Multivariate grid.IncrementalGridCluster and improvements on CMVFTS

This commit is contained in:
Petrônio Cândido 2019-04-10 22:27:37 -03:00
parent eac996b894
commit 0e4f3c536b
5 changed files with 113 additions and 10 deletions

View File

@ -38,8 +38,9 @@ class ClusteredMVFTS(mvfts.MVFTS):
ndata = [] ndata = []
for index, row in data.iterrows(): for index, row in data.iterrows():
data_point = self.format_data(row) data_point = self.format_data(row)
ndata.append(common.fuzzyfy_instance_clustered(data_point, self.partitioner, #ndata.append(common.fuzzyfy_instance_clustered(data_point, self.partitioner,
alpha_cut=self.alpha_cut)) # alpha_cut=self.alpha_cut))
ndata.append(self.partitioner.fuzzyfy(data_point, mode='sets'))
return ndata return ndata

View File

@ -31,3 +31,52 @@ class GridCluster(partitioner.MultivariatePartitioner):
self.build_index() self.build_index()
class IncrementalGridCluster(partitioner.MultivariatePartitioner):
def __init__(self, **kwargs):
super(IncrementalGridCluster, self).__init__(**kwargs)
self.name="IncrementalGridCluster"
self.build(None)
def fuzzyfy(self, data, **kwargs):
if isinstance(data, pd.DataFrame):
ret = []
for inst in data.iterrows():
mv = self.fuzzyfy(inst, **kwargs)
ret.append(mv)
return ret
alpha_cut = kwargs.get('alpha_cut', 0.)
mode = kwargs.get('mode', 'sets')
fsets = {}
ret = []
for var in self.explanatory_variables:
fsets[var.name] = var.partitioner.fuzzyfy(data[var.name], mode='sets')
fset = [val for key, val in fsets.items()]
for p in product(*fset):
key = ''.join(p)
if key not in self.sets:
mvfset = MultivariateFuzzySet(target_variable=self.target_variable)
for ct, fs in enumerate(p):
mvfset.append_set(self.explanatory_variables[ct].name,
self.explanatory_variables[ct].partitioner[fs])
mvfset.name = key
self.sets[key] = mvfset
if mode=='sets':
ret.append(key)
elif mode=='vector':
raise NotImplementedError()
elif mode == 'both':
mvfset = self.sets[key]
ret.append((key, mvfset.membership(data)))
return ret
def prune(self):
pass

View File

@ -19,9 +19,9 @@ class DateTime(Enum):
day_of_month = 30 day_of_month = 30
day_of_year = 364 day_of_year = 364
day_of_week = 7 day_of_week = 7
hour = 6 hour = 24
minute = 7 minute = 60
second = 8 second = 60
hour_of_day = 24 hour_of_day = 24
hour_of_week = 168 hour_of_week = 168
hour_of_month = 744 hour_of_month = 744

