Documentation update

This commit is contained in:
Petrônio Cândido 2019-12-17 17:39:03 -03:00
parent cbaa3942eb
commit 2d5414f01f
20 changed files with 356 additions and 49 deletions

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -161,6 +161,7 @@
<li><a href="pyFTS/partitioners/Huarng.html">pyFTS.partitioners.Huarng</a></li>
<li><a href="pyFTS/partitioners/Simple.html">pyFTS.partitioners.Simple</a></li>
<li><a href="pyFTS/partitioners/Singleton.html">pyFTS.partitioners.Singleton</a></li>
<li><a href="pyFTS/partitioners/SubClust.html">pyFTS.partitioners.SubClust</a></li>
<li><a href="pyFTS/partitioners/Util.html">pyFTS.partitioners.Util</a></li>
<li><a href="pyFTS/partitioners/parallel_util.html">pyFTS.partitioners.parallel_util</a></li>
<li><a href="pyFTS/partitioners/partitioner.html">pyFTS.partitioners.partitioner</a></li>

View File

@ -166,6 +166,8 @@
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.append_rhs">(pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG method)</a>
</li>
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.nsfts.ConventionalNonStationaryFLRG.append_rhs">(pyFTS.models.nonstationary.nsfts.ConventionalNonStationaryFLRG method)</a>
</li>
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG.append_rhs">(pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG method)</a>
</li>
<li><a href="pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFLRG.append_rhs">(pyFTS.models.pwfts.ProbabilisticWeightedFLRG method)</a>
</li>
@ -280,6 +282,8 @@
<li><a href="pyFTS.partitioners.html#pyFTS.partitioners.Huarng.HuarngPartitioner.build">(pyFTS.partitioners.Huarng.HuarngPartitioner method)</a>
</li>
<li><a href="pyFTS.partitioners.html#pyFTS.partitioners.Singleton.SingletonPartitioner.build">(pyFTS.partitioners.Singleton.SingletonPartitioner method)</a>
</li>
<li><a href="pyFTS.partitioners.html#pyFTS.partitioners.SubClust.SubClustPartitioner.build">(pyFTS.partitioners.SubClust.SubClustPartitioner method)</a>
</li>
<li><a href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner.build">(pyFTS.partitioners.partitioner.Partitioner method)</a>
</li>
@ -358,10 +362,10 @@
</li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.common_process_time_jobs">common_process_time_jobs() (in module pyFTS.benchmarks.benchmarks)</a>
</li>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.ResidualAnalysis.compare_residuals">compare_residuals() (in module pyFTS.benchmarks.ResidualAnalysis)</a>
</li>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.compareModelsPlot">compareModelsPlot() (in module pyFTS.benchmarks.benchmarks)</a>
</li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.compareModelsTable">compareModelsTable() (in module pyFTS.benchmarks.benchmarks)</a>
@ -374,6 +378,8 @@
<ul>
<li><a href="pyFTS.models.html#pyFTS.models.hwang.HighOrderFTS.configure_lags">(pyFTS.models.hwang.HighOrderFTS method)</a>
</li>
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.configure_lags">(pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS method)</a>
</li>
</ul></li>
<li><a href="pyFTS.models.seasonal.html#pyFTS.models.seasonal.cmsfts.ContextualMultiSeasonalFTS">ContextualMultiSeasonalFTS (class in pyFTS.models.seasonal.cmsfts)</a>
@ -608,6 +614,10 @@
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.gaussianproc.GPR.forecast_ahead">(pyFTS.benchmarks.gaussianproc.GPR method)</a>
</li>
<li><a href="pyFTS.common.html#pyFTS.common.fts.FTS.forecast_ahead">(pyFTS.common.fts.FTS method)</a>
</li>
<li><a href="pyFTS.models.incremental.html#pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.forecast_ahead">(pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS method)</a>
</li>
<li><a href="pyFTS.models.incremental.html#pyFTS.models.incremental.TimeVariant.Retrainer.forecast_ahead">(pyFTS.models.incremental.TimeVariant.Retrainer method)</a>
</li>
<li><a href="pyFTS.models.multivariate.html#pyFTS.models.multivariate.mvfts.MVFTS.forecast_ahead">(pyFTS.models.multivariate.mvfts.MVFTS method)</a>
</li>
@ -638,6 +648,8 @@
<li><a href="pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead_distribution">(pyFTS.models.pwfts.ProbabilisticWeightedFTS method)</a>
</li>
</ul></li>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.arima.ARIMA.forecast_ahead_interval">forecast_ahead_interval() (pyFTS.benchmarks.arima.ARIMA method)</a>
<ul>
@ -662,8 +674,6 @@
<li><a href="pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead_interval">(pyFTS.models.pwfts.ProbabilisticWeightedFTS method)</a>
</li>
</ul></li>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="pyFTS.common.html#pyFTS.common.fts.FTS.forecast_ahead_multivariate">forecast_ahead_multivariate() (pyFTS.common.fts.FTS method)</a>
<ul>
@ -718,8 +728,6 @@
<li><a href="pyFTS.models.multivariate.html#pyFTS.models.multivariate.mvfts.MVFTS.forecast_interval">(pyFTS.models.multivariate.mvfts.MVFTS method)</a>
</li>
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.forecast_interval">(pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS method)</a>
</li>
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.forecast_interval">(pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS method)</a>
</li>
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.forecast_interval">(pyFTS.models.nonstationary.nsfts.NonStationaryFTS method)</a>
</li>
