Particionamento por entropia
This commit is contained in:
parent
f3e46735b2
commit
2022c2a032
@ -8,12 +8,15 @@ from pyFTS.common import FuzzySet, Membership
|
||||
# C. H. Cheng, R. J. Chang, and C. A. Yeh, “Entropy-based and trapezoidal fuzzification-based fuzzy time series approach for forecasting IT project cost,”
|
||||
# Technol. Forecast. Social Change, vol. 73, no. 5, pp. 524–542, Jun. 2006.
|
||||
|
||||
|
||||
def splitBelow(data,threshold):
|
||||
return [k for k in data if k <= threshold]
|
||||
|
||||
|
||||
def splitAbove(data,threshold):
|
||||
return [k for k in data if k > threshold]
|
||||
|
||||
|
||||
def PMF(data, threshold):
|
||||
a = sum([1.0 for k in splitBelow(data,threshold)])
|
||||
b = sum([1.0 for k in splitAbove(data, threshold)])
|
||||
@ -23,7 +26,10 @@ def PMF(data, threshold):
|
||||
|
||||
def entropy(data, threshold):
|
||||
pmf = PMF(data, threshold)
|
||||
return - sum([pmf[0] * math.log(pmf[0]), pmf[1] * math.log(pmf[1])])
|
||||
if pmf[0] == 0 or pmf[1] == 0:
|
||||
return 1
|
||||
else:
|
||||
return - sum([pmf[0] * math.log(pmf[0]), pmf[1] * math.log(pmf[1])])
|
||||
|
||||
|
||||
def informationGain(data, thres1, thres2):
|
||||
@ -33,13 +39,19 @@ def informationGain(data, thres1, thres2):
|
||||
def bestSplit(data, npart):
|
||||
if len(data) < 2:
|
||||
return None
|
||||
count = 2
|
||||
count = 1
|
||||
ndata = list(set(data))
|
||||
ndata.sort()
|
||||
l = len(ndata)
|
||||
threshold = 0
|
||||
while informationGain(data, ndata[count - 1], ndata[count]) <= 0:
|
||||
threshold = ndata[count]
|
||||
count += 1
|
||||
try:
|
||||
while count < l and informationGain(data, ndata[count - 1], ndata[count]) <= 0:
|
||||
threshold = ndata[count]
|
||||
count += 1
|
||||
except IndexError:
|
||||
print(threshold)
|
||||
print (ndata)
|
||||
print (count)
|
||||
|
||||
rem = npart % 2
|
||||
|
||||
@ -54,23 +66,31 @@ def bestSplit(data, npart):
|
||||
np1 = (npart - rem) / 2
|
||||
np2 = (npart - rem) / 2 + rem
|
||||
|
||||
return [ threshold, bestSplit(p1, np1 ), bestSplit(p2, np2 ) ]
|
||||
tmp = [threshold]
|
||||
|
||||
for k in bestSplit(p1, np1 ): tmp.append(k)
|
||||
for k in bestSplit(p2, np2 ): tmp.append(k)
|
||||
|
||||
return tmp
|
||||
|
||||
else:
|
||||
return threshold
|
||||
return [threshold]
|
||||
|
||||
|
||||
def EntropyPartitionerTrimf(data, npart, prefix="A"):
|
||||
sets = []
|
||||
dmax = max(data)
|
||||
dmax += dmax * 0.10
|
||||
dmin = min(data)
|
||||
dmin -= dmin * 0.10
|
||||
|
||||
sets = [dmin, bestSplit(data, npart), dmax]
|
||||
|
||||
sets.sort()
|
||||
for c in np.arange(1, len(sets) - 1):
|
||||
partitions = bestSplit(data, npart)
|
||||
partitions.append(dmin)
|
||||
partitions.append(dmax)
|
||||
partitions = list(set(partitions))
|
||||
partitions.sort()
|
||||
for c in np.arange(1, len(partitions) - 1):
|
||||
sets.append(FuzzySet.FuzzySet(prefix + str(c), Membership.trimf,
|
||||
[round(sets[c - 1], 3), round(sets[c], 3),
|
||||
round(sets[c + 1], 3)],round(sets[c], 3)))
|
||||
[partitions[c - 1], partitions[c], partitions[c + 1]],partitions[c]))
|
||||
|
||||
return sets
|
||||
|
@ -4,17 +4,18 @@ import matplotlib as plt
|
||||
import matplotlib.colors as pltcolors
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
|
||||
from pyFTS.common import Membership
|
||||
|
||||
def plotSets(data, sets):
|
||||
|
||||
def plotSets(data, sets, titles):
|
||||
num = len(sets)
|
||||
fig = plt.figure(figsize=[20, 10])
|
||||
fig = plt.figure(figsize=[12, 10])
|
||||
maxx = max(data)
|
||||
minx = min(data)
|
||||
h = 1/num
|
||||
for k in range(num):
|
||||
ax0 = fig.add_axes([0, (k+1)*h, 0.65, h]) # left, bottom, width, height
|
||||
ax0 = fig.add_axes([0, (k+1)*h, 0.65, h*0.7]) # left, bottom, width, height
|
||||
ax0.set_title(titles[k])
|
||||
ax0.set_ylim([0, 1])
|
||||
ax0.set_xlim([minx, maxx])
|
||||
for s in sets[k]:
|
||||
|
Loading…
Reference in New Issue
Block a user