonalIndexer.SeasonalIndexer.get_data"> <dt id="pyFTS.models.seasonal.SeasonalIndexer.SeasonalIndexer.get_data">
@ -242,7 +242,7 @@
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.models.seasonal.cmsfts.ContextualMultiSeasonalFTS.forecast_ahead"> <dt id="pyFTS.models.seasonal.cmsfts.ContextualMultiSeasonalFTS.forecast_ahead">
<code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/seasonal/cmsfts.html#ContextualMultiSeasonalFTS.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.seasonal.cmsfts.ContextualMultiSeasonalFTS.forecast_ahead" title="Permalink to this definition"></a></dt> <code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/seasonal/cmsfts.html#ContextualMultiSeasonalFTS.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.seasonal.cmsfts.ContextualMultiSeasonalFTS.forecast_ahead" title="Permalink to this definition"></a></dt>
<dd><p>Point forecast n steps ahead</p> <dd><p>Point forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters</dt> <dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple"> <dd class="field-odd"><ul class="simple">
@ -301,7 +301,7 @@
<dl class="py class"> <dl class="py class">
<dt id="pyFTS.models.seasonal.common.DateTime"> <dt id="pyFTS.models.seasonal.common.DateTime">
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.models.seasonal.common.</code><code class="sig-name descname">DateTime</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">value</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/seasonal/common.html#DateTime"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.seasonal.common.DateTime" title="Permalink to this definition"></a></dt> <em class="property">class </em><code class="sig-prename descclassname">pyFTS.models.seasonal.common.</code><code class="sig-name descname">DateTime</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">value</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/seasonal/common.html#DateTime"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.seasonal.common.DateTime" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/enum.html#enum.Enum" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">enum.Enum</span></code></a></p> <dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/enum.html#enum.Enum" title="(in Python v3.9)"><code class="xref py py-class docutils literal notranslate"><span class="pre">enum.Enum</span></code></a></p>
<p>Data and Time granularity for time granularity and seasonality identification</p> <p>Data and Time granularity for time granularity and seasonality identification</p>
<dl class="py attribute"> <dl class="py attribute">
<dt id="pyFTS.models.seasonal.common.DateTime.day_of_month"> <dt id="pyFTS.models.seasonal.common.DateTime.day_of_month">
@ -479,7 +479,7 @@
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.models.seasonal.msfts.MultiSeasonalFTS.forecast_ahead"> <dt id="pyFTS.models.seasonal.msfts.MultiSeasonalFTS.forecast_ahead">
<code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/seasonal/msfts.html#MultiSeasonalFTS.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.seasonal.msfts.MultiSeasonalFTS.forecast_ahead" title="Permalink to this definition"></a></dt> <code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/seasonal/msfts.html#MultiSeasonalFTS.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.seasonal.msfts.MultiSeasonalFTS.forecast_ahead" title="Permalink to this definition"></a></dt>
<dd><p>Point forecast n steps ahead</p> <dd><p>Point forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters</dt> <dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple"> <dd class="field-odd"><ul class="simple">

