LinearTrend and ROI transformations

This commit is contained in:
Petrônio Cândido 2020-01-24 00:33:17 -03:00
parent 87a50c1342
commit 40bcd43230

View File

@ -3,6 +3,7 @@ Common data transformation used on pre and post processing of the FTS
"""
import numpy as np
import pandas as pd
import math
from pyFTS import *
@ -45,6 +46,9 @@ class Transformation(object):
class Differential(Transformation):
"""
Differentiation data transform
y'(t) = y(t) - y(t-1)
y(t) = y(t-1) + y'(t)
"""
def __init__(self, lag):
super(Differential, self).__init__()
@ -193,6 +197,9 @@ class AdaptiveExpectation(Transformation):
class BoxCox(Transformation):
"""
Box-Cox power transformation
y'(t) = log( y(t) )
y(t) = exp( y'(t) )
"""
def __init__(self, plambda):
super(BoxCox, self).__init__()
@ -225,16 +232,106 @@ def Z(original):
return z
# retrieved from Sadaei and Lee (2014) - Multilayer Stock ForecastingModel Using Fuzzy Time Series
def roi(original):
n = len(original)
roi = []
for t in np.arange(0, n-1):
roi.append( (original[t+1] - original[t])/original[t] )
return roi
class ROI(Transformation):
"""
Return of Investment (ROI) transformation. Retrieved from Sadaei and Lee (2014) - Multilayer Stock
Forecasting Model Using Fuzzy Time Series
def smoothing(original, lags):
pass
y'(t) = ( y(t) - y(t-1) ) / y(t-1)
y(t) = ( y(t-1) * y'(t) ) + y(t-1)
"""
def __init__(self, **kwargs):
super(ROI, self).__init__()
self.name = 'ROI'
def aggregate(original, operation):
pass
def apply(self, data, param=None, **kwargs):
modified = [(data[i] - data[i - 1]) / data[i - 1] for i in np.arange(1, len(data))]
modified.insert(0, .0)
return modified
def inverse(self, data, param=None, **kwargs):
modified = [param[0]]
for i in np.arange(1, len(data)):
modified.append((modified[i - 1] * data[i]) + modified[i - 1])
return modified
class LinearTrend(Transformation):
"""
Linear Trend. Estimate
y'(t) = y(t) - (a*t+b)
y(t) = y'(t) + (a*t+b)
"""
def __init__(self, **kwargs):
super(LinearTrend, self).__init__()
self.name = 'LinearTrend'
self.index_type = kwargs.get('index_type','linear')
'''The type of the time index used to train the regression coefficients. Available types are: field, datetime'''
self.index_field = kwargs.get('index_field', None)
'''The Pandas Dataframe column to use as index'''
self.data_field = kwargs.get('data_field', None)
'''The Pandas Dataframe column to use as data'''
self.datetime_mask = kwargs.get('datetime_mask', None)
'''The Pandas Dataframe mask for datetime indexes '''
self.model = None
'''Regression model'''
def train(self, data, **kwargs):
from pandas import datetime
from sklearn.linear_model import LinearRegression
x = data[self.index_field].values
if self.index_type == 'datetime':
x = pd.to_numeric(x, downcast='integer')
indexes = np.reshape(x, (len(x), 1))
values = data[self.data_field].values
self.model = LinearRegression()
self.model.fit(indexes, values)
def trend(self, data):
x = data[self.index_field].values
if self.index_type == 'datetime':
x = pd.to_numeric(x, downcast='integer')
indexes = np.reshape(x, (len(x), 1))
_trend = self.model.predict(indexes)
return _trend
def apply(self, data, param=None, **kwargs):
values = data[self.data_field].values
_trend = self.trend(data)
modified = values - _trend
return modified
def inverse(self, data, param=None, **kwargs):
x = self.generate_indexes(data, param[self.index_field].values[0], **kwargs)
indexes = np.reshape(x, (len(x), 1))
_trend = self.model.predict(indexes)
modified = data + _trend
return modified
def increment(self,value, **kwargs):
if self.index_type == 'linear':
return value + 1
elif self.index_type == 'datetime':
if 'date_offset' not in kwargs:
raise Exception('A pandas.DateOffset must be passed in the parameter ''date_offset''')
doff = kwargs.get('date_offset')
return value + doff
def generate_indexes(self, data, value, **kwargs):
if self.index_type == 'datetime':
ret = [self.increment(pd.to_datetime(value, format=self.datetime_mask), **kwargs)]
else:
ret = [self.increment(value, **kwargs)]
for i in np.arange(1,len(data)):
ret.append(self.increment(ret[-1], **kwargs))
if self.index_type == 'datetime':
ret = pd.Series(ret)
ret = pd.to_numeric(ret, downcast='integer')
return np.array(ret)