Documentation update
This commit is contained in:
parent
c42dea2aca
commit
0b63ed118a
BIN
docs/build/doctrees/environment.pickle
vendored
BIN
docs/build/doctrees/environment.pickle
vendored
Binary file not shown.
BIN
docs/build/doctrees/pyFTS.common.doctree
vendored
BIN
docs/build/doctrees/pyFTS.common.doctree
vendored
Binary file not shown.
BIN
docs/build/doctrees/pyFTS.models.doctree
vendored
BIN
docs/build/doctrees/pyFTS.models.doctree
vendored
Binary file not shown.
BIN
docs/build/doctrees/pyFTS.models.ensemble.doctree
vendored
BIN
docs/build/doctrees/pyFTS.models.ensemble.doctree
vendored
Binary file not shown.
Binary file not shown.
BIN
docs/build/doctrees/pyFTS.partitioners.doctree
vendored
BIN
docs/build/doctrees/pyFTS.partitioners.doctree
vendored
Binary file not shown.
@ -167,6 +167,7 @@
|
|||||||
<span class="sd"> :keyword start: in the multi step forecasting, the index of the data where to start forecasting</span>
|
<span class="sd"> :keyword start: in the multi step forecasting, the index of the data where to start forecasting</span>
|
||||||
<span class="sd"> :keyword distributed: boolean, indicate if the forecasting procedure will be distributed in a dispy cluster</span>
|
<span class="sd"> :keyword distributed: boolean, indicate if the forecasting procedure will be distributed in a dispy cluster</span>
|
||||||
<span class="sd"> :keyword nodes: a list with the dispy cluster nodes addresses</span>
|
<span class="sd"> :keyword nodes: a list with the dispy cluster nodes addresses</span>
|
||||||
|
<span class="sd"> :keyword explain: try to explain, step by step, the one-step-ahead point forecasting result given the input data.</span>
|
||||||
|
|
||||||
<span class="sd"> :return: a numpy array with the forecasted data</span>
|
<span class="sd"> :return: a numpy array with the forecasted data</span>
|
||||||
<span class="sd"> """</span>
|
<span class="sd"> """</span>
|
||||||
@ -416,6 +417,7 @@
|
|||||||
<span class="k">if</span> <span class="n">save</span><span class="p">:</span>
|
<span class="k">if</span> <span class="n">save</span><span class="p">:</span>
|
||||||
<span class="n">Util</span><span class="o">.</span><span class="n">persist_obj</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">file_path</span><span class="p">)</span></div>
|
<span class="n">Util</span><span class="o">.</span><span class="n">persist_obj</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">file_path</span><span class="p">)</span></div>
|
||||||
|
|
||||||
|
|
||||||
<div class="viewcode-block" id="FTS.clone_parameters"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.fts.FTS.clone_parameters">[docs]</a> <span class="k">def</span> <span class="nf">clone_parameters</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">model</span><span class="p">):</span>
|
<div class="viewcode-block" id="FTS.clone_parameters"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.fts.FTS.clone_parameters">[docs]</a> <span class="k">def</span> <span class="nf">clone_parameters</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">model</span><span class="p">):</span>
|
||||||
<span class="sd">"""</span>
|
<span class="sd">"""</span>
|
||||||
<span class="sd"> Import the parameters values from other model</span>
|
<span class="sd"> Import the parameters values from other model</span>
|
||||||
|
22
docs/build/html/_modules/pyFTS/models/chen.html
vendored
22
docs/build/html/_modules/pyFTS/models/chen.html
vendored
@ -130,22 +130,36 @@
|
|||||||
|
|
||||||
<div class="viewcode-block" id="ConventionalFTS.forecast"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.chen.ConventionalFTS.forecast">[docs]</a> <span class="k">def</span> <span class="nf">forecast</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ndata</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
<div class="viewcode-block" id="ConventionalFTS.forecast"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.chen.ConventionalFTS.forecast">[docs]</a> <span class="k">def</span> <span class="nf">forecast</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ndata</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
||||||
|
|
||||||
<span class="n">l</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">ndata</span><span class="p">)</span>
|
<span class="n">explain</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'explain'</span><span class="p">,</span><span class="kc">False</span><span class="p">)</span>
|
||||||
|
|
||||||
|
<span class="n">l</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">ndata</span><span class="p">)</span> <span class="k">if</span> <span class="ow">not</span> <span class="n">explain</span> <span class="k">else</span> <span class="mi">1</span>
|
||||||
|
|
||||||
<span class="n">ret</span> <span class="o">=</span> <span class="p">[]</span>
|
<span class="n">ret</span> <span class="o">=</span> <span class="p">[]</span>
|
||||||
|
|
||||||
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">l</span><span class="p">):</span>
|
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">l</span><span class="p">):</span>
|
||||||
|
|
||||||
<span class="n">mv</span> <span class="o">=</span> <span class="n">FuzzySet</span><span class="o">.</span><span class="n">fuzzyfy_instance</span><span class="p">(</span><span class="n">ndata</span><span class="p">[</span><span class="n">k</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">)</span>
|
<span class="n">actual</span> <span class="o">=</span> <span class="n">FuzzySet</span><span class="o">.</span><span class="n">get_maximum_membership_fuzzyset</span><span class="p">(</span><span class="n">ndata</span><span class="p">[</span><span class="n">k</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">)</span>
|
||||||
|
|
||||||
<span class="n">actual</span> <span class="o">=</span> <span class="n">FuzzySet</span><span class="o">.</span><span class="n">get_maximum_membership_fuzzyset</span><span class="p">(</span><span class="n">ndata</span><span class="p">[</span><span class="n">k</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">)</span> <span class="c1">#self.sets[np.argwhere(mv == max(mv))[0, 0]]</span>
|
<span class="k">if</span> <span class="n">explain</span><span class="p">:</span>
|
||||||
|
<span class="nb">print</span><span class="p">(</span><span class="s2">"Fuzzyfication:</span><span class="se">\n\n</span><span class="s2"> </span><span class="si">{}</span><span class="s2"> -> </span><span class="si">{}</span><span class="s2"> </span><span class="se">\n</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">ndata</span><span class="p">[</span><span class="n">k</span><span class="p">],</span> <span class="n">actual</span><span class="o">.</span><span class="n">name</span><span class="p">))</span>
|
||||||
|
|
||||||
<span class="k">if</span> <span class="n">actual</span><span class="o">.</span><span class="n">name</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">:</span>
|
<span class="k">if</span> <span class="n">actual</span><span class="o">.</span><span class="n">name</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">:</span>
|
||||||
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">actual</span><span class="o">.</span><span class="n">centroid</span><span class="p">)</span>
|
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">actual</span><span class="o">.</span><span class="n">centroid</span><span class="p">)</span>
|
||||||
|
|
||||||
|
<span class="k">if</span> <span class="n">explain</span><span class="p">:</span>
|
||||||
|
<span class="nb">print</span><span class="p">(</span><span class="s2">"Rules:</span><span class="se">\n\n</span><span class="s2"> </span><span class="si">{}</span><span class="s2"> -> </span><span class="si">{}</span><span class="s2"> (Naïve)</span><span class="se">\t</span><span class="s2"> Midpoint: </span><span class="si">{}</span><span class="s2"> </span><span class="se">\n\n</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">actual</span><span class="o">.</span><span class="n">name</span><span class="p">,</span> <span class="n">actual</span><span class="o">.</span><span class="n">name</span><span class="p">,</span><span class="n">actual</span><span class="o">.</span><span class="n">centroid</span><span class="p">))</span>
|
||||||
|
|
||||||
<span class="k">else</span><span class="p">:</span>
|
<span class="k">else</span><span class="p">:</span>
|
||||||
<span class="n">_flrg</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">actual</span><span class="o">.</span><span class="n">name</span><span class="p">]</span>
|
<span class="n">_flrg</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">actual</span><span class="o">.</span><span class="n">name</span><span class="p">]</span>
|
||||||
|
|
||||||
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">_flrg</span><span class="o">.</span><span class="n">get_midpoint</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">))</span>
|
<span class="n">mp</span> <span class="o">=</span> <span class="n">_flrg</span><span class="o">.</span><span class="n">get_midpoint</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">)</span>
|
||||||
|
|
||||||
|
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">mp</span><span class="p">)</span>
|
||||||
|
|
||||||
|
<span class="k">if</span> <span class="n">explain</span><span class="p">:</span>
|
||||||
|
<span class="nb">print</span><span class="p">(</span><span class="s2">"Rules:</span><span class="se">\n\n</span><span class="s2"> </span><span class="si">{}</span><span class="s2"> </span><span class="se">\t</span><span class="s2"> Midpoint: </span><span class="si">{}</span><span class="s2"> </span><span class="se">\n</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">str</span><span class="p">(</span><span class="n">_flrg</span><span class="p">),</span> <span class="n">mp</span><span class="p">))</span>
|
||||||
|
|
||||||
|
<span class="nb">print</span><span class="p">(</span><span class="s2">"Deffuzyfied value: </span><span class="si">{}</span><span class="s2"> </span><span class="se">\n</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">mp</span><span class="p">))</span>
|
||||||
|
|
||||||
<span class="k">return</span> <span class="n">ret</span></div></div>
|
<span class="k">return</span> <span class="n">ret</span></div></div>
|
||||||
</pre></div>
|
</pre></div>
|
||||||
|
38
docs/build/html/_modules/pyFTS/models/hofts.html
vendored
38
docs/build/html/_modules/pyFTS/models/hofts.html
vendored
@ -136,7 +136,7 @@
|
|||||||
<span class="bp">self</span><span class="o">.</span><span class="n">max_lag</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">order</span>
|
<span class="bp">self</span><span class="o">.</span><span class="n">max_lag</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">order</span>
|
||||||
<span class="bp">self</span><span class="o">.</span><span class="n">lags</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">order</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span></div>
|
<span class="bp">self</span><span class="o">.</span><span class="n">lags</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">order</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span></div>
|
||||||
|
|
||||||
<div class="viewcode-block" id="HighOrderFTS.generate_lhs_flrg"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.hofts.HighOrderFTS.generate_lhs_flrg">[docs]</a> <span class="k">def</span> <span class="nf">generate_lhs_flrg</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sample</span><span class="p">):</span>