View File

@ -4,6 +4,7 @@ from pyFTS.partitioners import partitioner, Grid
from pyFTS.models.seasonal.common import DateTime, FuzzySet, strip_datepart from pyFTS.models.seasonal.common import DateTime, FuzzySet, strip_datepart
import numpy as np import numpy as np
import matplotlib.pylab as plt import matplotlib.pylab as plt
from scipy.spatial import KDTree
class TimeGridPartitioner(partitioner.Partitioner): class TimeGridPartitioner(partitioner.Partitioner):
@ -56,6 +57,8 @@ class TimeGridPartitioner(partitioner.Partitioner):
partlen = dlen / self.partitions partlen = dlen / self.partitions
elif self.season == DateTime.day_of_week: elif self.season == DateTime.day_of_week:
self.min, self.max, partlen, pl2 = 0, 7, 1, 1 self.min, self.max, partlen, pl2 = 0, 7, 1, 1
elif self.season == DateTime.minute:
self.min, self.max, partlen, pl2 = 0, 60, 1, 1
elif self.season == DateTime.hour: elif self.season == DateTime.hour:
self.min, self.max, partlen, pl2 = 0, 24, 1, 1 self.min, self.max, partlen, pl2 = 0, 24, 1, 1
elif self.season == DateTime.month: elif self.season == DateTime.month:
@ -77,7 +80,7 @@ class TimeGridPartitioner(partitioner.Partitioner):
self.season.value + 0.0000001], self.season.value, alpha=.5, self.season.value + 0.0000001], self.season.value, alpha=.5,
**kwargs)) **kwargs))
tmp.append_set(FuzzySet(self.season, set_name, Membership.trimf, tmp.append_set(FuzzySet(self.season, set_name, Membership.trimf,
[c - partlen, c, c + partlen], c, [c - 0.0000001, c, c + partlen], c,
**kwargs)) **kwargs))
tmp.centroid = c tmp.centroid = c
sets[set_name] = tmp sets[set_name] = tmp
@ -88,7 +91,7 @@ class TimeGridPartitioner(partitioner.Partitioner):
pl2], 0.0, alpha=.5, pl2], 0.0, alpha=.5,
**kwargs)) **kwargs))
tmp.append_set(FuzzySet(self.season, set_name, Membership.trimf, tmp.append_set(FuzzySet(self.season, set_name, Membership.trimf,
[c - partlen, c, c + partlen], c, [c - partlen, c, c + 0.0000001], c,
**kwargs)) **kwargs))
tmp.centroid = c tmp.centroid = c
sets[set_name] = tmp sets[set_name] = tmp
@ -122,6 +125,51 @@ class TimeGridPartitioner(partitioner.Partitioner):
return sets return sets
def build_index(self):
points = []
fset = self.sets[self.ordered_sets[0]]
points.append([fset.centroid, fset.centroid, fset.centroid])
for ct, key in enumerate(self.ordered_sets[1:-2]):
fset = self.sets[key]
points.append([fset.lower, fset.centroid, fset.upper])
fset = self.sets[self.ordered_sets[-1]]
points.append([fset.centroid, fset.centroid, fset.centroid])
import sys
sys.setrecursionlimit(100000)
self.kdtree = KDTree(points)
sys.setrecursionlimit(1000)
def search(self, data, type='index', results=3):
'''
Perform a search for the nearest fuzzy sets of the point 'data'. This function were designed to work with several
overlapped fuzzy sets.
:param data: the value to search for the nearest fuzzy sets
:param type: the return type: 'index' for the fuzzy set indexes or 'name' for fuzzy set names.
:param results: the number of nearest fuzzy sets to return
:return: a list with the nearest fuzzy sets
'''
if self.kdtree is None:
self.build_index()
_, ix = self.kdtree.query([data, data, data], results)
if 0 in ix:
ix[-1] = self.partitions-1
elif self.partitions-1 in ix:
ix[-1] = 0
if type == 'name':
return [self.ordered_sets[k] for k in sorted(ix)]
else:
return sorted(ix)
def plot(self, ax): def plot(self, ax):
""" """

View File

@ -182,9 +182,14 @@ vavg = variable.Variable("Radiation", data_label="glo_avg", alias='rad',
partitioner=Grid.GridPartitioner, npart=30, alpha_cut=.3, partitioner=Grid.GridPartitioner, npart=30, alpha_cut=.3,
data=train) data=train)
from pyFTS.models.multivariate import mvfts, wmvfts, cmvfts from pyFTS.models.multivariate import mvfts, wmvfts, cmvfts, grid
fs = grid.IncrementalGridCluster(explanatory_variables=[vmonth, vhour, vavg], target_variable=vavg)
model = cmvfts.ClusteredMVFTS(explanatory_variables=[vmonth, vhour, vavg], target_variable=vavg,
partitioner=fs, knn=3)
model = wmvfts.WeightedMVFTS(explanatory_variables=[vmonth, vhour, vavg], target_variable=vavg)
model.fit(train) model.fit(train)
forecasts = model.predict(test, type='interval') print(fs)
print(model)