View File

@ -77,7 +77,7 @@
<dl class="py class"> <dl class="py class">
<dt id="pyFTS.partitioners.partitioner.Partitioner"> <dt id="pyFTS.partitioners.partitioner.Partitioner">
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.partitioners.partitioner.</code><code class="sig-name descname">Partitioner</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/partitioners/partitioner.html#Partitioner"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.partitioners.partitioner.Partitioner" title="Permalink to this definition"></a></dt> <em class="property">class </em><code class="sig-prename descclassname">pyFTS.partitioners.partitioner.</code><code class="sig-name descname">Partitioner</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/partitioners/partitioner.html#Partitioner"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.partitioners.partitioner.Partitioner" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p> <dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.9)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
<p>Universe of Discourse partitioner. Split data on several fuzzy sets</p> <p>Universe of Discourse partitioner. Split data on several fuzzy sets</p>
<dl class="py method"> <dl class="py method">
<dt id="pyFTS.partitioners.partitioner.Partitioner.build"> <dt id="pyFTS.partitioners.partitioner.Partitioner.build">
@ -419,7 +419,7 @@ Comput. Math. Appl., vol. 56, no. 12, pp. 30523063, Dec. 2008. DOI: 10.1016/j
<dl class="py function"> <dl class="py function">
<dt id="pyFTS.partitioners.FCM.fuzzy_cmeans"> <dt id="pyFTS.partitioners.FCM.fuzzy_cmeans">
<code class="sig-prename descclassname">pyFTS.partitioners.FCM.</code><code class="sig-name descname">fuzzy_cmeans</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">k</span></em>, <em class="sig-param"><span class="n">dados</span></em>, <em class="sig-param"><span class="n">tam</span></em>, <em class="sig-param"><span class="n">m</span></em>, <em class="sig-param"><span class="n">deltadist</span><span class="o">=</span><span class="default_value">0.001</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/partitioners/FCM.html#fuzzy_cmeans"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.partitioners.FCM.fuzzy_cmeans" title="Permalink to this definition"></a></dt> <code class="sig-prename descclassname">pyFTS.partitioners.FCM.</code><code class="sig-name descname">fuzzy_cmeans</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">k</span></em>, <em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">size</span></em>, <em class="sig-param"><span class="n">m</span></em>, <em class="sig-param"><span class="n">deltadist</span><span class="o">=</span><span class="default_value">0.001</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/partitioners/FCM.html#fuzzy_cmeans"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.partitioners.FCM.fuzzy_cmeans" title="Permalink to this definition"></a></dt>
<dd></dd></dl> <dd></dd></dl>
<dl class="py function"> <dl class="py function">
@ -457,6 +457,13 @@ Comput. Math. Appl., vol. 56, no. 12, pp. 30523063, Dec. 2008. DOI: 10.1016/j
</dd></dl> </dd></dl>
<dl class="py class">
<dt id="pyFTS.partitioners.Grid.PreFixedGridPartitioner">
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.partitioners.Grid.</code><code class="sig-name descname">PreFixedGridPartitioner</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/partitioners/Grid.html#PreFixedGridPartitioner"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.partitioners.Grid.PreFixedGridPartitioner" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#pyFTS.partitioners.Grid.GridPartitioner" title="pyFTS.partitioners.Grid.GridPartitioner"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.partitioners.Grid.GridPartitioner</span></code></a></p>
<p>Prefixed UoD with Even Length Grid Partitioner</p>
</dd></dl>
</div> </div>
<div class="section" id="module-pyFTS.partitioners.Huarng"> <div class="section" id="module-pyFTS.partitioners.Huarng">
<span id="pyfts-partitioners-huarng-module"></span><h2>pyFTS.partitioners.Huarng module<a class="headerlink" href="#module-pyFTS.partitioners.Huarng" title="Permalink to this headline"></a></h2> <span id="pyfts-partitioners-huarng-module"></span><h2>pyFTS.partitioners.Huarng module<a class="headerlink" href="#module-pyFTS.partitioners.Huarng" title="Permalink to this headline"></a></h2>

View File

@ -73,7 +73,7 @@
<dl class="py class"> <dl class="py class">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution"> <dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution">
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.probabilistic.ProbabilityDistribution.</code><code class="sig-name descname">ProbabilityDistribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">type</span><span class="o">=</span><span class="default_value">'KDE'</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution" title="Permalink to this definition"></a></dt> <em class="property">class </em><code class="sig-prename descclassname">pyFTS.probabilistic.ProbabilityDistribution.</code><code class="sig-name descname">ProbabilityDistribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">type</span><span class="o">=</span><span class="default_value">'KDE'</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p> <dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.9)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
<p>Represents a discrete or continous probability distribution <p>Represents a discrete or continous probability distribution
If type is histogram, the PDF is discrete If type is histogram, the PDF is discrete
If type is KDE the PDF is continuous</p> If type is KDE the PDF is continuous</p>
@ -319,7 +319,7 @@ If type is KDE the PDF is continuous</p>
<dl class="py class"> <dl class="py class">
<dt id="pyFTS.probabilistic.kde.KernelSmoothing"> <dt id="pyFTS.probabilistic.kde.KernelSmoothing">
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.probabilistic.kde.</code><code class="sig-name descname">KernelSmoothing</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/kde.html#KernelSmoothing"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.kde.KernelSmoothing" title="Permalink to this definition"></a></dt> <em class="property">class </em><code class="sig-prename descclassname">pyFTS.probabilistic.kde.</code><code class="sig-name descname">KernelSmoothing</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/kde.html#KernelSmoothing"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.kde.KernelSmoothing" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p> <dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.9)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
<p>Kernel Density Estimation</p> <p>Kernel Density Estimation</p>
<dl class="py attribute"> <dl class="py attribute">
<dt id="pyFTS.probabilistic.kde.KernelSmoothing.h"> <dt id="pyFTS.probabilistic.kde.KernelSmoothing.h">

