Bugfixes at pwfts.forecast_ahead_distribution

This commit is contained in:
Petrônio Cândido 2018-04-09 14:52:25 -03:00
parent 326d1b4f40
commit 1312d96246
6 changed files with 48 additions and 16 deletions

View File

@ -2,7 +2,6 @@
Benchmark utility functions Benchmark utility functions
""" """
import numba
import matplotlib as plt import matplotlib as plt
import matplotlib.cm as cmx import matplotlib.cm as cmx
import matplotlib.colors as pltcolors import matplotlib.colors as pltcolors

View File

@ -6,7 +6,6 @@
import datetime import datetime
import time import time
import numba
from copy import deepcopy from copy import deepcopy
import matplotlib as plt import matplotlib as plt

View File

@ -1,5 +1,4 @@
import time import time
import numba
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import dill import dill
import numpy as np import numpy as np

View File

@ -363,6 +363,7 @@ class ProbabilisticWeightedFTS(ifts.IntervalFTS):
if 'bins' in kwargs: if 'bins' in kwargs:
_bins = kwargs.pop('bins') _bins = kwargs.pop('bins')
nbins = len(_bins)
else: else:
nbins = kwargs.get("num_bins", 100) nbins = kwargs.get("num_bins", 100)
_bins = np.linspace(uod[0], uod[1], nbins) _bins = np.linspace(uod[0], uod[1], nbins)
@ -380,11 +381,15 @@ class ProbabilisticWeightedFTS(ifts.IntervalFTS):
num = [] num = []
den = [] den = []
for s in flrgs: for s in flrgs:
flrg = self.flrgs[s.get_key()] if s.get_key() in self.flrgs:
pk = flrg.lhs_conditional_probability(sample, self.sets, self.global_frequency_count, uod, nbins) flrg = self.flrgs[s.get_key()]
wi = flrg.rhs_conditional_probability(bin, self.sets, uod, nbins) pk = flrg.lhs_conditional_probability(sample, self.sets, self.global_frequency_count, uod, nbins)
num.append(wi * pk) wi = flrg.rhs_conditional_probability(bin, self.sets, uod, nbins)
den.append(pk) num.append(wi * pk)
den.append(pk)
else:
num.append(0.0)
den.append(0.000000001)
pf = sum(num) / sum(den) pf = sum(num) / sum(den)
dist.set(bin, pf) dist.set(bin, pf)
@ -452,11 +457,11 @@ class ProbabilisticWeightedFTS(ifts.IntervalFTS):
tmp.set(dat, 1.0) tmp.set(dat, 1.0)
ret.append(tmp) ret.append(tmp)
dist = self.forecast_distribution(sample, bins=_bins) dist = self.forecast_distribution(sample, bins=_bins)[0]
ret.append(dist) ret.append(dist)
for k in np.arange(self.order, steps+self.order): for k in np.arange(self.order+1, steps+self.order+1):
dist = ProbabilityDistribution.ProbabilityDistribution(smooth, uod=uod, bins=_bins, **kwargs) dist = ProbabilityDistribution.ProbabilityDistribution(smooth, uod=uod, bins=_bins, **kwargs)
lags = {} lags = {}
@ -469,7 +474,7 @@ class ProbabilisticWeightedFTS(ifts.IntervalFTS):
root = tree.FLRGTreeNode(None) root = tree.FLRGTreeNode(None)
self.build_tree_without_order(root, lags, 0) tree.build_tree_without_order(root, lags, 0)
# Trace all possible combinations between the bins of past distributions # Trace all possible combinations between the bins of past distributions
@ -487,6 +492,8 @@ class ProbabilisticWeightedFTS(ifts.IntervalFTS):
for bin in _bins: for bin in _bins:
dist.set(bin, dist.density(bin) + pk * d.density(bin)) dist.set(bin, dist.density(bin) + pk * d.density(bin))
ret.append(dist)
ret = ret[self.order:] ret = ret[self.order:]
return ret return ret

View File

@ -1,4 +1,3 @@
import numba
import numpy as np import numpy as np
import pandas as pd import pandas as pd
import matplotlib as plt import matplotlib as plt
@ -15,7 +14,6 @@ all_methods = [Grid.GridPartitioner, Entropy.EntropyPartitioner, FCM.FCMPartitio
mfs = [Membership.trimf, Membership.gaussmf, Membership.trapmf] mfs = [Membership.trimf, Membership.gaussmf, Membership.trapmf]
@numba.jit()
def sliding_window_simple_search(data, windowsize, model, partitions, orders, **kwargs): def sliding_window_simple_search(data, windowsize, model, partitions, orders, **kwargs):
_3d = len(orders) > 1 _3d = len(orders) > 1

View File

@ -3,7 +3,7 @@
import os import os
import numpy as np import numpy as np
#import matplotlib.pyplot as plt import matplotlib.pylab as plt
#from mpl_toolkits.mplot3d import Axes3D #from mpl_toolkits.mplot3d import Axes3D
import pandas as pd import pandas as pd
@ -17,9 +17,39 @@ from pyFTS.benchmarks import benchmarks as bchmk
from pyFTS.models import pwfts from pyFTS.models import pwfts
'''
bchmk.sliding_window_benchmarks(dataset, 1000, train=0.8, inc=0.2, methods=[pwfts.ProbabilisticWeightedFTS], bchmk.sliding_window_benchmarks(dataset, 1000, train=0.8, inc=0.2, methods=[pwfts.ProbabilisticWeightedFTS],
benchmark_models=False, orders=[1], partitions=[10], #np.arange(10,100,2), benchmark_models=False, orders=[1], partitions=[10], #np.arange(10,100,2),
progress=False, type='distribution', progress=False, type='distribution',
distributed=False, nodes=['192.168.0.106', '192.168.0.105', '192.168.0.110'], distributed=False, nodes=['192.168.0.106', '192.168.0.105', '192.168.0.110'],
save=True, file="pwfts_taiex_interval.csv") save=True, file="pwfts_taiex_interval.csv")
'''
train_split = 2000
test_length = 200
from pyFTS.partitioners import Grid, Util as pUtil
partitioner = Grid.GridPartitioner(data=dataset[:train_split], npart=30)
from pyFTS.common import fts,tree
from pyFTS.models import hofts, pwfts
pfts1_taiex = pwfts.ProbabilisticWeightedFTS("1", partitioner=partitioner)
pfts1_taiex.fit(dataset[:train_split], save_model=True, file_path='pwfts')
pfts1_taiex.shortname = "1st Order"
print(pfts1_taiex)
tmp = pfts1_taiex.predict(dataset[train_split:train_split+200], type='distribution', steps_ahead=20)
f, ax = plt.subplots(3, 4, figsize=[20,15])
tmp[0].plot(ax[0][0], title='t=1')
tmp[2].plot(ax[0][1], title='t=20')
tmp[4].plot(ax[0][2], title='t=40')
tmp[6].plot(ax[0][3], title='t=60')
tmp[8].plot(ax[1][0], title='t=80')
tmp[10].plot(ax[1][1], title='t=100')
tmp[12].plot(ax[1][2], title='t=120')
tmp[14].plot(ax[1][3], title='t=140')
tmp[16].plot(ax[2][0], title='t=160')
tmp[18].plot(ax[2][1], title='t=180')
tmp[20].plot(ax[2][2], title='t=200')