- Bugfix on interval forecast of quantreg
This commit is contained in:
parent
f8ac95d24e
commit
0b7799a9bb
@ -219,7 +219,7 @@ def run_interval(mfts, partitioner, train_data, test_data, window_key=None, tran
|
|||||||
import time
|
import time
|
||||||
from pyFTS import hofts,ifts,pwfts
|
from pyFTS import hofts,ifts,pwfts
|
||||||
from pyFTS.partitioners import Grid, Entropy, FCM
|
from pyFTS.partitioners import Grid, Entropy, FCM
|
||||||
from pyFTS.benchmarks import Measures
|
from pyFTS.benchmarks import Measures, arima, quantreg
|
||||||
|
|
||||||
tmp = [hofts.HighOrderFTS, ifts.IntervalFTS, pwfts.ProbabilisticWeightedFTS]
|
tmp = [hofts.HighOrderFTS, ifts.IntervalFTS, pwfts.ProbabilisticWeightedFTS]
|
||||||
|
|
||||||
@ -291,7 +291,7 @@ def interval_sliding_window(data, windowsize, train=0.8, inc=0.1, models=None,
|
|||||||
if benchmark_models_parameters is None:
|
if benchmark_models_parameters is None:
|
||||||
benchmark_models_parameters = [(1, 0, 0), (1, 0, 1), (2, 0, 1), (2, 0, 2), 1, 2]
|
benchmark_models_parameters = [(1, 0, 0), (1, 0, 1), (2, 0, 1), (2, 0, 2), 1, 2]
|
||||||
|
|
||||||
cluster = dispy.JobCluster(run_point, nodes=nodes) #, depends=dependencies)
|
cluster = dispy.JobCluster(run_interval, nodes=nodes) #, depends=dependencies)
|
||||||
|
|
||||||
http_server = dispy.httpd.DispyHTTPServer(cluster)
|
http_server = dispy.httpd.DispyHTTPServer(cluster)
|
||||||
|
|
||||||
|
@ -38,8 +38,8 @@ class QuantileRegression(fts.FTS):
|
|||||||
|
|
||||||
self.mean_qt = [k for k in mqt.params]
|
self.mean_qt = [k for k in mqt.params]
|
||||||
if self.alpha is not None:
|
if self.alpha is not None:
|
||||||
self.upper_qt = [uqt.params[k] for k in uqt.params.keys()]
|
self.upper_qt = [k for k in uqt.params]
|
||||||
self.lower_qt = [lqt.params[k] for k in lqt.params.keys()]
|
self.lower_qt = [k for k in lqt.params]
|
||||||
|
|
||||||
self.shortname = "QAR(" + str(self.order) + ")"
|
self.shortname = "QAR(" + str(self.order) + ")"
|
||||||
|
|
||||||
|
@ -29,11 +29,11 @@ DATASETS
|
|||||||
#gauss = random.normal(0,1.0,5000)
|
#gauss = random.normal(0,1.0,5000)
|
||||||
#gauss_teste = random.normal(0,1.0,400)
|
#gauss_teste = random.normal(0,1.0,400)
|
||||||
|
|
||||||
taiexpd = pd.read_csv("DataSets/TAIEX.csv", sep=",")
|
#taiexpd = pd.read_csv("DataSets/TAIEX.csv", sep=",")
|
||||||
taiex = np.array(taiexpd["avg"][:5000])
|
#taiex = np.array(taiexpd["avg"][:5000])
|
||||||
|
|
||||||
#nasdaqpd = pd.read_csv("DataSets/NASDAQ_IXIC.csv", sep=",")
|
nasdaqpd = pd.read_csv("DataSets/NASDAQ_IXIC.csv", sep=",")
|
||||||
#nasdaq = np.array(nasdaqpd["avg"][0:5000])
|
nasdaq = np.array(nasdaqpd["avg"][0:5000])
|
||||||
|
|
||||||
#sp500pd = pd.read_csv("DataSets/S&P500.csv", sep=",")
|
#sp500pd = pd.read_csv("DataSets/S&P500.csv", sep=",")
|
||||||
#sp500 = np.array(sp500pd["Avg"][11000:])
|
#sp500 = np.array(sp500pd["Avg"][11000:])
|
||||||
@ -73,7 +73,7 @@ from pyFTS.benchmarks import arima, quantreg
|
|||||||
|
|
||||||
#bchmk.teste(taiex,['192.168.0.109', '192.168.0.101'])
|