File diff suppressed because one or more lines are too long

View File

@ -73,6 +73,7 @@ class FTS(object):
self.is_time_variant = False self.is_time_variant = False
"""A boolean value indicating if this model is time variant""" """A boolean value indicating if this model is time variant"""
def fuzzy(self, data): def fuzzy(self, data):
""" """
Fuzzify a data point Fuzzify a data point
@ -104,7 +105,8 @@ class FTS(object):
:param data: time series with minimal length to the order of the model :param data: time series with minimal length to the order of the model
:keyword type: the forecasting type, one of these values: point(default), interval, distribution or multivariate. :keyword type: the forecasting type, one of these values: point(default), interval, distribution or multivariate.
:keyword steps_ahead: The forecasting horizon, i. e., the number of steps ahead to forecast (default value: 1) :keyword steps_ahead: The forecasting path H, i. e., tell the model to forecast from t+1 to t+H.
:keyword step_to: The forecasting step H, i. e., tell the model to forecast to t+H for each input sample
:keyword start_at: in the multi step forecasting, the index of the data where to start forecasting (default value: 0) :keyword start_at: in the multi step forecasting, the index of the data where to start forecasting (default value: 0)
:keyword distributed: boolean, indicate if the forecasting procedure will be distributed in a dispy cluster (default value: False) :keyword distributed: boolean, indicate if the forecasting procedure will be distributed in a dispy cluster (default value: False)
:keyword nodes: a list with the dispy cluster nodes addresses :keyword nodes: a list with the dispy cluster nodes addresses
@ -141,7 +143,9 @@ class FTS(object):
steps_ahead = kw.get("steps_ahead", None) steps_ahead = kw.get("steps_ahead", None)
if steps_ahead == None or steps_ahead == 1: step_to = kw.get("step_to", None)
if (steps_ahead == None and step_to == None) or (steps_ahead == 1 or step_to ==1):
if type == 'point': if type == 'point':
ret = self.forecast(ndata, **kw) ret = self.forecast(ndata, **kw)
elif type == 'interval': elif type == 'interval':
@ -150,7 +154,7 @@ class FTS(object):
ret = self.forecast_distribution(ndata, **kw) ret = self.forecast_distribution(ndata, **kw)
elif type == 'multivariate': elif type == 'multivariate':
ret = self.forecast_multivariate(ndata, **kw) ret = self.forecast_multivariate(ndata, **kw)
elif steps_ahead > 1: elif step_to == None and steps_ahead > 1:
if type == 'point': if type == 'point':
ret = self.forecast_ahead(ndata, steps_ahead, **kw) ret = self.forecast_ahead(ndata, steps_ahead, **kw)
elif type == 'interval': elif type == 'interval':
@ -159,6 +163,11 @@ class FTS(object):
ret = self.forecast_ahead_distribution(ndata, steps_ahead, **kw) ret = self.forecast_ahead_distribution(ndata, steps_ahead, **kw)
elif type == 'multivariate': elif type == 'multivariate':
ret = self.forecast_ahead_multivariate(ndata, steps_ahead, **kw) ret = self.forecast_ahead_multivariate(ndata, steps_ahead, **kw)
elif step_to > 1:
if type == 'point':
ret = self.forecast_step(ndata, step_to, **kw)
else:
raise NotImplementedError('This model only perform point step ahead forecasts!')
if not ['point', 'interval', 'distribution', 'multivariate'].__contains__(type): if not ['point', 'interval', 'distribution', 'multivariate'].__contains__(type):
raise ValueError('The argument \'type\' has an unknown value.') raise ValueError('The argument \'type\' has an unknown value.')
@ -227,9 +236,10 @@ class FTS(object):
""" """
raise NotImplementedError('This model do not perform one step ahead multivariate forecasts!') raise NotImplementedError('This model do not perform one step ahead multivariate forecasts!')
def forecast_ahead(self, data, steps, **kwargs): def forecast_ahead(self, data, steps, **kwargs):
""" """
Point forecast n steps ahead Point forecast from 1 to H steps ahead, where H is given by the steps parameter
:param data: time series data with the minimal length equal to the max_lag of the model :param data: time series data with the minimal length equal to the max_lag of the model
:param steps: the number of steps ahead to forecast (default: 1) :param steps: the number of steps ahead to forecast (default: 1)
@ -259,7 +269,7 @@ class FTS(object):
def forecast_ahead_interval(self, data, steps, **kwargs): def forecast_ahead_interval(self, data, steps, **kwargs):
""" """
Interval forecast n steps ahead Interval forecast from 1 to H steps ahead, where H is given by the steps parameter
:param data: time series data with the minimal length equal to the max_lag of the model :param data: time series data with the minimal length equal to the max_lag of the model
:param steps: the number of steps ahead to forecast :param steps: the number of steps ahead to forecast
@ -270,7 +280,7 @@ class FTS(object):
def forecast_ahead_distribution(self, data, steps, **kwargs): def forecast_ahead_distribution(self, data, steps, **kwargs):
""" """
Probabilistic forecast n steps ahead Probabilistic forecast from 1 to H steps ahead, where H is given by the steps parameter
:param data: time series data with the minimal length equal to the max_lag of the model :param data: time series data with the minimal length equal to the max_lag of the model
:param steps: the number of steps ahead to forecast :param steps: the number of steps ahead to forecast
@ -290,6 +300,39 @@ class FTS(object):
""" """
raise NotImplementedError('This model do not perform one step ahead multivariate forecasts!') raise NotImplementedError('This model do not perform one step ahead multivariate forecasts!')
def forecast_step(self, data, step, **kwargs):
"""
Point forecast for H steps ahead, where H is given by the step parameter
:param data: time series data with the minimal length equal to the max_lag of the model
:param step: the forecasting horizon (default: 1)
:keyword start_at: in the multi step forecasting, the index of the data where to start forecasting (default: 0)
:return: a list with the forecasted values
"""
l = len(data)
ret = []
if l < self.max_lag:
return data
if isinstance(data, np.ndarray):
data = data.tolist()
start = kwargs.get('start_at',0)
for k in np.arange(start+self.max_lag, l):
sample = data[k-self.max_lag:k]
tmp = self.forecast_ahead(sample, step, **kwargs)
if isinstance(tmp,(list, np.ndarray)):
tmp = tmp[-1]
ret.append(tmp)
return ret
def train(self, data, **kwargs): def train(self, data, **kwargs):
""" """
Method specific parameter fitting Method specific parameter fitting