|
<div class="viewcode-block" id="HighOrderFTS.generate_lhs_flrg"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.hofts.HighOrderFTS.generate_lhs_flrg">[docs]</a> <span class="k">def</span> <span class="nf">generate_lhs_flrg</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sample</span><span class="p">,</span> <span class="n">explain</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
|
||||||
<span class="n">lags</span> <span class="o">=</span> <span class="p">{}</span>
|
<span class="n">lags</span> <span class="o">=</span> <span class="p">{}</span>
|
||||||
|
|
||||||
<span class="n">flrgs</span> <span class="o">=</span> <span class="p">[]</span>
|
<span class="n">flrgs</span> <span class="o">=</span> <span class="p">[]</span>
|
||||||
@ -145,6 +145,9 @@
|
|||||||
<span class="n">lhs</span> <span class="o">=</span> <span class="n">FuzzySet</span><span class="o">.</span><span class="n">fuzzyfy</span><span class="p">(</span><span class="n">sample</span><span class="p">[</span><span class="n">o</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span> <span class="n">partitioner</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span><span class="p">,</span> <span class="n">mode</span><span class="o">=</span><span class="s2">"sets"</span><span class="p">,</span> <span class="n">alpha_cut</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">alpha_cut</span><span class="p">)</span>
|
<span class="n">lhs</span> <span class="o">=</span> <span class="n">FuzzySet</span><span class="o">.</span><span class="n">fuzzyfy</span><span class="p">(</span><span class="n">sample</span><span class="p">[</span><span class="n">o</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span> <span class="n">partitioner</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span><span class="p">,</span> <span class="n">mode</span><span class="o">=</span><span class="s2">"sets"</span><span class="p">,</span> <span class="n">alpha_cut</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">alpha_cut</span><span class="p">)</span>
|
||||||
<span class="n">lags</span><span class="p">[</span><span class="n">ct</span><span class="p">]</span> <span class="o">=</span> <span class="n">lhs</span>
|
<span class="n">lags</span><span class="p">[</span><span class="n">ct</span><span class="p">]</span> <span class="o">=</span> <span class="n">lhs</span>
|
||||||
|
|
||||||
|
<span class="k">if</span> <span class="n">explain</span><span class="p">:</span>
|
||||||
|
<span class="nb">print</span><span class="p">(</span><span class="s2">"</span><span class="se">\t</span><span class="s2"> (Lag </span><span class="si">{}</span><span class="s2">) </span><span class="si">{}</span><span class="s2"> -> </span><span class="si">{}</span><span class="s2"> </span><span class="se">\n</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">o</span><span class="p">,</span> <span class="n">sample</span><span class="p">[</span><span class="n">o</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span> <span class="n">lhs</span><span class="p">))</span>
|
||||||
|
|
||||||
<span class="n">root</span> <span class="o">=</span> <span class="n">tree</span><span class="o">.</span><span class="n">FLRGTreeNode</span><span class="p">(</span><span class="kc">None</span><span class="p">)</span>
|
<span class="n">root</span> <span class="o">=</span> <span class="n">tree</span><span class="o">.</span><span class="n">FLRGTreeNode</span><span class="p">(</span><span class="kc">None</span><span class="p">)</span>
|
||||||
|
|
||||||
<span class="n">tree</span><span class="o">.</span><span class="n">build_tree_without_order</span><span class="p">(</span><span class="n">root</span><span class="p">,</span> <span class="n">lags</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
|
<span class="n">tree</span><span class="o">.</span><span class="n">build_tree_without_order</span><span class="p">(</span><span class="n">root</span><span class="p">,</span> <span class="n">lags</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
|
||||||
@ -185,27 +188,50 @@
|
|||||||
|
|
||||||
<div class="viewcode-block" id="HighOrderFTS.forecast"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.hofts.HighOrderFTS.forecast">[docs]</a> <span class="k">def</span> <span class="nf">forecast</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ndata</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
<div class="viewcode-block" id="HighOrderFTS.forecast"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.hofts.HighOrderFTS.forecast">[docs]</a> <span class="k">def</span> <span class="nf">forecast</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ndata</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
||||||
|
|
||||||
|
<span class="n">explain</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'explain'</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
|
||||||
|
|
||||||
<span class="n">ret</span> <span class="o">=</span> <span class="p">[]</span>
|
<span class="n">ret</span> <span class="o">=</span> <span class="p">[]</span>
|
||||||
|
|
||||||
<span class="n">l</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">ndata</span><span class="p">)</span>
|
<span class="n">l</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">ndata</span><span class="p">)</span> <span class="k">if</span> <span class="ow">not</span> <span class="n">explain</span> <span class="k">else</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_lag</span> <span class="o">+</span> <span class="mi">1</span>
|
||||||
|
|
||||||
<span class="k">if</span> <span class="n">l</span> <span class="o"><</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_lag</span><span class="p">:</span>
|
<span class="k">if</span> <span class="n">l</span> <span class="o"><</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_lag</span><span class="p">:</span>
|
||||||
<span class="k">return</span> <span class="n">ndata</span>
|
<span class="k">return</span> <span class="n">ndata</span>
|
||||||
|
|
||||||
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">max_lag</span><span class="p">,</span> <span class="n">l</span><span class="o">+</span><span class="mi">1</span><span class="p">):</span>
|
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">max_lag</span><span class="p">,</span> <span class="n">l</span><span class="o">+</span><span class="mi">1</span><span class="p">):</span>
|
||||||
<span class="n">flrgs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">generate_lhs_flrg</span><span class="p">(</span><span class="n">ndata</span><span class="p">[</span><span class="n">k</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_lag</span><span class="p">:</span> <span class="n">k</span><span class="p">])</span>
|
|
||||||
|
<span class="k">if</span> <span class="n">explain</span><span class="p">:</span>
|
||||||
|
<span class="nb">print</span><span class="p">(</span><span class="s2">"Fuzzyfication </span><span class="se">\n</span><span class="s2">"</span><span class="p">)</span>
|
||||||
|
|
||||||
|
<span class="n">flrgs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">generate_lhs_flrg</span><span class="p">(</span><span class="n">ndata</span><span class="p">[</span><span class="n">k</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_lag</span><span class="p">:</span> <span class="n">k</span><span class="p">],</span> <span class="n">explain</span><span class="p">)</span>
|
||||||
|
|
||||||
|
<span class="k">if</span> <span class="n">explain</span><span class="p">:</span>
|
||||||
|
<span class="nb">print</span><span class="p">(</span><span class="s2">"Rules:</span><span class="se">\n</span><span class="s2">"</span><span class="p">)</span>
|
||||||
|
|
||||||
<span class="n">tmp</span> <span class="o">=</span> <span class="p">[]</span>
|
<span class="n">tmp</span> <span class="o">=</span> <span class="p">[]</span>
|
||||||
<span class="k">for</span> <span class="n">flrg</span> <span class="ow">in</span> <span class="n">flrgs</span><span class="p">:</span>
|
<span class="k">for</span> <span class="n">flrg</span> <span class="ow">in</span> <span class="n">flrgs</span><span class="p">:</span>
|
||||||
|
|
||||||
<span class="k">if</span> <span class="n">flrg</span><span class="o">.</span><span class="n">get_key</span><span class="p">()</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">:</span>
|
<span class="k">if</span> <span class="n">flrg</span><span class="o">.</span><span class="n">get_key</span><span class="p">()</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">:</span>
|
||||||
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">flrg</span><span class="o">.</span><span class="n">LHS</span><span class="p">)</span> <span class="o">></span> <span class="mi">0</span><span class="p">:</span>
|
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">flrg</span><span class="o">.</span><span class="n">LHS</span><span class="p">)</span> <span class="o">></span> <span class="mi">0</span><span class="p">:</span>
|
||||||
<span class="n">tmp</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">[</span><span class="n">flrg</span><span class="o">.</span><span class="n">LHS</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]]</span><span class="o">.</span><span class="n">centroid</span><span class="p">)</span>
|
<span class="n">mp</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">[</span><span class="n">flrg</span><span class="o">.</span><span class="n">LHS</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]]</span><span class="o">.</span><span class="n">centroid</span>
|
||||||
|
<span class="n">tmp</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">mp</span><span class="p">)</span>
|
||||||
|
|
||||||
|
<span class="k">if</span> <span class="n">explain</span><span class="p">:</span>
|
||||||
|
<span class="nb">print</span><span class="p">(</span><span class="s2">"</span><span class="se">\t</span><span class="s2"> </span><span class="si">{}</span><span class="s2"> -> </span><span class="si">{}</span><span class="s2"> (Naïve)</span><span class="se">\t</span><span class="s2"> Midpoint: </span><span class="si">{}</span><span class="se">\n</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">str</span><span class="p">(</span><span class="n">flrg</span><span class="o">.</span><span class="n">LHS</span><span class="p">),</span> <span class="n">flrg</span><span class="o">.</span><span class="n">LHS</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span>
|
||||||
|
<span class="n">mp</span><span class="p">))</span>
|
||||||
|
|
||||||
<span class="k">else</span><span class="p">:</span>
|
<span class="k">else</span><span class="p">:</span>
|
||||||
<span class="n">flrg</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">flrg</span><span class="o">.</span><span class="n">get_key</span><span class="p">()]</span>
|
<span class="n">flrg</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">flrg</span><span class="o">.</span><span class="n">get_key</span><span class="p">()]</span>
|
||||||
<span class="n">tmp</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">flrg</span><span class="o">.</span><span class="n">get_midpoint</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">))</span>
|
<span class="n">mp</span> <span class="o">=</span> <span class="n">flrg</span><span class="o">.</span><span class="n">get_midpoint</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">)</span>