#bchmk.teste(taiex,['192.168.0.109', '192.168.0.101'])
|
||||||
|
|
||||||
from pyFTS import song, chen, yu, cheng
|
diff = Transformations.Differential(1)
|
||||||
|
|
||||||
"""
|
"""
|
||||||
bchmk.point_sliding_window(sonda, 9000, train=0.8, inc=0.4,#models=[yu.WeightedFTS], # #
|
bchmk.point_sliding_window(sonda, 9000, train=0.8, inc=0.4,#models=[yu.WeightedFTS], # #
|
||||||
@ -82,7 +82,7 @@ bchmk.point_sliding_window(sonda, 9000, train=0.8, inc=0.4,#models=[yu.WeightedF
|
|||||||
dump=True, save=True, file="experiments/sondaws_point_analytic.csv",
|
dump=True, save=True, file="experiments/sondaws_point_analytic.csv",
|
||||||
nodes=['192.168.0.103', '192.168.0.106', '192.168.0.108', '192.168.0.109']) #, depends=[hofts, ifts])
|
nodes=['192.168.0.103', '192.168.0.106', '192.168.0.108', '192.168.0.109']) #, depends=[hofts, ifts])
|
||||||
|
|
||||||
diff = Transformations.Differential(1)
|
|
||||||
|
|
||||||
bchmk.point_sliding_window(sonda, 9000, train=0.8, inc=0.4, #models=[yu.WeightedFTS], # #
|
bchmk.point_sliding_window(sonda, 9000, train=0.8, inc=0.4, #models=[yu.WeightedFTS], # #
|
||||||
partitioners=[Grid.GridPartitioner], #Entropy.EntropyPartitioner], # FCM.FCMPartitioner, ],
|
partitioners=[Grid.GridPartitioner], #Entropy.EntropyPartitioner], # FCM.FCMPartitioner, ],
|
||||||
@ -91,6 +91,21 @@ bchmk.point_sliding_window(sonda, 9000, train=0.8, inc=0.4, #models=[yu.Weighted
|
|||||||
nodes=['192.168.0.103', '192.168.0.106', '192.168.0.108', '192.168.0.109']) #, depends=[hofts, ifts])
|
nodes=['192.168.0.103', '192.168.0.106', '192.168.0.108', '192.168.0.109']) #, depends=[hofts, ifts])
|
||||||
#"""
|
#"""
|
||||||
|
|
||||||
|
bchmk.interval_sliding_window(nasdaq, 2000, train=0.8, inc=0.1,#models=[yu.WeightedFTS], # #
|
||||||
|
partitioners=[Grid.GridPartitioner], #Entropy.EntropyPartitioner], # FCM.FCMPartitioner, ],
|
||||||
|
partitions= np.arange(10,200,step=10), #transformation=diff,
|
||||||
|
dump=True, save=True, file="experiments/nasdaq_interval_analytic.csv",
|
||||||
|
nodes=['192.168.0.103', '192.168.0.106', '192.168.0.108', '192.168.0.109']) #, depends=[hofts, ifts])
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
bchmk.interval_sliding_window(nasdaq, 2000, train=0.8, inc=0.1, #models=[yu.WeightedFTS], # #
|
||||||
|
partitioners=[Grid.GridPartitioner], #Entropy.EntropyPartitioner], # FCM.FCMPartitioner, ],
|
||||||
|
partitions= np.arange(3,20,step=2), #transformation=diff,
|
||||||
|
dump=True, save=True, file="experiments/nasdaq_interval_analytic_diff.csv",
|
||||||
|
nodes=['192.168.0.103', '192.168.0.106', '192.168.0.108', '192.168.0.109']) #, depends=[hofts, ifts])
|
||||||
|
|
||||||
|
"""
|
||||||
from pyFTS.partitioners import Grid
|
from pyFTS.partitioners import Grid
|
||||||
from pyFTS import pwfts
|
from pyFTS import pwfts
|
||||||
|
|
||||||
@ -108,3 +123,4 @@ x = tmp.forecastInterval(taiex[1600:1610])
|
|||||||
|
|
||||||
print(taiex[1600:1610])
|
print(taiex[1600:1610])
|
||||||
print(x)
|
print(x)
|
||||||
|
"""
|
Loading…
Reference in New Issue
Block a user