step_to parameter in predict function
This commit is contained in:
parent
4a05587485
commit
2d4785d053
@ -517,7 +517,10 @@ class ProbabilisticWeightedFTS(ifts.IntervalFTS):
|
||||
|
||||
start = kwargs.get('start_at', 0)
|
||||
|
||||
ret = data[start: start+self.max_lag].tolist()
|
||||
if isinstance(data, np.ndarray):
|
||||
data = data.tolist()
|
||||
|
||||
ret = data[start: start+self.max_lag]
|
||||
|
||||
for k in np.arange(self.max_lag, steps+self.max_lag):
|
||||
|
||||
|
@ -8,40 +8,44 @@ import matplotlib.pylab as plt
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from pyFTS.common import Util as cUtil, FuzzySet
|
||||
from pyFTS.partitioners import Grid, Entropy, Util as pUtil, Simple
|
||||
from pyFTS.benchmarks import benchmarks as bchmk, Measures
|
||||
from pyFTS.models import chen, yu, cheng, ismailefendi, hofts, pwfts, tsaur, song, sadaei, ifts
|
||||
from pyFTS.models.ensemble import ensemble
|
||||
#from pyFTS.common import Util as cUtil, FuzzySet
|
||||
from pyFTS.partitioners import Grid #, Entropy, Util as pUtil, Simple
|
||||
#from pyFTS.benchmarks import benchmarks as bchmk, Measures
|
||||
#from pyFTS.models import chen, yu, cheng, ismailefendi, hofts, pwfts, tsaur, song, sadaei, ifts
|
||||
from pyFTS.models import pwfts
|
||||
#from pyFTS.models.ensemble import ensemble
|
||||
from pyFTS.common import Transformations, Membership, Util
|
||||
from pyFTS.benchmarks import arima, quantreg #BSTS, gaussianproc, knn
|
||||
from pyFTS.fcm import fts, common, GA
|
||||
from pyFTS.common import Transformations
|
||||
#from pyFTS.benchmarks import arima, quantreg #BSTS, gaussianproc, knn
|
||||
#from pyFTS.fcm import fts, common, GA
|
||||
#from pyFTS.common import Transformations
|
||||
from pyFTS.data import Enrollments
|
||||
|
||||
tdiff = Transformations.Differential(1)
|
||||
#tdiff = Transformations.Differential(1)
|
||||
|
||||
boxcox = Transformations.BoxCox(0)
|
||||
#boxcox = Transformations.BoxCox(0)
|
||||
|
||||
df = pd.read_csv('https://query.data.world/s/z2xo3t32pkl4mdzp63x6lyne53obmi')
|
||||
#df = pd.read_csv('https://query.data.world/s/z2xo3t32pkl4mdzp63x6lyne53obmi')
|
||||
#dados = df.iloc[2710:2960 , 0:1].values # somente a 1 coluna sera usada
|
||||
dados = df['temperature'].values
|
||||
#dados = df['temperature'].values
|
||||
#dados = dados.flatten().tolist()
|
||||
|
||||
dados = Enrollments.get_data()
|
||||
|
||||
l = len(dados)
|
||||
|
||||
dados_treino = dados[:int(l*.7)]
|
||||
dados_teste = dados[int(l*.7):]
|
||||
#dados_treino = dados[:int(l*.7)]
|
||||
#dados_teste = dados[int(l*.7):]
|
||||
|
||||
particionador = Grid.GridPartitioner(data = dados_treino, npart = 15, func = Membership.trimf)
|
||||
particionador = Grid.GridPartitioner(data = dados, npart = 5, func = Membership.trimf)
|
||||
|
||||
modelo = pwfts.ProbabilisticWeightedFTS(partitioner = particionador, order = 2)
|
||||
modelo = pwfts.ProbabilisticWeightedFTS(partitioner = particionador, order = 1)
|
||||
|
||||
modelo.fit(dados_treino)
|
||||
modelo.fit(dados)
|
||||
|
||||
# print(modelo)
|
||||
|
||||
# Todo o procedimento de inferência é feito pelo método predict
|
||||
predicoes = modelo.predict(dados_teste, step_to=30)
|
||||
predicoes = modelo.predict(dados)
|
||||
|
||||
print(predicoes)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user