|
||||||
|
<span class="n">tmp</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">mp</span><span class="p">)</span>
|
||||||
|
|
||||||
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">nanmean</span><span class="p">(</span><span class="n">tmp</span><span class="p">))</span>
|
<span class="k">if</span> <span class="n">explain</span><span class="p">:</span>
|
||||||
|
<span class="nb">print</span><span class="p">(</span><span class="s2">"</span><span class="se">\t</span><span class="s2"> </span><span class="si">{}</span><span class="s2"> </span><span class="se">\t</span><span class="s2"> Midpoint: </span><span class="si">{}</span><span class="se">\n</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">str</span><span class="p">(</span><span class="n">flrg</span><span class="p">),</span> <span class="n">mp</span><span class="p">))</span>
|
||||||
|
|
||||||
|
<span class="n">final</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">nanmean</span><span class="p">(</span><span class="n">tmp</span><span class="p">)</span>
|
||||||
|
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">final</span><span class="p">)</span>
|
||||||
|
|
||||||
|
<span class="k">if</span> <span class="n">explain</span><span class="p">:</span>
|
||||||
|
<span class="nb">print</span><span class="p">(</span><span class="s2">"Deffuzyfied value: </span><span class="si">{}</span><span class="s2"> </span><span class="se">\n</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">final</span><span class="p">))</span>
|
||||||
|
|
||||||
<span class="k">return</span> <span class="n">ret</span></div></div>
|
<span class="k">return</span> <span class="n">ret</span></div></div>
|
||||||
</pre></div>
|
</pre></div>
|
||||||
|
@ -148,7 +148,7 @@
|
|||||||
|
|
||||||
<span class="k">for</span> <span class="n">flrg</span> <span class="ow">in</span> <span class="n">flrgs</span><span class="p">:</span>
|
<span class="k">for</span> <span class="n">flrg</span> <span class="ow">in</span> <span class="n">flrgs</span><span class="p">:</span>
|
||||||
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">flrg</span><span class="o">.</span><span class="n">LHS</span><span class="p">)</span> <span class="o">></span> <span class="mi">0</span><span class="p">:</span>
|
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">flrg</span><span class="o">.</span><span class="n">LHS</span><span class="p">)</span> <span class="o">></span> <span class="mi">0</span><span class="p">:</span>
|
||||||
<span class="c1"># achar o os bounds de cada FLRG, ponderados pela pertinência</span>
|
|
||||||
<span class="n">mv</span> <span class="o">=</span> <span class="n">flrg</span><span class="o">.</span><span class="n">get_membership</span><span class="p">(</span><span class="n">sample</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">)</span>
|
<span class="n">mv</span> <span class="o">=</span> <span class="n">flrg</span><span class="o">.</span><span class="n">get_membership</span><span class="p">(</span><span class="n">sample</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">)</span>
|
||||||
<span class="n">up</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">mv</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_upper</span><span class="p">(</span><span class="n">flrg</span><span class="p">))</span>
|
<span class="n">up</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">mv</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_upper</span><span class="p">(</span><span class="n">flrg</span><span class="p">))</span>
|
||||||
<span class="n">lo</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">mv</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_lower</span><span class="p">(</span><span class="n">flrg</span><span class="p">))</span>
|
<span class="n">lo</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">mv</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_lower</span><span class="p">(</span><span class="n">flrg</span><span class="p">))</span>
|
||||||
|
@ -131,7 +131,7 @@
|
|||||||
<span class="k">if</span> <span class="n">flr</span><span class="o">.</span><span class="n">LHS</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">:</span>
|
<span class="k">if</span> <span class="n">flr</span><span class="o">.</span><span class="n">LHS</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">:</span>
|
||||||
<span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">flr</span><span class="o">.</span><span class="n">LHS</span><span class="p">]</span><span class="o">.</span><span class="n">append_rhs</span><span class="p">(</span><span class="n">flr</span><span class="o">.</span><span class="n">RHS</span><span class="p">)</span>
|
<span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">flr</span><span class="o">.</span><span class="n">LHS</span><span class="p">]</span><span class="o">.</span><span class="n">append_rhs</span><span class="p">(</span><span class="n">flr</span><span class="o">.</span><span class="n">RHS</span><span class="p">)</span>
|
||||||
<span class="k">else</span><span class="p">:</span>
|
<span class="k">else</span><span class="p">:</span>
|
||||||
<span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">flr</span><span class="o">.</span><span class="n">LHS</span><span class="p">]</span> <span class="o">=</span> <span class="n">ImprovedWeightedFLRG</span><span class="p">(</span><span class="n">flr</span><span class="o">.</span><span class="n">LHS</span><span class="p">);</span>
|
<span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">flr</span><span class="o">.</span><span class="n">LHS</span><span class="p">]</span> <span class="o">=</span> <span class="n">ImprovedWeightedFLRG</span><span class="p">(</span><span class="n">flr</span><span class="o">.</span><span class="n">LHS</span><span class="p">)</span>
|
||||||
<span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">flr</span><span class="o">.</span><span class="n">LHS</span><span class="p">]</span><span class="o">.</span><span class="n">append_rhs</span><span class="p">(</span><span class="n">flr</span><span class="o">.</span><span class="n">RHS</span><span class="p">)</span></div>
|
<span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">flr</span><span class="o">.</span><span class="n">LHS</span><span class="p">]</span><span class="o">.</span><span class="n">append_rhs</span><span class="p">(</span><span class="n">flr</span><span class="o">.</span><span class="n">RHS</span><span class="p">)</span></div>
|
||||||
|
|
||||||
<div class="viewcode-block" id="ImprovedWeightedFTS.train"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.ismailefendi.ImprovedWeightedFTS.train">[docs]</a> <span class="k">def</span> <span class="nf">train</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ndata</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
<div class="viewcode-block" id="ImprovedWeightedFTS.train"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.ismailefendi.ImprovedWeightedFTS.train">[docs]</a> <span class="k">def</span> <span class="nf">train</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ndata</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
||||||
@ -141,7 +141,8 @@
|
|||||||
<span class="bp">self</span><span class="o">.</span><span class="n">generate_flrg</span><span class="p">(</span><span class="n">flrs</span><span class="p">)</span></div>
|
<span class="bp">self</span><span class="o">.</span><span class="n">generate_flrg</span><span class="p">(</span><span class="n">flrs</span><span class="p">)</span></div>
|
||||||
|
|
||||||
<div class="viewcode-block" id="ImprovedWeightedFTS.forecast"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.ismailefendi.ImprovedWeightedFTS.forecast">[docs]</a> <span class="k">def</span> <span class="nf">forecast</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ndata</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
<div class="viewcode-block" id="ImprovedWeightedFTS.forecast"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.ismailefendi.ImprovedWeightedFTS.forecast">[docs]</a> <span class="k">def</span> <span class="nf">forecast</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ndata</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
||||||
<span class="n">l</span> <span class="o">=</span> <span class="mi">1</span>
|
|
||||||
|
<span class="n">explain</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'explain'</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
|
||||||
|
|
||||||
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
|
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
|
||||||
<span class="n">ordered_sets</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span><span class="o">.</span><span class="n">ordered_sets</span>
|
<span class="n">ordered_sets</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span><span class="o">.</span><span class="n">ordered_sets</span>
|
||||||
@ -149,7 +150,8 @@
|
|||||||
<span class="n">ordered_sets</span> <span class="o">=</span> <span class="n">FuzzySet</span><span class="o">.</span><span class="n">set_ordered</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">)</span>
|
<span class="n">ordered_sets</span> <span class="o">=</span> <span class="n">FuzzySet</span><span class="o">.</span><span class="n">set_ordered</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">)</span>
|
||||||
|
|
||||||
<span class="n">ndata</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">ndata</span><span class="p">)</span>
|
<span class="n">ndata</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">ndata</span><span class="p">)</span>
|
||||||
<span class="n">l</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">ndata</span><span class="p">)</span>
|
|
||||||
|
<span class="n">l</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">ndata</span><span class="p">)</span> <span class="k">if</span> <span class="ow">not</span> <span class="n">explain</span> <span class="k">else</span> <span class="mi">1</span>
|
||||||
|
|
||||||
<span class="n">ret</span> <span class="o">=</span> <span class="p">[]</span>
|
<span class="n">ret</span> <span class="o">=</span> <span class="p">[]</span>
|
||||||
|
|
||||||
@ -157,13 +159,28 @@
|
|||||||
|
|
||||||
<span class="n">actual</span> <span class="o">=</span> <span class="n">FuzzySet</span><span class="o">.</span><span class="n">get_maximum_membership_fuzzyset</span><span class="p">(</span><span class="n">ndata</span><span class="p">[</span><span class="n">k</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">,</span> <span class="n">ordered_sets</span><span class="p">)</span>
|
<span class="n">actual</span> <span class="o">=</span> <span class="n">FuzzySet</span><span class="o">.</span><span class="n">get_maximum_membership_fuzzyset</span><span class="p">(</span><span class="n">ndata</span><span class="p">[</span><span class="n">k</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">,</span> <span class="n">ordered_sets</span><span class="p">)</span>
|
||||||
|
|
||||||
|
<span class="k">if</span> <span class="n">explain</span><span class="p">:</span>
|
||||||
|
<span class="nb">print</span><span class="p">(</span><span class="s2">"Fuzzyfication:</span><span class="se">\n\n</span><span class="s2"> </span><span class="si">{}</span><span class="s2"> -> </span><span class="si">{}</span><span class="s2"> </span><span class="se">\n</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">ndata</span><span class="p">[</span><span class="n">k</span><span class="p">],</span> <span class="n">actual</span><span class="o">.</span><span class="n">name</span><span class="p">))</span>