@ -816,6 +824,8 @@
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.generate_flrg">(pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS method)</a>
</li>
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.generate_flrg">(pyFTS.models.nonstationary.nsfts.NonStationaryFTS method)</a>
</li>
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.generate_flrg">(pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS method)</a>
</li>
<li><a href="pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFTS.generate_flrg">(pyFTS.models.pwfts.ProbabilisticWeightedFTS method)</a>
</li>
@ -980,12 +990,12 @@
</li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.get_distribution_ahead_statistics">get_distribution_ahead_statistics() (in module pyFTS.benchmarks.Measures)</a>
</li>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="pyFTS.models.ensemble.html#pyFTS.models.ensemble.ensemble.EnsembleFTS.get_distribution_interquantile">get_distribution_interquantile() (pyFTS.models.ensemble.ensemble.EnsembleFTS method)</a>
</li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.get_distribution_statistics">get_distribution_statistics() (in module pyFTS.benchmarks.Measures)</a>
</li>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="pyFTS.common.html#pyFTS.common.FuzzySet.get_fuzzysets">get_fuzzysets() (in module pyFTS.common.FuzzySet)</a>
</li>
<li><a href="pyFTS.models.seasonal.html#pyFTS.models.seasonal.SeasonalIndexer.DateTimeSeasonalIndexer.get_index">get_index() (pyFTS.models.seasonal.SeasonalIndexer.DateTimeSeasonalIndexer method)</a>
@ -1020,6 +1030,8 @@
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.flrg.NonStationaryFLRG.get_key">(pyFTS.models.nonstationary.flrg.NonStationaryFLRG method)</a>
</li>
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.nsfts.ConventionalNonStationaryFLRG.get_key">(pyFTS.models.nonstationary.nsfts.ConventionalNonStationaryFLRG method)</a>
</li>
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG.get_key">(pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG method)</a>
</li>
<li><a href="pyFTS.models.seasonal.html#pyFTS.models.seasonal.sfts.SeasonalFLRG.get_key">(pyFTS.models.seasonal.sfts.SeasonalFLRG method)</a>
</li>
@ -1040,6 +1052,8 @@
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.common.FuzzySet.get_lower">(pyFTS.models.nonstationary.common.FuzzySet method)</a>
</li>
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.flrg.NonStationaryFLRG.get_lower">(pyFTS.models.nonstationary.flrg.NonStationaryFLRG method)</a>
</li>
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.get_lower">(pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG method)</a>
</li>
<li><a href="pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFLRG.get_lower">(pyFTS.models.pwfts.ProbabilisticWeightedFLRG method)</a>
</li>
@ -1070,6 +1084,10 @@
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.common.FuzzySet.get_midpoint">(pyFTS.models.nonstationary.common.FuzzySet method)</a>
</li>
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.flrg.NonStationaryFLRG.get_midpoint">(pyFTS.models.nonstationary.flrg.NonStationaryFLRG method)</a>
</li>
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.get_midpoint">(pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG method)</a>
</li>
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG.get_midpoint">(pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG method)</a>
</li>
<li><a href="pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFLRG.get_midpoint">(pyFTS.models.pwfts.ProbabilisticWeightedFLRG method)</a>
</li>
@ -1154,6 +1172,8 @@
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.common.FuzzySet.get_upper">(pyFTS.models.nonstationary.common.FuzzySet method)</a>
</li>
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.flrg.NonStationaryFLRG.get_upper">(pyFTS.models.nonstationary.flrg.NonStationaryFLRG method)</a>
</li>
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.get_upper">(pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG method)</a>
</li>
<li><a href="pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFLRG.get_upper">(pyFTS.models.pwfts.ProbabilisticWeightedFLRG method)</a>
</li>
@ -1216,6 +1236,8 @@
<h2 id="I">I</h2>
<table style="width: 100%" class="indextable genindextable"><tr>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="pyFTS.partitioners.html#pyFTS.partitioners.SubClust.imax">imax() (in module pyFTS.partitioners.SubClust)</a>
</li>
<li><a href="pyFTS.models.html#pyFTS.models.ismailefendi.ImprovedWeightedFLRG">ImprovedWeightedFLRG (class in pyFTS.models.ismailefendi)</a>
</li>
<li><a href="pyFTS.models.html#pyFTS.models.ismailefendi.ImprovedWeightedFTS">ImprovedWeightedFTS (class in pyFTS.models.ismailefendi)</a>
@ -1239,11 +1261,11 @@
<li><a href="pyFTS.common.html#pyFTS.common.SortedCollection.SortedCollection.insert">insert() (pyFTS.common.SortedCollection.SortedCollection method)</a>
</li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.Util.insert_benchmark">insert_benchmark() (in module pyFTS.benchmarks.Util)</a>
</li>
<li><a href="pyFTS.hyperparam.html#pyFTS.hyperparam.Util.insert_hyperparam">insert_hyperparam() (in module pyFTS.hyperparam.Util)</a>
</li>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="pyFTS.hyperparam.html#pyFTS.hyperparam.Util.insert_hyperparam">insert_hyperparam() (in module pyFTS.hyperparam.Util)</a>