View File

@ -14,7 +14,7 @@ from pyFTS.benchmarks import benchmarks as bchmk, Measures
from pyFTS.models import chen, yu, cheng, ismailefendi, hofts, pwfts, tsaur, song, sadaei, ifts from pyFTS.models import chen, yu, cheng, ismailefendi, hofts, pwfts, tsaur, song, sadaei, ifts
from pyFTS.models.ensemble import ensemble from pyFTS.models.ensemble import ensemble
from pyFTS.common import Transformations, Membership, Util from pyFTS.common import Transformations, Membership, Util
from pyFTS.benchmarks import arima, quantreg, BSTS, gaussianproc, knn from pyFTS.benchmarks import arima, quantreg #BSTS, gaussianproc, knn
from pyFTS.fcm import fts, common, GA from pyFTS.fcm import fts, common, GA
from pyFTS.common import Transformations from pyFTS.common import Transformations
@ -22,32 +22,26 @@ tdiff = Transformations.Differential(1)
boxcox = Transformations.BoxCox(0) boxcox = Transformations.BoxCox(0)
df = pd.read_csv('https://query.data.world/s/l3u4gqbrbm5ymo6ghxl7jmxed7sgyk') df = pd.read_csv('https://query.data.world/s/z2xo3t32pkl4mdzp63x6lyne53obmi')
dados = df.iloc[2710:2960 , 0:1].values # somente a 1 coluna sera usada #dados = df.iloc[2710:2960 , 0:1].values # somente a 1 coluna sera usada
dados = dados.flatten().tolist() dados = df['temperature'].values
#dados = dados.flatten().tolist()
qtde_dt_tr = 150 l = len(dados)
dados_treino = dados[:qtde_dt_tr]
#print(dados_treino) dados_treino = dados[:int(l*.7)]
dados_teste = dados[int(l*.7):]
ttr = list(range(len(dados_treino))) particionador = Grid.GridPartitioner(data = dados_treino, npart = 15, func = Membership.trimf)
ordem = 1 # ordem do modelo, indica quantos ultimos valores serao usados modelo = pwfts.ProbabilisticWeightedFTS(partitioner = particionador, order = 2)
dados_teste = dados[qtde_dt_tr - ordem:250]
tts = list(range(len(dados_treino) - ordem, len(dados_treino) + len(dados_teste) - ordem))
particionador = Grid.GridPartitioner(data = dados_treino, npart = 30, func = Membership.trimf)
modelo = pwfts.ProbabilisticWeightedFTS(partitioner = particionador, order = ordem)
modelo.fit(dados_treino) modelo.fit(dados_treino)
print(modelo) # print(modelo)
# Todo o procedimento de inferência é feito pelo método predict # Todo o procedimento de inferência é feito pelo método predict
predicoes = modelo.predict(dados_teste[38:40]) predicoes = modelo.predict(dados_teste, step_to=30)
print(predicoes) print(predicoes)