|
||||||
|
|
||||||
<span class="k">if</span> <span class="n">actual</span><span class="o">.</span><span class="n">name</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">:</span>
|
<span class="k">if</span> <span class="n">actual</span><span class="o">.</span><span class="n">name</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">:</span>
|
||||||
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">actual</span><span class="o">.</span><span class="n">centroid</span><span class="p">)</span>
|
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">actual</span><span class="o">.</span><span class="n">centroid</span><span class="p">)</span>
|
||||||
|
|
||||||
|
<span class="k">if</span> <span class="n">explain</span><span class="p">:</span>
|
||||||
|
<span class="nb">print</span><span class="p">(</span><span class="s2">"Rules:</span><span class="se">\n\n</span><span class="s2"> </span><span class="si">{}</span><span class="s2"> -> </span><span class="si">{}</span><span class="s2"> (Naïve)</span><span class="se">\t</span><span class="s2"> Midpoint: </span><span class="si">{}</span><span class="s2"> </span><span class="se">\n\n</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">actual</span><span class="o">.</span><span class="n">name</span><span class="p">,</span> <span class="n">actual</span><span class="o">.</span><span class="n">name</span><span class="p">,</span><span class="n">actual</span><span class="o">.</span><span class="n">centroid</span><span class="p">))</span>
|
||||||
|
|
||||||
<span class="k">else</span><span class="p">:</span>
|
<span class="k">else</span><span class="p">:</span>
|
||||||
<span class="n">flrg</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">actual</span><span class="o">.</span><span class="n">name</span><span class="p">]</span>
|
<span class="n">flrg</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">actual</span><span class="o">.</span><span class="n">name</span><span class="p">]</span>
|
||||||
<span class="n">mp</span> <span class="o">=</span> <span class="n">flrg</span><span class="o">.</span><span class="n">get_midpoints</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">)</span>
|
<span class="n">mp</span> <span class="o">=</span> <span class="n">flrg</span><span class="o">.</span><span class="n">get_midpoints</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">)</span>
|
||||||
|
|
||||||
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">mp</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">flrg</span><span class="o">.</span><span class="n">weights</span><span class="p">()))</span>
|
<span class="n">final</span> <span class="o">=</span> <span class="n">mp</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">flrg</span><span class="o">.</span><span class="n">weights</span><span class="p">())</span>
|
||||||
|
|
||||||
|
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">final</span><span class="p">)</span>
|
||||||
|
|
||||||
|
<span class="k">if</span> <span class="n">explain</span><span class="p">:</span>
|
||||||
|
<span class="nb">print</span><span class="p">(</span><span class="s2">"Rules:</span><span class="se">\n\n</span><span class="s2"> </span><span class="si">{}</span><span class="s2"> </span><span class="se">\n\n</span><span class="s2"> "</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">str</span><span class="p">(</span><span class="n">flrg</span><span class="p">)))</span>
|
||||||
|
<span class="nb">print</span><span class="p">(</span><span class="s2">"Midpoints: </span><span class="se">\n\n</span><span class="s2"> </span><span class="si">{}</span><span class="se">\n\n</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">mp</span><span class="p">))</span>
|
||||||
|
|
||||||
|
<span class="nb">print</span><span class="p">(</span><span class="s2">"Deffuzyfied value: </span><span class="si">{}</span><span class="s2"> </span><span class="se">\n</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">final</span><span class="p">))</span>
|
||||||
|
|
||||||
<span class="k">return</span> <span class="n">ret</span></div></div>
|
<span class="k">return</span> <span class="n">ret</span></div></div>
|
||||||
</pre></div>
|
</pre></div>
|
||||||
|
@ -129,7 +129,7 @@
|
|||||||
|
|
||||||
|
|
||||||
<div class="viewcode-block" id="plot_sets_conditional"><a class="viewcode-back" href="../../../../pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.util.plot_sets_conditional">[docs]</a><span class="k">def</span> <span class="nf">plot_sets_conditional</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="p">[</span><span class="mi">5</span><span class="p">,</span> <span class="mi">5</span><span class="p">],</span> <span class="n">colors</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
|
<div class="viewcode-block" id="plot_sets_conditional"><a class="viewcode-back" href="../../../../pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.util.plot_sets_conditional">[docs]</a><span class="k">def</span> <span class="nf">plot_sets_conditional</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="p">[</span><span class="mi">5</span><span class="p">,</span> <span class="mi">5</span><span class="p">],</span> <span class="n">colors</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
|
||||||
<span class="n">save</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">file</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">axes</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
|
<span class="n">save</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">file</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">axes</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">fig</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
|
||||||
<span class="nb">range</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">data</span><span class="p">),</span> <span class="n">step</span><span class="p">)</span>
|
<span class="nb">range</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">data</span><span class="p">),</span> <span class="n">step</span><span class="p">)</span>
|
||||||
<span class="n">ticks</span> <span class="o">=</span> <span class="p">[]</span>
|
<span class="n">ticks</span> <span class="o">=</span> <span class="p">[]</span>
|
||||||
<span class="k">if</span> <span class="n">axes</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
|
<span class="k">if</span> <span class="n">axes</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
|
||||||
@ -151,11 +151,11 @@
|
|||||||
<span class="k">else</span><span class="p">:</span>
|
<span class="k">else</span><span class="p">:</span>
|
||||||
<span class="n">axes</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="n">t</span><span class="p">,</span> <span class="n">t</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span> <span class="n">t</span><span class="p">],</span> <span class="n">param</span><span class="p">,</span><span class="n">c</span><span class="o">=</span><span class="nb">set</span><span class="o">.</span><span class="n">metadata</span><span class="p">[</span><span class="s1">'color'</span><span class="p">])</span>
|
<span class="n">axes</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="n">t</span><span class="p">,</span> <span class="n">t</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span> <span class="n">t</span><span class="p">],</span> <span class="n">param</span><span class="p">,</span><span class="n">c</span><span class="o">=</span><span class="nb">set</span><span class="o">.</span><span class="n">metadata</span><span class="p">[</span><span class="s1">'color'</span><span class="p">])</span>
|
||||||
|
|
||||||
<span class="n">ticks</span><span class="o">.</span><span class="n">extend</span><span class="p">([</span><span class="s2">"t+"</span><span class="o">+</span><span class="nb">str</span><span class="p">(</span><span class="n">t</span><span class="p">),</span><span class="s2">""</span><span class="p">])</span>
|
<span class="c1">#ticks.extend(["t+"+str(t),""])</span>
|
||||||
|
|
||||||
<span class="n">axes</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s2">"Universe of Discourse"</span><span class="p">)</span>
|
<span class="n">axes</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s2">"Universe of Discourse"</span><span class="p">)</span>
|
||||||
<span class="n">axes</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s2">"Time"</span><span class="p">)</span>
|
<span class="n">axes</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s2">"Time"</span><span class="p">)</span>
|
||||||
<span class="n">plt</span><span class="o">.</span><span class="n">xticks</span><span class="p">([</span><span class="n">k</span> <span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">],</span> <span class="n">ticks</span><span class="p">,</span> <span class="n">rotation</span><span class="o">=</span><span class="s1">'vertical'</span><span class="p">)</span>
|
<span class="c1">#plt.xticks([k for k in range], ticks, rotation='vertical')</span>
|
||||||
|
|
||||||
<span class="n">handles0</span><span class="p">,</span> <span class="n">labels0</span> <span class="o">=</span> <span class="n">axes</span><span class="o">.</span><span class="n">get_legend_handles_labels</span><span class="p">()</span>
|
<span class="n">handles0</span><span class="p">,</span> <span class="n">labels0</span> <span class="o">=</span> <span class="n">axes</span><span class="o">.</span><span class="n">get_legend_handles_labels</span><span class="p">()</span>
|
||||||
<span class="n">lgd</span> <span class="o">=</span> <span class="n">axes</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">handles0</span><span class="p">,</span> <span class="n">labels0</span><span class="p">,</span> <span class="n">loc</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">bbox_to_anchor</span><span class="o">=</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span>
|
<span class="n">lgd</span> <span class="o">=</span> <span class="n">axes</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">handles0</span><span class="p">,</span> <span class="n">labels0</span><span class="p">,</span> <span class="n">loc</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">bbox_to_anchor</span><span class="o">=</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span>
|
||||||
|
41
docs/build/html/_modules/pyFTS/models/pwfts.html
vendored
41
docs/build/html/_modules/pyFTS/models/pwfts.html
vendored
@ -196,7 +196,7 @@
|
|||||||
<span class="k">else</span><span class="p">:</span>
|
<span class="k">else</span><span class="p">:</span>
|
||||||
<span class="bp">self</span><span class="o">.</span><span class="n">generate_flrg</span><span class="p">(</span><span class="n">data</span><span class="p">)</span></div>
|
<span class="bp">self</span><span class="o">.</span><span class="n">generate_flrg</span><span class="p">(</span><span class="n">data</span><span class="p">)</span></div>
|
||||||
|
|
||||||
<div class="viewcode-block" id="ProbabilisticWeightedFTS.generate_lhs_flrg"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFTS.generate_lhs_flrg">[docs]</a> <span class="k">def</span> <span class="nf">generate_lhs_flrg</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sample</span><span class="p">):</span>