</li>
<li><a href="pyFTS.common.html#pyFTS.common.SortedCollection.SortedCollection.insert_right">insert_right() (pyFTS.common.SortedCollection.SortedCollection method)</a>
</li>
<li><a href="pyFTS.common.html#pyFTS.common.SortedCollection.SortedCollection.inside">inside() (pyFTS.common.SortedCollection.SortedCollection method)</a>
@ -1398,10 +1420,18 @@
<h2 id="O">O</h2>
<table style="width: 100%" class="indextable genindextable"><tr>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.Util.open_benchmark_db">open_benchmark_db() (in module pyFTS.benchmarks.Util)</a>
<li><a href="pyFTS.common.html#pyFTS.common.fts.FTS.offset">offset() (pyFTS.common.fts.FTS method)</a>
<ul>
<li><a href="pyFTS.models.incremental.html#pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.offset">(pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS method)</a>
</li>
<li><a href="pyFTS.models.incremental.html#pyFTS.models.incremental.TimeVariant.Retrainer.offset">(pyFTS.models.incremental.TimeVariant.Retrainer method)</a>
</li>
</ul></li>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.Util.open_benchmark_db">open_benchmark_db() (in module pyFTS.benchmarks.Util)</a>
</li>
<li><a href="pyFTS.hyperparam.html#pyFTS.hyperparam.Util.open_hyperparam_db">open_hyperparam_db() (in module pyFTS.hyperparam.Util)</a>
</li>
<li><a href="pyFTS.models.html#pyFTS.models.song.ConventionalFTS.operation_matrix">operation_matrix() (pyFTS.models.song.ConventionalFTS method)</a>
@ -1791,6 +1821,8 @@
<li><a href="pyFTS.partitioners.html#module-pyFTS.partitioners.Simple">pyFTS.partitioners.Simple (module)</a>
</li>
<li><a href="pyFTS.partitioners.html#module-pyFTS.partitioners.Singleton">pyFTS.partitioners.Singleton (module)</a>
</li>
<li><a href="pyFTS.partitioners.html#module-pyFTS.partitioners.SubClust">pyFTS.partitioners.SubClust (module)</a>
</li>
<li><a href="pyFTS.partitioners.html#module-pyFTS.partitioners.Util">pyFTS.partitioners.Util (module)</a>
</li>
@ -1932,10 +1964,10 @@
</li>
<li><a href="pyFTS.models.ensemble.html#pyFTS.models.ensemble.ensemble.AllMethodEnsembleFTS.set_transformations">set_transformations() (pyFTS.models.ensemble.ensemble.AllMethodEnsembleFTS method)</a>
</li>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="pyFTS.distributed.html#pyFTS.distributed.spark.share_parameters">share_parameters() (in module pyFTS.distributed.spark)</a>
</li>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.sharpness">sharpness() (in module pyFTS.benchmarks.Measures)</a>
</li>
<li><a href="pyFTS.common.html#pyFTS.common.Util.show_and_save_image">show_and_save_image() (in module pyFTS.common.Util)</a>
@ -1993,6 +2025,10 @@
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.Util.stats">stats() (in module pyFTS.benchmarks.Util)</a>
</li>
<li><a href="pyFTS.models.seasonal.html#pyFTS.models.seasonal.common.strip_datepart">strip_datepart() (in module pyFTS.models.seasonal.common)</a>
</li>
<li><a href="pyFTS.partitioners.html#pyFTS.partitioners.SubClust.subclust">subclust() (in module pyFTS.partitioners.SubClust)</a>
</li>
<li><a href="pyFTS.partitioners.html#pyFTS.partitioners.SubClust.SubClustPartitioner">SubClustPartitioner (class in pyFTS.partitioners.SubClust)</a>
</li>
</ul></td>
</tr></table>
@ -2054,6 +2090,8 @@
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.train">(pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS method)</a>
</li>
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.train">(pyFTS.models.nonstationary.nsfts.NonStationaryFTS method)</a>
</li>
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.train">(pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS method)</a>
</li>
<li><a href="pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFTS.train">(pyFTS.models.pwfts.ProbabilisticWeightedFTS method)</a>
</li>
@ -2155,6 +2193,10 @@
<li><a href="pyFTS.models.html#pyFTS.models.ifts.WeightedIntervalFTS">WeightedIntervalFTS (class in pyFTS.models.ifts)</a>
</li>
<li><a href="pyFTS.models.multivariate.html#pyFTS.models.multivariate.wmvfts.WeightedMVFTS">WeightedMVFTS (class in pyFTS.models.multivariate.wmvfts)</a>
</li>
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG">WeightedNonStationaryFLRG (class in pyFTS.models.nonstationary.nsfts)</a>
</li>
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS">WeightedNonStationaryFTS (class in pyFTS.models.nonstationary.nsfts)</a>
</li>
<li><a href="pyFTS.models.html#pyFTS.models.cheng.TrendWeightedFLRG.weights">weights() (pyFTS.models.cheng.TrendWeightedFLRG method)</a>
@ -2164,6 +2206,10 @@
<li><a href="pyFTS.models.html#pyFTS.models.ismailefendi.ImprovedWeightedFLRG.weights">(pyFTS.models.ismailefendi.ImprovedWeightedFLRG method)</a>
</li>
<li><a href="pyFTS.models.multivariate.html#pyFTS.models.multivariate.wmvfts.WeightedFLRG.weights">(pyFTS.models.multivariate.wmvfts.WeightedFLRG method)</a>
</li>
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.weights">(pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG method)</a>
</li>
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG.weights">(pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG method)</a>
</li>
<li><a href="pyFTS.models.html#pyFTS.models.sadaei.ExponentialyWeightedFLRG.weights">(pyFTS.models.sadaei.ExponentialyWeightedFLRG method)</a>
</li>

