Cascaded transformations in all fts models

This commit is contained in:
Petrônio Cândido de Lima e Silva 2017-01-29 21:59:50 -02:00
parent 8b3aceed58
commit 0cf938c2a6
9 changed files with 178 additions and 94 deletions

View File

@ -108,7 +108,7 @@ def allIntervalForecasters(data_train, data_test, partitions, max_order=3,save=F
lcolors = []
for count, model in enumerate(models, start=0):
for count, model in Util.enumerate2(models, start=0, step=2):
mfts = model("")
if not mfts.isHighOrder:
if transformation is not None:
@ -126,21 +126,20 @@ def allIntervalForecasters(data_train, data_test, partitions, max_order=3,save=F
objs.append(mfts)
lcolors.append(colors[count % ncol])
print(getIntervalStatistics(data_test, objs))
plotComparedSeries(data_test, objs, lcolors, typeonlegend=False, save=save, file=file, tam=tam, intervals=True)
def getIntervalStatistics(original, models):
ret = "Model & Order & Sharpness & Resolution & Coverage \\ \n"
ret = "Model & Order & Sharpness & Resolution & Coverage \\\\ \n"
for fts in models:
forecasts = fts.forecastInterval(original)
ret += fts.shortname + " & "
ret += str(fts.order) + " & "
ret += str(round(Measures.sharpness(forecasts), 2)) + " & "
ret += str(round(Measures.resolution(forecasts), 2)) + " & "
ret += str(round(Measures.coverage(original[fts.order:], forecasts[:-1]), 2)) + " \\ \n"
ret += str(round(Measures.coverage(original[fts.order:], forecasts[:-1]), 2)) + " \\\\ \n"
return ret
@ -213,11 +212,10 @@ def plotComparedIntervalsAhead(original, models, colors, distributions, time_fro
mi = []
ma = []
count = 0
for fts in models:
for count, fts in enumerate(models, start=0):
if fts.hasDistributionForecasting and distributions[count]:
density = fts.forecastAheadDistribution(original[time_from - fts.order:time_from], time_to, resolution,
parameters=None)
density = fts.forecastAheadDistribution(original[time_from - fts.order:time_from],
time_to, resolution, parameters=True)
y = density.columns
t = len(y)
@ -258,12 +256,22 @@ def plotComparedIntervalsAhead(original, models, colors, distributions, time_fro
forecasts.insert(0, None)
ax.plot(forecasts, color=colors[count], label=fts.shortname)
count = count + 1
ax.plot(original, color='black', label="Original")
handles0, labels0 = ax.get_legend_handles_labels()
ax.legend(handles0, labels0, loc=2)
# ax.set_title(fts.name)
ax.set_ylim([min(mi), max(ma)])
_mi = min(mi)
if _mi < 0:
_mi *= 1.1
else:
_mi *= 0.9
_ma = max(ma)
if _ma < 0:
_ma *= 0.9
else:
_ma *= 1.1
ax.set_ylim([_mi, _ma])
ax.set_ylabel('F(T)')
ax.set_xlabel('T')
ax.set_xlim([0, len(original)])
@ -552,8 +560,8 @@ def compareModelsTable(original, models_fo, models_ho):
return sup + header + body + "\\end{tabular}"
def simpleSearch_RMSE(train, test, model, partitions, orders, save=False, file=None, tam=[10, 15], plotforecasts=False,
elev=30, azim=144):
def simpleSearch_RMSE(train, test, model, partitions, orders, save=False, file=None, tam=[10, 15],
plotforecasts=False, elev=30, azim=144, intervals=False):
ret = []
errors = np.array([[0 for k in range(len(partitions))] for kk in range(len(orders))])
forecasted_best = []
@ -568,29 +576,28 @@ def simpleSearch_RMSE(train, test, model, partitions, orders, save=False, file=N
ax0.set_xlabel('T')
min_rmse = 1000000.0
best = None
pc = 0
for p in partitions:
oc = 0
for o in orders:
for pc, p in enumerate(partitions, start=0):
sets = Grid.GridPartitionerTrimf(train, p)
for oc, o in enumerate(orders, start=0):
fts = model("q = " + str(p) + " n = " + str(o))
fts.train(train, sets, o)
if not intervals:
forecasted = fts.forecast(test)
error = Measures.rmse(np.array(test[o:]), np.array(forecasted[:-1]))
mape = Measures.mape(np.array(test[o:]), np.array(forecasted[:-1]))
# print(train[o:])
# print(forecasted[-1])
for kk in range(o):
forecasted.insert(0, None)
if plotforecasts: ax0.plot(forecasted, label=fts.name)
# print(o, p, mape)
else:
forecasted = fts.forecastInterval(test)
error = 1.0 - Measures.rmse_interval(np.array(test[o:]), np.array(forecasted[:-1]))
errors[oc, pc] = error
if error < min_rmse:
min_rmse = error
best = fts
forecasted_best = forecasted
oc += 1
pc += 1
# print(min_rmse)
if plotforecasts:
# handles0, labels0 = ax0.get_legend_handles_labels()