|
<div class="viewcode-block" id="ProbabilisticWeightedFTS.generate_lhs_flrg"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFTS.generate_lhs_flrg">[docs]</a> <span class="k">def</span> <span class="nf">generate_lhs_flrg</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sample</span><span class="p">,</span> <span class="n">explain</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
|
||||||
<span class="n">lags</span> <span class="o">=</span> <span class="p">{}</span>
|
<span class="n">lags</span> <span class="o">=</span> <span class="p">{}</span>
|
||||||
|
|
||||||
<span class="n">flrgs</span> <span class="o">=</span> <span class="p">[]</span>
|
<span class="n">flrgs</span> <span class="o">=</span> <span class="p">[]</span>
|
||||||
@ -206,6 +206,9 @@
|
|||||||
|
|
||||||
<span class="n">lags</span><span class="p">[</span><span class="n">ct</span><span class="p">]</span> <span class="o">=</span> <span class="n">lhs</span>
|
<span class="n">lags</span><span class="p">[</span><span class="n">ct</span><span class="p">]</span> <span class="o">=</span> <span class="n">lhs</span>
|
||||||
|
|
||||||
|
<span class="k">if</span> <span class="n">explain</span><span class="p">:</span>
|
||||||
|
<span class="nb">print</span><span class="p">(</span><span class="s2">"</span><span class="se">\t</span><span class="s2"> (Lag </span><span class="si">{}</span><span class="s2">) </span><span class="si">{}</span><span class="s2"> -> </span><span class="si">{}</span><span class="s2"> </span><span class="se">\n</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">o</span><span class="p">,</span> <span class="n">sample</span><span class="p">[</span><span class="n">o</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span> <span class="n">lhs</span><span class="p">))</span>
|
||||||
|
|
||||||
<span class="n">root</span> <span class="o">=</span> <span class="n">tree</span><span class="o">.</span><span class="n">FLRGTreeNode</span><span class="p">(</span><span class="kc">None</span><span class="p">)</span>
|
<span class="n">root</span> <span class="o">=</span> <span class="n">tree</span><span class="o">.</span><span class="n">FLRGTreeNode</span><span class="p">(</span><span class="kc">None</span><span class="p">)</span>
|
||||||
|
|
||||||
<span class="n">tree</span><span class="o">.</span><span class="n">build_tree_without_order</span><span class="p">(</span><span class="n">root</span><span class="p">,</span> <span class="n">lags</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
|
<span class="n">tree</span><span class="o">.</span><span class="n">build_tree_without_order</span><span class="p">(</span><span class="n">root</span><span class="p">,</span> <span class="n">lags</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
|
||||||
@ -300,9 +303,6 @@
|
|||||||
<span class="n">cond</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">tmp</span><span class="p">)</span>
|
<span class="n">cond</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">tmp</span><span class="p">)</span>
|
||||||
<span class="n">ret</span> <span class="o">=</span> <span class="nb">sum</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">cond</span><span class="p">))</span>
|
<span class="n">ret</span> <span class="o">=</span> <span class="nb">sum</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">cond</span><span class="p">))</span>
|
||||||
<span class="k">else</span><span class="p">:</span>
|
<span class="k">else</span><span class="p">:</span>
|
||||||
<span class="c1">##########################################</span>
|
|
||||||
<span class="c1"># this may be the problem! TEST IT!!!</span>
|
|
||||||
<span class="c1">##########################################</span>
|
|
||||||
<span class="n">pi</span> <span class="o">=</span> <span class="mi">1</span> <span class="o">/</span> <span class="nb">len</span><span class="p">(</span><span class="n">flrg</span><span class="o">.</span><span class="n">LHS</span><span class="p">)</span>
|
<span class="n">pi</span> <span class="o">=</span> <span class="mi">1</span> <span class="o">/</span> <span class="nb">len</span><span class="p">(</span><span class="n">flrg</span><span class="o">.</span><span class="n">LHS</span><span class="p">)</span>
|
||||||
<span class="n">ret</span> <span class="o">=</span> <span class="nb">sum</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="n">pi</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">[</span><span class="n">s</span><span class="p">]</span><span class="o">.</span><span class="n">membership</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="k">for</span> <span class="n">s</span> <span class="ow">in</span> <span class="n">flrg</span><span class="o">.</span><span class="n">LHS</span><span class="p">]))</span>
|
<span class="n">ret</span> <span class="o">=</span> <span class="nb">sum</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="n">pi</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">[</span><span class="n">s</span><span class="p">]</span><span class="o">.</span><span class="n">membership</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="k">for</span> <span class="n">s</span> <span class="ow">in</span> <span class="n">flrg</span><span class="o">.</span><span class="n">LHS</span><span class="p">]))</span>
|
||||||
<span class="k">return</span> <span class="n">ret</span></div>
|
<span class="k">return</span> <span class="n">ret</span></div>
|
||||||
@ -346,27 +346,48 @@
|
|||||||
|
|
||||||
<div class="viewcode-block" id="ProbabilisticWeightedFTS.point_heuristic"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFTS.point_heuristic">[docs]</a> <span class="k">def</span> <span class="nf">point_heuristic</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sample</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
<div class="viewcode-block" id="ProbabilisticWeightedFTS.point_heuristic"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFTS.point_heuristic">[docs]</a> <span class="k">def</span> <span class="nf">point_heuristic</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sample</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
||||||
|
|
||||||
<span class="n">flrgs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">generate_lhs_flrg</span><span class="p">(</span><span class="n">sample</span><span class="p">)</span>
|
<span class="n">explain</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'explain'</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
|
||||||
|
|
||||||
|
<span class="k">if</span> <span class="n">explain</span><span class="p">:</span>
|
||||||
|
<span class="nb">print</span><span class="p">(</span><span class="s2">"Fuzzyfication </span><span class="se">\n</span><span class="s2">"</span><span class="p">)</span>
|
||||||
|
|
||||||
|
<span class="n">flrgs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">generate_lhs_flrg</span><span class="p">(</span><span class="n">sample</span><span class="p">,</span> <span class="n">explain</span><span class="p">)</span>
|
||||||
|
|
||||||
<span class="n">mp</span> <span class="o">=</span> <span class="p">[]</span>
|
<span class="n">mp</span> <span class="o">=</span> <span class="p">[]</span>
|
||||||
<span class="n">norms</span> <span class="o">=</span> <span class="p">[]</span>
|
<span class="n">norms</span> <span class="o">=</span> <span class="p">[]</span>
|
||||||
|
|
||||||
|
<span class="k">if</span> <span class="n">explain</span><span class="p">:</span>
|
||||||
|
<span class="nb">print</span><span class="p">(</span><span class="s2">"Rules:</span><span class="se">\n</span><span class="s2">"</span><span class="p">)</span>
|
||||||
|
|
||||||
<span class="k">for</span> <span class="n">flrg</span> <span class="ow">in</span> <span class="n">flrgs</span><span class="p">:</span>
|
<span class="k">for</span> <span class="n">flrg</span> <span class="ow">in</span> <span class="n">flrgs</span><span class="p">:</span>
|
||||||
<span class="n">norm</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrg_lhs_conditional_probability</span><span class="p">(</span><span class="n">sample</span><span class="p">,</span> <span class="n">flrg</span><span class="p">)</span>
|
<span class="n">norm</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrg_lhs_conditional_probability</span><span class="p">(</span><span class="n">sample</span><span class="p">,</span> <span class="n">flrg</span><span class="p">)</span>
|
||||||
|
|
||||||
<span class="k">if</span> <span class="n">norm</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
|
<span class="k">if</span> <span class="n">norm</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
|
||||||
<span class="n">norm</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrg_lhs_unconditional_probability</span><span class="p">(</span><span class="n">flrg</span><span class="p">)</span>
|
<span class="n">norm</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrg_lhs_unconditional_probability</span><span class="p">(</span><span class="n">flrg</span><span class="p">)</span>
|
||||||
|
|
||||||
|
|
||||||
|
<span class="k">if</span> <span class="n">explain</span><span class="p">:</span>
|
||||||
|
<span class="nb">print</span><span class="p">(</span><span class="s2">"</span><span class="se">\t</span><span class="s2"> </span><span class="si">{}</span><span class="s2"> </span><span class="se">\t</span><span class="s2"> Midpoint: </span><span class="si">{}</span><span class="se">\t</span><span class="s2"> Norm: </span><span class="si">{}</span><span class="se">\n</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">str</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">flrg</span><span class="o">.</span><span class="n">get_key</span><span class="p">()]),</span>
|
||||||
|
<span class="bp">self</span><span class="o">.</span><span class="n">get_midpoint</span><span class="p">(</span><span class="n">flrg</span><span class="p">),</span> <span class="n">norm</span><span class="p">))</span>
|
||||||
|
|
||||||
<span class="n">mp</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">norm</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_midpoint</span><span class="p">(</span><span class="n">flrg</span><span class="p">))</span>
|
<span class="n">mp</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">norm</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_midpoint</span><span class="p">(</span><span class="n">flrg</span><span class="p">))</span>
|
||||||
<span class="n">norms</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">norm</span><span class="p">)</span>
|
<span class="n">norms</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">norm</span><span class="p">)</span>
|
||||||
|
|
||||||
<span class="n">norm</span> <span class="o">=</span> <span class="nb">sum</span><span class="p">(</span><span class="n">norms</span><span class="p">)</span>
|
<span class="n">norm</span> <span class="o">=</span> <span class="nb">sum</span><span class="p">(</span><span class="n">norms</span><span class="p">)</span>
|
||||||
<span class="k">if</span> <span class="n">norm</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
|
|
||||||
<span class="k">return</span> <span class="mi">0</span>
|
|
||||||
<span class="k">else</span><span class="p">:</span>
|
|
||||||
<span class="k">return</span> <span class="nb">sum</span><span class="p">(</span><span class="n">mp</span><span class="p">)</span> <span class="o">/</span> <span class="n">norm</span></div>