View File

@ -205,7 +205,7 @@
<li class="toctree-l4"><a class="reference internal" href="pyFTS.partitioners.html#module-pyFTS.partitioners.Huarng">pyFTS.partitioners.Huarng module</a></li>
<li class="toctree-l4"><a class="reference internal" href="pyFTS.partitioners.html#module-pyFTS.partitioners.Singleton">pyFTS.partitioners.Singleton module</a></li>
<li class="toctree-l4"><a class="reference internal" href="pyFTS.partitioners.html#module-pyFTS.partitioners.Simple">pyFTS.partitioners.Simple module</a></li>
<li class="toctree-l4"><a class="reference internal" href="pyFTS.partitioners.html#pyfts-partitioners-subclust-module">pyFTS.partitioners.SubClust module</a></li>
<li class="toctree-l4"><a class="reference internal" href="pyFTS.partitioners.html#module-pyFTS.partitioners.SubClust">pyFTS.partitioners.SubClust module</a></li>
<li class="toctree-l4"><a class="reference internal" href="pyFTS.partitioners.html#module-pyFTS.partitioners.Util">pyFTS.partitioners.Util module</a></li>
<li class="toctree-l4"><a class="reference internal" href="pyFTS.partitioners.html#module-pyFTS.partitioners.parallel_util">pyFTS.partitioners.parallel_util module</a></li>
</ul>

Binary file not shown.

