LinearTrend and ROI transformations
This commit is contained in:
parent
87a50c1342
commit
40bcd43230
@ -3,6 +3,7 @@ Common data transformation used on pre and post processing of the FTS
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
import math
|
import math
|
||||||
from pyFTS import *
|
from pyFTS import *
|
||||||
|
|
||||||
@ -45,6 +46,9 @@ class Transformation(object):
|
|||||||
class Differential(Transformation):
|
class Differential(Transformation):
|
||||||
"""
|
"""
|
||||||
Differentiation data transform
|
Differentiation data transform
|
||||||
|
|
||||||
|
y'(t) = y(t) - y(t-1)
|
||||||
|
y(t) = y(t-1) + y'(t)
|
||||||
"""
|
"""
|
||||||
def __init__(self, lag):
|
def __init__(self, lag):
|
||||||
super(Differential, self).__init__()
|
super(Differential, self).__init__()
|
||||||
@ -193,6 +197,9 @@ class AdaptiveExpectation(Transformation):
|
|||||||
class BoxCox(Transformation):
|
class BoxCox(Transformation):
|
||||||
"""
|
"""
|
||||||
Box-Cox power transformation
|
Box-Cox power transformation
|
||||||
|
|
||||||
|
y'(t) = log( y(t) )
|
||||||
|
y(t) = exp( y'(t) )
|
||||||
"""
|
"""
|
||||||
def __init__(self, plambda):
|
def __init__(self, plambda):
|
||||||
super(BoxCox, self).__init__()
|
super(BoxCox, self).__init__()
|
||||||
@ -225,16 +232,106 @@ def Z(original):
|
|||||||
return z
|
return z
|
||||||
|
|
||||||
|
|
||||||
# retrieved from Sadaei and Lee (2014) - Multilayer Stock ForecastingModel Using Fuzzy Time Series
|
class ROI(Transformation):
|
||||||
def roi(original):
|
"""
|
||||||
n = len(original)
|
Return of Investment (ROI) transformation. Retrieved from Sadaei and Lee (2014) - Multilayer Stock
|
||||||
roi = []
|
Forecasting Model Using Fuzzy Time Series
|
||||||
for t in np.arange(0, n-1):
|
|
||||||
roi.append( (original[t+1] - original[t])/original[t] )
|
|
||||||
return roi
|
|
||||||
|
|
||||||
def smoothing(original, lags):
|
y'(t) = ( y(t) - y(t-1) ) / y(t-1)
|
||||||
pass
|
y(t) = ( y(t-1) * y'(t) ) + y(t-1)
|
||||||
|
"""
|
||||||
|
def __init__(self, **kwargs):
|
||||||
|
super(ROI, self).__init__()
|
||||||
|
self.name = 'ROI'
|
||||||
|
|
||||||
def aggregate(original, operation):
|
def apply(self, data, param=None, **kwargs):
|
||||||
pass
|
modified = [(data[i] - data[i - 1]) / data[i - 1] for i in np.arange(1, len(data))]
|
||||||
|
modified.insert(0, .0)
|
||||||
|
return modified
|
||||||
|
|
||||||
|
def inverse(self, data, param=None, **kwargs):
|
||||||
|
modified = [param[0]]
|
||||||
|
for i in np.arange(1, len(data)):
|
||||||
|
modified.append((modified[i - 1] * data[i]) + modified[i - 1])
|
||||||
|
return modified
|
||||||
|
|
||||||
|
|
||||||
|
class LinearTrend(Transformation):
|
||||||
|
"""
|
||||||
|
Linear Trend. Estimate
|
||||||
|
|
||||||
|
y'(t) = y(t) - (a*t+b)
|
||||||
|
y(t) = y'(t) + (a*t+b)
|
||||||
|
"""
|
||||||
|
def __init__(self, **kwargs):
|
||||||
|
super(LinearTrend, self).__init__()
|
||||||
|
self.name = 'LinearTrend'
|
||||||
|
self.index_type = kwargs.get('index_type','linear')
|
||||||
|
'''The type of the time index used to train the regression coefficients. Available types are: field, datetime'''
|
||||||
|
self.index_field = kwargs.get('index_field', None)
|
||||||
|
'''The Pandas Dataframe column to use as index'''
|
||||||
|
self.data_field = kwargs.get('data_field', None)
|
||||||
|
'''The Pandas Dataframe column to use as data'''
|
||||||
|
self.datetime_mask = kwargs.get('datetime_mask', None)
|
||||||
|
'''The Pandas Dataframe mask for datetime indexes '''
|
||||||
|
|
||||||
|
self.model = None
|
||||||
|
'''Regression model'''
|
||||||
|
|
||||||
|
def train(self, data, **kwargs):
|
||||||
|
from pandas import datetime
|
||||||
|
from sklearn.linear_model import LinearRegression
|
||||||
|
|
||||||
|
x = data[self.index_field].values
|
||||||
|
|
||||||
|
if self.index_type == 'datetime':
|
||||||
|
x = pd.to_numeric(x, downcast='integer')
|
||||||
|
|
||||||
|
indexes = np.reshape(x, (len(x), 1))
|
||||||
|
values = data[self.data_field].values
|
||||||
|
self.model = LinearRegression()
|
||||||
|
self.model.fit(indexes, values)
|
||||||
|
|
||||||
|
def trend(self, data):
|
||||||
|
x = data[self.index_field].values
|
||||||
|
if self.index_type == 'datetime':
|
||||||
|
x = pd.to_numeric(x, downcast='integer')
|
||||||
|
indexes = np.reshape(x, (len(x), 1))
|
||||||
|
_trend = self.model.predict(indexes)
|
||||||
|
return _trend
|
||||||
|
|
||||||
|
def apply(self, data, param=None, **kwargs):
|
||||||
|
values = data[self.data_field].values
|
||||||
|
_trend = self.trend(data)
|
||||||
|
modified = values - _trend
|
||||||
|
return modified
|
||||||
|
|
||||||
|
def inverse(self, data, param=None, **kwargs):
|
||||||
|
x = self.generate_indexes(data, param[self.index_field].values[0], **kwargs)
|
||||||
|
indexes = np.reshape(x, (len(x), 1))
|
||||||
|
_trend = self.model.predict(indexes)
|
||||||
|
modified = data + _trend
|
||||||
|
return modified
|
||||||
|
|
||||||
|
def increment(self,value, **kwargs):
|
||||||
|
if self.index_type == 'linear':
|
||||||
|
return value + 1
|
||||||
|
elif self.index_type == 'datetime':
|
||||||
|
if 'date_offset' not in kwargs:
|
||||||
|
raise Exception('A pandas.DateOffset must be passed in the parameter ''date_offset''')
|
||||||
|
doff = kwargs.get('date_offset')
|
||||||
|
return value + doff
|
||||||
|
|
||||||
|
def generate_indexes(self, data, value, **kwargs):
|
||||||
|
if self.index_type == 'datetime':
|
||||||
|
ret = [self.increment(pd.to_datetime(value, format=self.datetime_mask), **kwargs)]
|
||||||
|
else:
|
||||||
|
ret = [self.increment(value, **kwargs)]
|
||||||
|
for i in np.arange(1,len(data)):
|
||||||
|
ret.append(self.increment(ret[-1], **kwargs))
|
||||||
|
|
||||||
|
if self.index_type == 'datetime':
|
||||||
|
ret = pd.Series(ret)
|
||||||
|
ret = pd.to_numeric(ret, downcast='integer')
|
||||||
|
|
||||||
|
return np.array(ret)
|
||||||
|
Loading…
Reference in New Issue
Block a user