|
|
||||||
|
|
||||||
|
<span class="n">final</span> <span class="o">=</span> <span class="nb">sum</span><span class="p">(</span><span class="n">mp</span><span class="p">)</span> <span class="o">/</span> <span class="n">norm</span> <span class="k">if</span> <span class="n">norm</span> <span class="o">!=</span> <span class="mi">0</span> <span class="k">else</span> <span class="mi">0</span>
|
||||||
|
|
||||||
|
<span class="k">if</span> <span class="n">explain</span><span class="p">:</span>
|
||||||
|
<span class="nb">print</span><span class="p">(</span><span class="s2">"Deffuzyfied value: </span><span class="si">{}</span><span class="s2"> </span><span class="se">\n</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">final</span><span class="p">))</span>
|
||||||
|
<span class="k">return</span> <span class="n">final</span></div>
|
||||||
|
|
||||||
<div class="viewcode-block" id="ProbabilisticWeightedFTS.point_expected_value"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFTS.point_expected_value">[docs]</a> <span class="k">def</span> <span class="nf">point_expected_value</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sample</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
<div class="viewcode-block" id="ProbabilisticWeightedFTS.point_expected_value"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFTS.point_expected_value">[docs]</a> <span class="k">def</span> <span class="nf">point_expected_value</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sample</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
||||||
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">forecast_distribution</span><span class="p">(</span><span class="n">sample</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">expected_value</span><span class="p">()</span></div>
|
<span class="n">explain</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'explain'</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
|
||||||
|
|
||||||
|
<span class="n">dist</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">forecast_distribution</span><span class="p">(</span><span class="n">sample</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span>
|
||||||
|
|
||||||
|
<span class="n">final</span> <span class="o">=</span> <span class="n">dist</span><span class="o">.</span><span class="n">expected_value</span><span class="p">()</span>
|
||||||
|
<span class="k">return</span> <span class="n">final</span></div>
|
||||||
|
|
||||||
<div class="viewcode-block" id="ProbabilisticWeightedFTS.forecast_interval"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_interval">[docs]</a> <span class="k">def</span> <span class="nf">forecast_interval</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ndata</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
<div class="viewcode-block" id="ProbabilisticWeightedFTS.forecast_interval"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_interval">[docs]</a> <span class="k">def</span> <span class="nf">forecast_interval</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ndata</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
||||||
|
|
||||||
|
@ -145,7 +145,8 @@
|
|||||||
<span class="bp">self</span><span class="o">.</span><span class="n">generate_flrg</span><span class="p">(</span><span class="n">flrs</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">c</span><span class="p">)</span></div>
|
<span class="bp">self</span><span class="o">.</span><span class="n">generate_flrg</span><span class="p">(</span><span class="n">flrs</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">c</span><span class="p">)</span></div>
|
||||||
|
|
||||||
<div class="viewcode-block" id="ExponentialyWeightedFTS.forecast"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.sadaei.ExponentialyWeightedFTS.forecast">[docs]</a> <span class="k">def</span> <span class="nf">forecast</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ndata</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
<div class="viewcode-block" id="ExponentialyWeightedFTS.forecast"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.sadaei.ExponentialyWeightedFTS.forecast">[docs]</a> <span class="k">def</span> <span class="nf">forecast</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ndata</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
||||||
<span class="n">l</span> <span class="o">=</span> <span class="mi">1</span>
|
|
||||||
|
<span class="n">explain</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'explain'</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
|
||||||
|
|
||||||
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
|
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
|
||||||
<span class="n">ordered_sets</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span><span class="o">.</span><span class="n">ordered_sets</span>
|
<span class="n">ordered_sets</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span><span class="o">.</span><span class="n">ordered_sets</span>
|
||||||
@ -162,13 +163,28 @@
|
|||||||
|
|
||||||
<span class="n">actual</span> <span class="o">=</span> <span class="n">FuzzySet</span><span class="o">.</span><span class="n">get_maximum_membership_fuzzyset</span><span class="p">(</span><span class="n">ndata</span><span class="p">[</span><span class="n">k</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">,</span> <span class="n">ordered_sets</span><span class="p">)</span>
|
<span class="n">actual</span> <span class="o">=</span> <span class="n">FuzzySet</span><span class="o">.</span><span class="n">get_maximum_membership_fuzzyset</span><span class="p">(</span><span class="n">ndata</span><span class="p">[</span><span class="n">k</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">,</span> <span class="n">ordered_sets</span><span class="p">)</span>
|
||||||
|
|
||||||
|
<span class="k">if</span> <span class="n">explain</span><span class="p">:</span>
|
||||||
|
<span class="nb">print</span><span class="p">(</span><span class="s2">"Fuzzyfication:</span><span class="se">\n\n</span><span class="s2"> </span><span class="si">{}</span><span class="s2"> -> </span><span class="si">{}</span><span class="s2"> </span><span class="se">\n</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">ndata</span><span class="p">[</span><span class="n">k</span><span class="p">],</span> <span class="n">actual</span><span class="o">.</span><span class="n">name</span><span class="p">))</span>
|
||||||
|
|
||||||
<span class="k">if</span> <span class="n">actual</span><span class="o">.</span><span class="n">name</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">:</span>
|
<span class="k">if</span> <span class="n">actual</span><span class="o">.</span><span class="n">name</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">:</span>
|
||||||
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">actual</span><span class="o">.</span><span class="n">centroid</span><span class="p">)</span>
|
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">actual</span><span class="o">.</span><span class="n">centroid</span><span class="p">)</span>
|
||||||
|
|
||||||
|
<span class="k">if</span> <span class="n">explain</span><span class="p">:</span>
|
||||||
|
<span class="nb">print</span><span class="p">(</span><span class="s2">"Rules:</span><span class="se">\n\n</span><span class="s2"> </span><span class="si">{}</span><span class="s2"> -> </span><span class="si">{}</span><span class="s2"> (Naïve)</span><span class="se">\t</span><span class="s2"> Midpoint: </span><span class="si">{}</span><span class="s2"> </span><span class="se">\n\n</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">actual</span><span class="o">.</span><span class="n">name</span><span class="p">,</span> <span class="n">actual</span><span class="o">.</span><span class="n">name</span><span class="p">,</span><span class="n">actual</span><span class="o">.</span><span class="n">centroid</span><span class="p">))</span>
|
||||||
|
|
||||||
<span class="k">else</span><span class="p">:</span>
|
<span class="k">else</span><span class="p">:</span>
|
||||||
<span class="n">flrg</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">actual</span><span class="o">.</span><span class="n">name</span><span class="p">]</span>
|
<span class="n">flrg</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">actual</span><span class="o">.</span><span class="n">name</span><span class="p">]</span>
|
||||||
<span class="n">mp</span> <span class="o">=</span> <span class="n">flrg</span><span class="o">.</span><span class="n">get_midpoints</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">)</span>
|
<span class="n">mp</span> <span class="o">=</span> <span class="n">flrg</span><span class="o">.</span><span class="n">get_midpoints</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">)</span>
|
||||||
|
|
||||||
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">mp</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">flrg</span><span class="o">.</span><span class="n">weights</span><span class="p">()))</span>
|
<span class="n">final</span> <span class="o">=</span> <span class="n">mp</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">flrg</span><span class="o">.</span><span class="n">weights</span><span class="p">())</span>
|
||||||
|
|
||||||
|
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">final</span><span class="p">)</span>
|
||||||
|
|
||||||
|
<span class="k">if</span> <span class="n">explain</span><span class="p">:</span>
|
||||||
|
<span class="nb">print</span><span class="p">(</span><span class="s2">"Rules:</span><span class="se">\n\n</span><span class="s2"> </span><span class="si">{}</span><span class="s2"> </span><span class="se">\n\n</span><span class="s2"> "</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">str</span><span class="p">(</span><span class="n">flrg</span><span class="p">)))</span>
|
||||||
|
<span class="nb">print</span><span class="p">(</span><span class="s2">"Midpoints: </span><span class="se">\n\n</span><span class="s2"> </span><span class="si">{}</span><span class="se">\n\n</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">mp</span><span class="p">))</span>
|
||||||
|
|
||||||
|
<span class="nb">print</span><span class="p">(</span><span class="s2">"Deffuzyfied value: </span><span class="si">{}</span><span class="s2"> </span><span class="se">\n</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">final</span><span class="p">))</span>
|
||||||
|
|
||||||
<span class="k">return</span> <span class="n">ret</span></div></div>
|
<span class="k">return</span> <span class="n">ret</span></div></div>
|
||||||
</pre></div>
|
</pre></div>
|
||||||
|
21
docs/build/html/_modules/pyFTS/models/yu.html
vendored
21
docs/build/html/_modules/pyFTS/models/yu.html
vendored
@ -138,6 +138,8 @@
|
|||||||
|
|
||||||
<div class="viewcode-block" id="WeightedFTS.forecast"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.yu.WeightedFTS.forecast">[docs]</a> <span class="k">def</span> <span class="nf">forecast</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ndata</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
<div class="viewcode-block" id="WeightedFTS.forecast"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.yu.WeightedFTS.forecast">[docs]</a> <span class="k">def</span> <span class="nf">forecast</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ndata</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