View File

@ -30,14 +30,33 @@ class Differential(Transformation):
def apply(self, data, param=None):
if param is not None:
self.lag = param
if not isinstance(data, (list, np.ndarray, np.generic)):
data = [data]
if isinstance(data, (np.ndarray, np.generic)):
data = data.tolist()
n = len(data)
diff = [data[t - self.lag] - data[t] for t in np.arange(self.lag, n)]
for t in np.arange(0, self.lag): diff.insert(0, 0)
return diff
def inverse(self,data, param):
if isinstance(data, (np.ndarray, np.generic)):
data = data.tolist()
if not isinstance(data, list):
data = [data]
n = len(data)
inc = [data[t] + param[t] for t in np.arange(1, n)]
inc = [data[t] + param[t] for t in np.arange(0, n)]
if n == 1:
return inc[0]
else:
return inc

View File

@ -21,3 +21,9 @@ def showAndSaveImage(fig,file,flag,lgd=None):
else:
fig.savefig(uniquefilename(file))
plt.close(fig)
def enumerate2(xs, start=0, step=1):
for x in xs:
yield (start, x)
start += step

16
fts.py
View File

@ -19,6 +19,8 @@ class FTS(object):
self.dump = False
self.transformations = []
self.transformations_param = []
self.original_max = 0
self.original_min = 0
def fuzzy(self, data):
best = {"fuzzyset": "", "membership": 0.0}
@ -59,8 +61,20 @@ class FTS(object):
def appendTransformation(self, transformation):
self.transformations.append(transformation)
def doTransformations(self,data,params=None):
def doTransformations(self,data,params=None,updateUoD=False):
ndata = data
if updateUoD:
if min(data) < 0:
self.original_min = min(data) * 1.1
else:
self.original_min = min(data) * 0.9
if max(data) > 0:
self.original_max = max(data) * 1.1
else:
self.original_max = max(data) * 0.9
if len(self.transformations) > 0:
if params is None:
params = [ None for k in self.transformations]

View File

@ -62,7 +62,7 @@ class HighOrderFTS(fts.FTS):
def train(self, data, sets, order=1,parameters=None):
data = self.doTransformations(data)
data = self.doTransformations(data, updateUoD=True)
self.order = order
self.sets = sets

View File

@ -49,9 +49,7 @@ class IntervalFTS(hofts.HighOrderFTS):
def forecastInterval(self, data):
data = np.array(data)
ndata = self.doTransformations(data)
ndata = np.array(self.doTransformations(data))
l = len(ndata)
@ -115,8 +113,8 @@ class IntervalFTS(hofts.HighOrderFTS):
# gerar o intervalo
norm = sum(affected_flrgs_memberships)
lo_ = self.doInverseTransformations(sum(lo) / norm, param=[data[k - (self.order - 1): k + 1]])
up_ = self.doInverseTransformations(sum(up) / norm, param=[data[k - (self.order - 1): k + 1]])
lo_ = self.doInverseTransformations(sum(lo) / norm, params=[data[k - (self.order - 1): k + 1]])
up_ = self.doInverseTransformations(sum(up) / norm, params=[data[k - (self.order - 1): k + 1]])
ret.append([lo_, up_])
return ret

View File

@ -9,20 +9,24 @@ from pyFTS.common import FuzzySet, Membership
def GridPartitionerTrimf(data, npart, names=None, prefix="A"):
sets = []
dmax = max(data)
dmax += dmax * 0.1
dmin = min(data)
dmin -= dmin * 0.1
if min(data) < 0:
dmin = min(data) * 1.1
else:
dmin = min(data) * 0.9
if max(data) > 0:
dmax = max(data) * 1.1
else:
dmax = max(data) * 0.9
dlen = dmax - dmin
partlen = math.ceil(dlen / npart)
#p2 = partlen / 2
#partition = dmin #+ partlen
count = 0
for c in np.arange(dmin, dmax, partlen):
sets.append(
FuzzySet.FuzzySet(prefix + str(count), Membership.trimf, [c - partlen, c, c + partlen],c))
count += 1
#partition += partlen
return sets