View File

@ -615,6 +615,11 @@
<td>&#160;&#160;&#160;
<a href="pyFTS.partitioners.html#module-pyFTS.partitioners.Singleton"><code class="xref">pyFTS.partitioners.Singleton</code></a></td><td>
<em></em></td></tr>
<tr class="cg-1">
<td></td>
<td>&#160;&#160;&#160;
<a href="pyFTS.partitioners.html#module-pyFTS.partitioners.SubClust"><code class="xref">pyFTS.partitioners.SubClust</code></a></td><td>
<em></em></td></tr>
<tr class="cg-1">
<td></td>
<td>&#160;&#160;&#160;

View File

@ -1622,7 +1622,7 @@ when the LHS pattern is identified on time t.</p>
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>model</strong> </td>
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>model</strong> a model to clone the parameters</td>
</tr>
</tbody>
</table>
@ -1843,7 +1843,17 @@ when the LHS pattern is identified on time t.</p>
<dl class="method">
<dt id="pyFTS.common.fts.FTS.get_UoD">
<code class="descname">get_UoD</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.common.fts.FTS.get_UoD" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dd><p>Returns the interval of the known bounds of the universe of discourse (UoD), i. e.,
the known minimum and maximum values of the time series.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">A set with the lower and the upper bounds of the UoD</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.common.fts.FTS.len_total">
@ -1875,6 +1885,22 @@ when the LHS pattern is identified on time t.</p>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.common.fts.FTS.offset">
<code class="descname">offset</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.common.fts.FTS.offset" title="Permalink to this definition"></a></dt>
<dd><p>Returns the number of lags to skip in the input test data in order to synchronize it with
the forecasted values given by the predict function. This is necessary due to the order of the
model, among other parameters.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">An integer with the number of lags to skip</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.common.fts.FTS.predict">
<code class="descname">predict</code><span class="sig-paren">(</span><em>data</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.common.fts.FTS.predict" title="Permalink to this definition"></a></dt>

View File

@ -265,7 +265,7 @@
<li class="toctree-l2"><a class="reference internal" href="pyFTS.partitioners.html#module-pyFTS.partitioners.Huarng">pyFTS.partitioners.Huarng module</a></li>
<li class="toctree-l2"><a class="reference internal" href="pyFTS.partitioners.html#module-pyFTS.partitioners.Singleton">pyFTS.partitioners.Singleton module</a></li>
<li class="toctree-l2"><a class="reference internal" href="pyFTS.partitioners.html#module-pyFTS.partitioners.Simple">pyFTS.partitioners.Simple module</a></li>
<li class="toctree-l2"><a class="reference internal" href="pyFTS.partitioners.html#pyfts-partitioners-subclust-module">pyFTS.partitioners.SubClust module</a></li>
<li class="toctree-l2"><a class="reference internal" href="pyFTS.partitioners.html#module-pyFTS.partitioners.SubClust">pyFTS.partitioners.SubClust module</a></li>
<li class="toctree-l2"><a class="reference internal" href="pyFTS.partitioners.html#module-pyFTS.partitioners.Util">pyFTS.partitioners.Util module</a></li>
<li class="toctree-l2"><a class="reference internal" href="pyFTS.partitioners.html#module-pyFTS.partitioners.parallel_util">pyFTS.partitioners.parallel_util module</a></li>
</ul>

View File

@ -275,7 +275,17 @@ XIII Brazilian Congress on Computational Intelligence, 2017. Rio de Janeiro, Bra
<dl class="method">
<dt id="pyFTS.models.ensemble.ensemble.EnsembleFTS.get_UoD">
<code class="descname">get_UoD</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.EnsembleFTS.get_UoD" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dd><p>Returns the interval of the known bounds of the universe of discourse (UoD), i. e.,
the known minimum and maximum values of the time series.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">A set with the lower and the upper bounds of the UoD</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.ensemble.ensemble.EnsembleFTS.get_distribution_interquantile">