||||||
|
|
||||||
|
<span class="n">explain</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'explain'</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
|
||||||
|
|
||||||
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
|
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
|
||||||
<span class="n">ordered_sets</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span><span class="o">.</span><span class="n">ordered_sets</span>
|
<span class="n">ordered_sets</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span><span class="o">.</span><span class="n">ordered_sets</span>
|
||||||
<span class="k">else</span><span class="p">:</span>
|
<span class="k">else</span><span class="p">:</span>
|
||||||
@ -145,7 +147,7 @@
|
|||||||
|
|
||||||
<span class="n">ndata</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">ndata</span><span class="p">)</span>
|
<span class="n">ndata</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">ndata</span><span class="p">)</span>
|
||||||
|
|
||||||
<span class="n">l</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">ndata</span><span class="p">)</span>
|
<span class="n">l</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">ndata</span><span class="p">)</span> <span class="k">if</span> <span class="ow">not</span> <span class="n">explain</span> <span class="k">else</span> <span class="mi">1</span>
|
||||||
|
|
||||||
<span class="n">ret</span> <span class="o">=</span> <span class="p">[]</span>
|
<span class="n">ret</span> <span class="o">=</span> <span class="p">[]</span>
|
||||||
|
|
||||||
@ -153,13 +155,28 @@
|
|||||||
|
|
||||||
<span class="n">actual</span> <span class="o">=</span> <span class="n">FuzzySet</span><span class="o">.</span><span class="n">get_maximum_membership_fuzzyset</span><span class="p">(</span><span class="n">ndata</span><span class="p">[</span><span class="n">k</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">,</span> <span class="n">ordered_sets</span><span class="p">)</span>
|
<span class="n">actual</span> <span class="o">=</span> <span class="n">FuzzySet</span><span class="o">.</span><span class="n">get_maximum_membership_fuzzyset</span><span class="p">(</span><span class="n">ndata</span><span class="p">[</span><span class="n">k</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">,</span> <span class="n">ordered_sets</span><span class="p">)</span>
|
||||||
|
|
||||||
|
<span class="k">if</span> <span class="n">explain</span><span class="p">:</span>
|
||||||
|
<span class="nb">print</span><span class="p">(</span><span class="s2">"Fuzzyfication:</span><span class="se">\n\n</span><span class="s2"> </span><span class="si">{}</span><span class="s2"> -> </span><span class="si">{}</span><span class="s2"> </span><span class="se">\n\n</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">ndata</span><span class="p">[</span><span class="n">k</span><span class="p">],</span> <span class="n">actual</span><span class="o">.</span><span class="n">name</span><span class="p">))</span>
|
||||||
|
|
||||||
<span class="k">if</span> <span class="n">actual</span><span class="o">.</span><span class="n">name</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">:</span>
|
<span class="k">if</span> <span class="n">actual</span><span class="o">.</span><span class="n">name</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">:</span>
|
||||||
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">actual</span><span class="o">.</span><span class="n">centroid</span><span class="p">)</span>
|
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">actual</span><span class="o">.</span><span class="n">centroid</span><span class="p">)</span>
|
||||||
|
|
||||||
|
<span class="k">if</span> <span class="n">explain</span><span class="p">:</span>
|
||||||
|
<span class="nb">print</span><span class="p">(</span><span class="s2">"Rules:</span><span class="se">\n\n</span><span class="s2"> </span><span class="si">{}</span><span class="s2"> -> </span><span class="si">{}</span><span class="s2"> (Naïve)</span><span class="se">\t</span><span class="s2"> Midpoint: </span><span class="si">{}</span><span class="s2"> </span><span class="se">\n\n</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">actual</span><span class="o">.</span><span class="n">name</span><span class="p">,</span> <span class="n">actual</span><span class="o">.</span><span class="n">name</span><span class="p">,</span><span class="n">actual</span><span class="o">.</span><span class="n">centroid</span><span class="p">))</span>
|
||||||
|
|
||||||
<span class="k">else</span><span class="p">:</span>
|
<span class="k">else</span><span class="p">:</span>
|
||||||
<span class="n">flrg</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">actual</span><span class="o">.</span><span class="n">name</span><span class="p">]</span>
|
<span class="n">flrg</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">actual</span><span class="o">.</span><span class="n">name</span><span class="p">]</span>
|
||||||
<span class="n">mp</span> <span class="o">=</span> <span class="n">flrg</span><span class="o">.</span><span class="n">get_midpoints</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">)</span>
|
<span class="n">mp</span> <span class="o">=</span> <span class="n">flrg</span><span class="o">.</span><span class="n">get_midpoints</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">)</span>
|
||||||
|
|
||||||
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">mp</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">flrg</span><span class="o">.</span><span class="n">weights</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">)))</span>
|
<span class="n">final</span> <span class="o">=</span> <span class="n">mp</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">flrg</span><span class="o">.</span><span class="n">weights</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">))</span>
|
||||||
|
|
||||||
|
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">final</span><span class="p">)</span>
|
||||||
|
|
||||||
|
<span class="k">if</span> <span class="n">explain</span><span class="p">:</span>
|
||||||
|
<span class="nb">print</span><span class="p">(</span><span class="s2">"Rules:</span><span class="se">\n\n</span><span class="s2"> </span><span class="si">{}</span><span class="s2"> </span><span class="se">\n\n</span><span class="s2"> "</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">str</span><span class="p">(</span><span class="n">flrg</span><span class="p">)))</span>
|
||||||
|
<span class="nb">print</span><span class="p">(</span><span class="s2">"Midpoints: </span><span class="se">\n\n</span><span class="s2"> </span><span class="si">{}</span><span class="se">\n\n</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">mp</span><span class="p">))</span>
|
||||||
|
|
||||||
|
<span class="nb">print</span><span class="p">(</span><span class="s2">"Deffuzyfied value: </span><span class="si">{}</span><span class="s2"> </span><span class="se">\n</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">final</span><span class="p">))</span>
|
||||||
|
|
||||||
<span class="k">return</span> <span class="n">ret</span></div></div>
|
<span class="k">return</span> <span class="n">ret</span></div></div>
|
||||||
</pre></div>
|
</pre></div>
|
||||||
|
@ -150,19 +150,35 @@
|
|||||||
<span class="k">pass</span></div>
|
<span class="k">pass</span></div>
|
||||||
|
|
||||||
<div class="viewcode-block" id="Partitioner.get_name"><a class="viewcode-back" href="../../../pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner.get_name">[docs]</a> <span class="k">def</span> <span class="nf">get_name</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">counter</span><span class="p">):</span>
|
<div class="viewcode-block" id="Partitioner.get_name"><a class="viewcode-back" href="../../../pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner.get_name">[docs]</a> <span class="k">def</span> <span class="nf">get_name</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">counter</span><span class="p">):</span>
|
||||||
|
<span class="sd">"""</span>
|
||||||
|
<span class="sd"> Find the name of the fuzzy set given its counter id.</span>
|
||||||
|
|
||||||
|
<span class="sd"> :param counter: The number of the fuzzy set</span>
|
||||||
|
<span class="sd"> :return: String</span>
|
||||||
|
<span class="sd"> """</span>
|
||||||
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">prefix</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">counter</span><span class="p">)</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">setnames</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="bp">self</span><span class="o">.</span><span class="n">setnames</span><span class="p">[</span><span class="n">counter</span><span class="p">]</span></div>
|
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">prefix</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">counter</span><span class="p">)</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">setnames</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="bp">self</span><span class="o">.</span><span class="n">setnames</span><span class="p">[</span><span class="n">counter</span><span class="p">]</span></div>
|
||||||
|
|
||||||
<div class="viewcode-block" id="Partitioner.lower_set"><a class="viewcode-back" href="../../../pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner.lower_set">[docs]</a> <span class="k">def</span> <span class="nf">lower_set</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
|
<div class="viewcode-block" id="Partitioner.lower_set"><a class="viewcode-back" href="../../../pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner.lower_set">[docs]</a> <span class="k">def</span> <span class="nf">lower_set</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
|
||||||
|
<span class="sd">"""</span>
|
||||||
|
<span class="sd"> Return the fuzzy set on lower bound of the universe of discourse.</span>
|
||||||
|
|
||||||
|
<span class="sd"> :return: Fuzzy Set</span>
|
||||||
|
<span class="sd"> """</span>
|
||||||
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">ordered_sets</span><span class="p">[</span><span class="mi">0</span><span class="p">]]</span></div>
|
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">ordered_sets</span><span class="p">[</span><span class="mi">0</span><span class="p">]]</span></div>
|
||||||
|
|
||||||
<div class="viewcode-block" id="Partitioner.upper_set"><a class="viewcode-back" href="../../../pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner.upper_set">[docs]</a> <span class="k">def</span> <span class="nf">upper_set</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
|
<div class="viewcode-block" id="Partitioner.upper_set"><a class="viewcode-back" href="../../../pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner.upper_set">[docs]</a> <span class="k">def</span> <span class="nf">upper_set</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
|
||||||
|
<span class="sd">"""</span>
|
||||||
|
<span class="sd"> Return the fuzzy set on upper bound of the universe of discourse.</span>
|
||||||
|
|
||||||
|
<span class="sd"> :return: Fuzzy Set</span>
|
||||||
|
<span class="sd"> """</span>
|
||||||
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">ordered_sets</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]]</span></div>
|