53
pfts.py
View File

@ -214,9 +214,7 @@ class ProbabilisticFTS(ifts.IntervalFTS):
def forecastInterval(self, data):
data = np.array(data)
ndata = self.doTransformations(data)
ndata = np.array(self.doTransformations(data))
l = len(ndata)
@ -349,7 +347,15 @@ class ProbabilisticFTS(ifts.IntervalFTS):
def getGridClean(self, resolution):
grid = {}
for sbin in np.arange(self.sets[0].lower, self.sets[-1].upper, resolution):
if len(self.transformations) == 0:
_min = self.sets[0].lower
_max = self.sets[-1].upper
else:
_min = self.original_min
_max = self.original_max
for sbin in np.arange(_min,_max, resolution):
grid[sbin] = 0
return grid
@ -388,6 +394,8 @@ class ProbabilisticFTS(ifts.IntervalFTS):
index = SortedCollection.SortedCollection(iterable=grid.keys())
if parameters is None:
grids = []
for k in np.arange(0, steps):
grids.append(self.getGridClean(resolution))
@ -426,12 +434,9 @@ class ProbabilisticFTS(ifts.IntervalFTS):
for p in root.paths():
path = list(reversed(list(filter(None.__ne__, p))))
if parameters is None:
qtle = self.forecastInterval(path)
grids[k - self.order] = self.gridCount(grids[k - self.order], resolution, index, np.ravel(qtle))
else:
qtle = self.forecast(path)
grids[k - self.order] = self.gridCountPoint(grids[k - self.order], resolution, index, np.ravel(qtle))
for k in np.arange(0, steps):
tmp = np.array([grids[k][q] for q in sorted(grids[k])])
@ -440,6 +445,38 @@ class ProbabilisticFTS(ifts.IntervalFTS):
grid = self.getGridClean(resolution)
df = pd.DataFrame(ret, columns=sorted(grid))
return df
else:
print("novo")
ret = []
for k in np.arange(self.order, steps + self.order):
grid = self.getGridClean(resolution)
grid = self.gridCount(grid, resolution, index, intervals[k])
for qt in np.arange(0, 50, 1):
# print(qt)
qtle_lower = self.forecastInterval(
[intervals[x][0] + qt * ((intervals[x][1] - intervals[x][0]) / 100) for x in
np.arange(k - self.order, k)])
grid = self.gridCount(grid, resolution, index, np.ravel(qtle_lower))
qtle_upper = self.forecastInterval(
[intervals[x][1] - qt * ((intervals[x][1] - intervals[x][0]) / 100) for x in
np.arange(k - self.order, k)])
grid = self.gridCount(grid, resolution, index, np.ravel(qtle_upper))
qtle_mid = self.forecastInterval(
[intervals[x][0] + (intervals[x][1] - intervals[x][0]) / 2 for x in np.arange(k - self.order, k)])
grid = self.gridCount(grid, resolution, index, np.ravel(qtle_mid))
tmp = np.array([grid[k] for k in sorted(grid)])
ret.append(tmp / sum(tmp))
grid = self.getGridClean(resolution)
df = pd.DataFrame(ret, columns=sorted(grid))
return df
def __str__(self):

View File

@ -10,27 +10,26 @@ from mpl_toolkits.mplot3d import Axes3D
import pandas as pd
from pyFTS.partitioners import Grid
from pyFTS.common import FLR,FuzzySet,Membership
from pyFTS.common import FLR,FuzzySet,Membership,Transformations
from pyFTS import fts,hofts,ifts,pfts,tree, chen
from pyFTS.benchmarks import benchmarks as bchmk
os.chdir("/home/petronio/dados/Dropbox/Doutorado/Disciplinas/AdvancedFuzzyTimeSeriesModels/")
#enrollments = pd.read_csv("DataSets/Enrollments.csv", sep=";")
#enrollments = np.array(enrollments["Enrollments"])
enrollments = pd.read_csv("DataSets/Enrollments.csv", sep=";")
enrollments = np.array(enrollments["Enrollments"])
#enrollments_fs1 = Grid.GridPartitionerTrimf(enrollments,6)
#diff = Transformations.Differential(1)
fs = Grid.GridPartitionerTrimf(enrollments,6)
#tmp = chen.ConventionalFTS("")
pfts1_enrollments = pfts.ProbabilisticFTS("1")
#pfts1_enrollments.train(enrollments,enrollments_fs1,1)
#pfts1_enrollments.shortname = "1st Order"
#pfts2_enrollments = pfts.ProbabilisticFTS("2")
#pfts2_enrollments.dump = False
#pfts2_enrollments.shortname = "2nd Order"
#pfts2_enrollments.train(enrollments,enrollments_fs1,2)
pfts1 = pfts.ProbabilisticFTS("1")
#pfts1.appendTransformation(diff)
pfts1.train(enrollments,fs,1)
#bchmk.plotComparedIntervalsAhead(enrollments,[pfts1], ["blue"],[True],5,10)
#pfts1_enrollments.forecastAheadDistribution2(enrollments[:15],5,100)
pfts1.forecastAheadDistribution(enrollments,5,1, parameters=True)