View File

@ -116,12 +116,15 @@
</div>
<div class="section" id="module-pyFTS.models.incremental.TimeVariant">
<span id="pyfts-models-incremental-timevariant-module"></span><h2>pyFTS.models.incremental.TimeVariant module<a class="headerlink" href="#module-pyFTS.models.incremental.TimeVariant" title="Permalink to this headline"></a></h2>
<p>Meta model that wraps another FTS method and continously retrain it using a data window with the most recent data</p>
<p>Meta model that wraps another FTS method and continously retrain it using a data window with
the most recent data</p>
<dl class="class">
<dt id="pyFTS.models.incremental.TimeVariant.Retrainer">
<em class="property">class </em><code class="descclassname">pyFTS.models.incremental.TimeVariant.</code><code class="descname">Retrainer</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.incremental.TimeVariant.Retrainer" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="pyFTS.common.html#pyFTS.common.fts.FTS" title="pyFTS.common.fts.FTS"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.common.fts.FTS</span></code></a></p>
<p>Meta model for incremental/online learning</p>
<p>Meta model for incremental/online learning that retrain its internal model after
data windows controlled by the parameter batch_size, using as the training data a
window of recent lags, whose size is controlled by the parameter window_length.</p>
<dl class="method">
<dt id="pyFTS.models.incremental.TimeVariant.Retrainer.forecast">
<code class="descname">forecast</code><span class="sig-paren">(</span><em>data</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.incremental.TimeVariant.Retrainer.forecast" title="Permalink to this definition"></a></dt>
@ -143,6 +146,44 @@
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.incremental.TimeVariant.Retrainer.forecast_ahead">
<code class="descname">forecast_ahead</code><span class="sig-paren">(</span><em>data</em>, <em>steps</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.incremental.TimeVariant.Retrainer.forecast_ahead" title="Permalink to this definition"></a></dt>
<dd><p>Point forecast n steps ahead</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</li>
<li><strong>steps</strong> the number of steps ahead to forecast (default: 1)</li>
<li><strong>start_at</strong> in the multi step forecasting, the index of the data where to start forecasting (default: 0)</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the forecasted values</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.incremental.TimeVariant.Retrainer.offset">
<code class="descname">offset</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.incremental.TimeVariant.Retrainer.offset" title="Permalink to this definition"></a></dt>
<dd><p>Returns the number of lags to skip in the input test data in order to synchronize it with
the forecasted values given by the predict function. This is necessary due to the order of the
model, among other parameters.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">An integer with the number of lags to skip</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.incremental.TimeVariant.Retrainer.train">
<code class="descname">train</code><span class="sig-paren">(</span><em>data</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.incremental.TimeVariant.Retrainer.train" title="Permalink to this definition"></a></dt>
@ -193,6 +234,44 @@
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.forecast_ahead">
<code class="descname">forecast_ahead</code><span class="sig-paren">(</span><em>data</em>, <em>steps</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.forecast_ahead" title="Permalink to this definition"></a></dt>
<dd><p>Point forecast n steps ahead</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</li>
<li><strong>steps</strong> the number of steps ahead to forecast (default: 1)</li>
<li><strong>start_at</strong> in the multi step forecasting, the index of the data where to start forecasting (default: 0)</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the forecasted values</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.offset">
<code class="descname">offset</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.offset" title="Permalink to this definition"></a></dt>
<dd><p>Returns the number of lags to skip in the input test data in order to synchronize it with
the forecasted values given by the predict function. This is necessary due to the order of the
model, among other parameters.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">An integer with the number of lags to skip</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.train">
<code class="descname">train</code><span class="sig-paren">(</span><em>data</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.train" title="Permalink to this definition"></a></dt>

View File

@ -530,7 +530,7 @@ multivariate fuzzy set base.</p>
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>model</strong> </td>
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>model</strong> a model to clone the parameters</td>
</tr>
</tbody>
</table>

View File

@ -426,16 +426,74 @@ IEEE Transactions on Fuzzy Systems, v. 16, n. 4, p. 1072-1086, 2008.</p>
<dl class="method">
<dt id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.append_rhs">
<code class="descname">append_rhs</code><span class="sig-paren">(</span><em>c</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.append_rhs" title="Permalink to this definition"></a></dt>
<code class="descname">append_rhs</code><span class="sig-paren">(</span><em>fset</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.append_rhs" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.get_lower">
<code class="descname">get_lower</code><span class="sig-paren">(</span><em>sets</em>, <em>perturb</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.get_lower" title="Permalink to this definition"></a></dt>
<dd><p>Returns the lower bound value for the RHS fuzzy sets</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>sets</strong> fuzzy sets</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">lower bound value</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.get_midpoint">
<code class="descname">get_midpoint</code><span class="sig-paren">(</span><em>sets</em>, <em>perturb</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.get_midpoint" title="Permalink to this definition"></a></dt>
<dd><p>Returns the midpoint value for the RHS fuzzy sets</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>sets</strong> fuzzy sets</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">the midpoint value</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.get_upper">
<code class="descname">get_upper</code><span class="sig-paren">(</span><em>sets</em>, <em>perturb</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.get_upper" title="Permalink to this definition"></a></dt>
<dd><p>Returns the upper bound value for the RHS fuzzy sets</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>sets</strong> fuzzy sets</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">upper bound value</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.weights">
<code class="descname">weights</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.weights" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="class">
<dt id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS">
<em class="property">class </em><code class="descclassname">pyFTS.models.nonstationary.honsfts.</code><code class="descname">HighOrderNonStationaryFTS</code><span class="sig-paren">(</span><em>name</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="pyFTS.models.html#pyFTS.models.hofts.HighOrderFTS" title="pyFTS.models.hofts.HighOrderFTS"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.models.hofts.HighOrderFTS</span></code></a></p>
<em class="property">class </em><code class="descclassname">pyFTS.models.nonstationary.honsfts.</code><code class="descname">HighOrderNonStationaryFTS</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS" title="pyFTS.models.nonstationary.nsfts.NonStationaryFTS"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.models.nonstationary.nsfts.NonStationaryFTS</span></code></a></p>
<p>NonStationaryFTS Fuzzy Time Series</p>
<dl class="method">
<dt id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.configure_lags">
<code class="descname">configure_lags</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.configure_lags" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.forecast">
<code class="descname">forecast</code><span class="sig-paren">(</span><em>ndata</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.forecast" title="Permalink to this definition"></a></dt>
@ -457,27 +515,6 @@ IEEE Transactions on Fuzzy Systems, v. 16, n. 4, p. 1072-1086, 2008.</p>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.forecast_interval">
<code class="descname">forecast_interval</code><span class="sig-paren">(</span><em>ndata</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.forecast_interval" title="Permalink to this definition"></a></dt>
<dd><p>Interval forecast one step ahead</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</li>
<li><strong>kwargs</strong> model specific parameters</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the prediction intervals</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.generate_flrg">
<code class="descname">generate_flrg</code><span class="sig-paren">(</span><em>data</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.generate_flrg" title="Permalink to this definition"></a></dt>
@ -601,6 +638,75 @@ IEEE Transactions on Fuzzy Systems, v. 16, n. 4, p. 1072-1086, 2008.</p>
</dd></dl>
<dl class="class">
<dt id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG">
<em class="property">class </em><code class="descclassname">pyFTS.models.nonstationary.nsfts.</code><code class="descname">WeightedNonStationaryFLRG</code><span class="sig-paren">(</span><em>LHS</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#pyFTS.models.nonstationary.flrg.NonStationaryFLRG" title="pyFTS.models.nonstationary.flrg.NonStationaryFLRG"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.models.nonstationary.flrg.NonStationaryFLRG</span></code></a></p>
<p>First Order NonStationary Fuzzy Logical Relationship Group</p>
<dl class="method">
<dt id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG.append_rhs">
<code class="descname">append_rhs</code><span class="sig-paren">(</span><em>c</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG.append_rhs" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG.get_key">
<code class="descname">get_key</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG.get_key" title="Permalink to this definition"></a></dt>
<dd><p>Returns a unique identifier for this FLRG</p>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG.get_midpoint">
<code class="descname">get_midpoint</code><span class="sig-paren">(</span><em>sets</em>, <em>perturb</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG.get_midpoint" title="Permalink to this definition"></a></dt>
<dd><p>Returns the midpoint value for the RHS fuzzy sets</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>sets</strong> fuzzy sets</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">the midpoint value</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG.weights">
<code class="descname">weights</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG.weights" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="class">
<dt id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS">
<em class="property">class </em><code class="descclassname">pyFTS.models.nonstationary.nsfts.</code><code class="descname">WeightedNonStationaryFTS</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS" title="pyFTS.models.nonstationary.nsfts.NonStationaryFTS"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.models.nonstationary.nsfts.NonStationaryFTS</span></code></a></p>
<p>Weighted NonStationaryFTS Fuzzy Time Series</p>
<dl class="method">
<dt id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.generate_flrg">
<code class="descname">generate_flrg</code><span class="sig-paren">(</span><em>flrs</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.generate_flrg" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.train">
<code class="descname">train</code><span class="sig-paren">(</span><em>data</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.train" title="Permalink to this definition"></a></dt>
<dd><p>Method specific parameter fitting</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>data</strong> training time series data</li>
<li><strong>kwargs</strong> Method specific parameters</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</dd></dl>
</div>
<div class="section" id="module-pyFTS.models.nonstationary.partitioners">
<span id="pyfts-models-nonstationary-partitioners-module"></span><h2>pyFTS.models.nonstationary.partitioners module<a class="headerlink" href="#module-pyFTS.models.nonstationary.partitioners" title="Permalink to this headline"></a></h2>

View File

@ -73,7 +73,7 @@
<li><a class="reference internal" href="#module-pyFTS.partitioners.Huarng">pyFTS.partitioners.Huarng module</a></li>
<li><a class="reference internal" href="#module-pyFTS.partitioners.Singleton">pyFTS.partitioners.Singleton module</a></li>
<li><a class="reference internal" href="#module-pyFTS.partitioners.Simple">pyFTS.partitioners.Simple module</a></li>
<li><a class="reference internal" href="#pyfts-partitioners-subclust-module">pyFTS.partitioners.SubClust module</a></li>
<li><a class="reference internal" href="#module-pyFTS.partitioners.SubClust">pyFTS.partitioners.SubClust module</a></li>
<li><a class="reference internal" href="#module-pyFTS.partitioners.Util">pyFTS.partitioners.Util module</a></li>
<li><a class="reference internal" href="#module-pyFTS.partitioners.parallel_util">pyFTS.partitioners.parallel_util module</a></li>
</ul>
@ -556,8 +556,42 @@ Fuzzy Sets Syst., vol. 123, no. 3, pp. 387394, Nov. 2001.</p>
</dd></dl>
</div>
<div class="section" id="pyfts-partitioners-subclust-module">
<h2>pyFTS.partitioners.SubClust module<a class="headerlink" href="#pyfts-partitioners-subclust-module" title="Permalink to this headline"></a></h2>
<div class="section" id="module-pyFTS.partitioners.SubClust">
<span id="pyfts-partitioners-subclust-module"></span><h2>pyFTS.partitioners.SubClust module<a class="headerlink" href="#module-pyFTS.partitioners.SubClust" title="Permalink to this headline"></a></h2>
<p>Chiu, Stephen L. “Fuzzy model identification based on cluster estimation.” Journal of Intelligent &amp; fuzzy systems 2.3 (1994): 267-278.</p>
<dl class="class">
<dt id="pyFTS.partitioners.SubClust.SubClustPartitioner">
<em class="property">class </em><code class="descclassname">pyFTS.partitioners.SubClust.</code><code class="descname">SubClustPartitioner</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.partitioners.SubClust.SubClustPartitioner" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#pyFTS.partitioners.partitioner.Partitioner" title="pyFTS.partitioners.partitioner.Partitioner"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.partitioners.partitioner.Partitioner</span></code></a></p>
<p>Subtractive Clustering Partitioner</p>
<dl class="method">
<dt id="pyFTS.partitioners.SubClust.SubClustPartitioner.build">
<code class="descname">build</code><span class="sig-paren">(</span><em>data</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.partitioners.SubClust.SubClustPartitioner.build" title="Permalink to this definition"></a></dt>
<dd><p>Perform the partitioning of the Universe of Discourse</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>data</strong> training data</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"></td>
</tr>
</tbody>
</table>
</dd></dl>
</dd></dl>
<dl class="function">
<dt id="pyFTS.partitioners.SubClust.imax">
<code class="descclassname">pyFTS.partitioners.SubClust.</code><code class="descname">imax</code><span class="sig-paren">(</span><em>vec</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.partitioners.SubClust.imax" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="function">
<dt id="pyFTS.partitioners.SubClust.subclust">
<code class="descclassname">pyFTS.partitioners.SubClust.</code><code class="descname">subclust</code><span class="sig-paren">(</span><em>data</em>, <em>ra</em>, <em>rb</em>, <em>eps_sup</em>, <em>eps_inf</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.partitioners.SubClust.subclust" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</div>
<div class="section" id="module-pyFTS.partitioners.Util">
<span id="pyfts-partitioners-util-module"></span><h2>pyFTS.partitioners.Util module<a class="headerlink" href="#module-pyFTS.partitioners.Util" title="Permalink to this headline"></a></h2>

File diff suppressed because one or more lines are too long