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">ordered_sets</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]]</span></div>
|
||||||
|
|
||||||
<div class="viewcode-block" id="Partitioner.plot"><a class="viewcode-back" href="../../../pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner.plot">[docs]</a> <span class="k">def</span> <span class="nf">plot</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ax</span><span class="p">):</span>
|
<div class="viewcode-block" id="Partitioner.plot"><a class="viewcode-back" href="../../../pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner.plot">[docs]</a> <span class="k">def</span> <span class="nf">plot</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ax</span><span class="p">):</span>
|
||||||
<span class="sd">"""</span>
|
<span class="sd">"""</span>
|
||||||
<span class="sd"> Plot the </span>
|
<span class="sd"> Plot the partitioning using the Matplotlib axis ax</span>
|
||||||
<span class="sd"> :param ax: </span>
|
|
||||||
<span class="sd"> :return: </span>
|
<span class="sd"> :param ax: Matplotlib axis</span>
|
||||||
<span class="sd"> """</span>
|
<span class="sd"> """</span>
|
||||||
<span class="n">ax</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">name</span><span class="p">)</span>
|
<span class="n">ax</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">name</span><span class="p">)</span>
|
||||||
<span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">])</span>
|
<span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">])</span>
|
||||||
@ -182,6 +198,12 @@
|
|||||||
<span class="n">ax</span><span class="o">.</span><span class="n">xaxis</span><span class="o">.</span><span class="n">set_ticks</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></div>
|
<span class="n">ax</span><span class="o">.</span><span class="n">xaxis</span><span class="o">.</span><span class="n">set_ticks</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></div>
|
||||||
|
|
||||||
<div class="viewcode-block" id="Partitioner.plot_set"><a class="viewcode-back" href="../../../pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner.plot_set">[docs]</a> <span class="k">def</span> <span class="nf">plot_set</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ax</span><span class="p">,</span> <span class="n">s</span><span class="p">):</span>
|
<div class="viewcode-block" id="Partitioner.plot_set"><a class="viewcode-back" href="../../../pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner.plot_set">[docs]</a> <span class="k">def</span> <span class="nf">plot_set</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ax</span><span class="p">,</span> <span class="n">s</span><span class="p">):</span>
|
||||||
|
<span class="sd">"""</span>
|
||||||
|
<span class="sd"> Plot an isolate fuzzy set on Matplotlib axis</span>
|
||||||
|
|
||||||
|
<span class="sd"> :param ax: Matplotlib axis</span>
|
||||||
|
<span class="sd"> :param s: Fuzzy Set</span>
|
||||||
|
<span class="sd"> """</span>
|
||||||
<span class="k">if</span> <span class="n">s</span><span class="o">.</span><span class="n">mf</span> <span class="o">==</span> <span class="n">Membership</span><span class="o">.</span><span class="n">trimf</span><span class="p">:</span>
|
<span class="k">if</span> <span class="n">s</span><span class="o">.</span><span class="n">mf</span> <span class="o">==</span> <span class="n">Membership</span><span class="o">.</span><span class="n">trimf</span><span class="p">:</span>
|
||||||
<span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="n">s</span><span class="o">.</span><span class="n">parameters</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">s</span><span class="o">.</span><span class="n">parameters</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">s</span><span class="o">.</span><span class="n">parameters</span><span class="p">[</span><span class="mi">2</span><span class="p">]],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="n">s</span><span class="o">.</span><span class="n">alpha</span><span class="p">,</span> <span class="mi">0</span><span class="p">])</span>
|
<span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="n">s</span><span class="o">.</span><span class="n">parameters</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">s</span><span class="o">.</span><span class="n">parameters</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">s</span><span class="o">.</span><span class="n">parameters</span><span class="p">[</span><span class="mi">2</span><span class="p">]],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="n">s</span><span class="o">.</span><span class="n">alpha</span><span class="p">,</span> <span class="mi">0</span><span class="p">])</span>
|
||||||
<span class="k">elif</span> <span class="n">s</span><span class="o">.</span><span class="n">mf</span> <span class="o">==</span> <span class="n">Membership</span><span class="o">.</span><span class="n">gaussmf</span><span class="p">:</span>
|
<span class="k">elif</span> <span class="n">s</span><span class="o">.</span><span class="n">mf</span> <span class="o">==</span> <span class="n">Membership</span><span class="o">.</span><span class="n">gaussmf</span><span class="p">:</span>
|
||||||
@ -191,12 +213,24 @@
|
|||||||
<span class="k">elif</span> <span class="n">s</span><span class="o">.</span><span class="n">mf</span> <span class="o">==</span> <span class="n">Membership</span><span class="o">.</span><span class="n">trapmf</span><span class="p">:</span>
|
<span class="k">elif</span> <span class="n">s</span><span class="o">.</span><span class="n">mf</span> <span class="o">==</span> <span class="n">Membership</span><span class="o">.</span><span class="n">trapmf</span><span class="p">:</span>
|
||||||
<span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">s</span><span class="o">.</span><span class="n">parameters</span><span class="p">,</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="n">s</span><span class="o">.</span><span class="n">alpha</span><span class="p">,</span> <span class="n">s</span><span class="o">.</span><span class="n">alpha</span><span class="p">,</span> <span class="mi">0</span><span class="p">])</span></div>
|
<span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">s</span><span class="o">.</span><span class="n">parameters</span><span class="p">,</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="n">s</span><span class="o">.</span><span class="n">alpha</span><span class="p">,</span> <span class="n">s</span><span class="o">.</span><span class="n">alpha</span><span class="p">,</span> <span class="mi">0</span><span class="p">])</span></div>
|
||||||
|
|
||||||
|
|
||||||
<span class="k">def</span> <span class="nf">__str__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
|
<span class="k">def</span> <span class="nf">__str__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
|
||||||
|
<span class="sd">"""</span>
|
||||||
|
<span class="sd"> Return a string representation of the partitioner, the list of fuzzy sets and their parameters</span>
|
||||||
|
|
||||||
|
<span class="sd"> :return:</span>
|
||||||
|
<span class="sd"> """</span>
|
||||||
<span class="n">tmp</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span> <span class="o">+</span> <span class="s2">":</span><span class="se">\n</span><span class="s2">"</span>
|
<span class="n">tmp</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span> <span class="o">+</span> <span class="s2">":</span><span class="se">\n</span><span class="s2">"</span>
|
||||||
<span class="k">for</span> <span class="n">key</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="o">.</span><span class="n">keys</span><span class="p">():</span>
|
<span class="k">for</span> <span class="n">key</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="o">.</span><span class="n">keys</span><span class="p">():</span>
|
||||||
<span class="n">tmp</span> <span class="o">+=</span> <span class="nb">str</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">[</span><span class="n">key</span><span class="p">])</span><span class="o">+</span> <span class="s2">"</span><span class="se">\n</span><span class="s2">"</span>
|
<span class="n">tmp</span> <span class="o">+=</span> <span class="nb">str</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">[</span><span class="n">key</span><span class="p">])</span><span class="o">+</span> <span class="s2">"</span><span class="se">\n</span><span class="s2">"</span>
|
||||||
<span class="k">return</span> <span class="n">tmp</span></div>
|
<span class="k">return</span> <span class="n">tmp</span>
|
||||||
|
|
||||||
|
<span class="k">def</span> <span class="nf">__len__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
|
||||||
|
<span class="sd">"""</span>
|
||||||
|
<span class="sd"> Return the number of partitions</span>
|
||||||
|
|
||||||
|
<span class="sd"> :return: number of partitions</span>
|
||||||
|
<span class="sd"> """</span>
|
||||||
|
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">partitions</span></div>
|
||||||
</pre></div>
|
</pre></div>
|
||||||
|
|
||||||
</div>
|
</div>
|
||||||
|
1
docs/build/html/pyFTS.common.html
vendored
1
docs/build/html/pyFTS.common.html
vendored
@ -1818,6 +1818,7 @@ needed to forecast a single step ahead</p>
|
|||||||
<li><strong>start</strong> – in the multi step forecasting, the index of the data where to start forecasting</li>
|
<li><strong>start</strong> – in the multi step forecasting, the index of the data where to start forecasting</li>
|
||||||
<li><strong>distributed</strong> – boolean, indicate if the forecasting procedure will be distributed in a dispy cluster</li>
|
<li><strong>distributed</strong> – boolean, indicate if the forecasting procedure will be distributed in a dispy cluster</li>
|
||||||
<li><strong>nodes</strong> – a list with the dispy cluster nodes addresses</li>
|
<li><strong>nodes</strong> – a list with the dispy cluster nodes addresses</li>
|
||||||
|
<li><strong>explain</strong> – try to explain, step by step, the one-step-ahead point forecasting result given the input data.</li>
|
||||||
</ul>
|
</ul>
|
||||||
</td>
|
</td>
|
||||||
</tr>
|
</tr>
|
||||||
|
6
docs/build/html/pyFTS.models.ensemble.html
vendored
6
docs/build/html/pyFTS.models.ensemble.html
vendored
@ -239,7 +239,7 @@
|
|||||||
</ul>
|
</ul>
|
||||||
</td>
|
</td>
|
||||||
</tr>
|
</tr>
|
||||||
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the forecasted Probability Distributions</p>
|
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions</p>
|
||||||
</td>
|
</td>
|
||||||
</tr>
|
</tr>
|
||||||
</tbody>
|
</tbody>
|
||||||
@ -260,7 +260,7 @@
|
|||||||
</ul>
|
</ul>
|
||||||
</td>
|
</td>
|
||||||
</tr>
|
</tr>
|
||||||
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the forecasted intervals</p>
|
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the prediction intervals</p>
|
||||||
</td>
|
</td>
|
||||||
</tr>
|
</tr>
|
||||||
</tbody>
|
</tbody>
|
||||||
@ -345,7 +345,7 @@
|
|||||||
</ul>
|
</ul>
|
||||||
</td>
|
</td>
|
||||||
</tr>
|
</tr>
|
||||||
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the forecasted Probability Distributions</p>
|
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions</p>
|
||||||
</td>
|
</td>
|
||||||
</tr>
|
</tr>
|
||||||
</tbody>
|
</tbody>
|
||||||
|
10
docs/build/html/pyFTS.models.html
vendored
10
docs/build/html/pyFTS.models.html
vendored
@ -471,7 +471,7 @@ using Fuzzy Time Series. 2017 IEEE International Conference on Fuzzy Systems. DO
|
|||||||
|
|
||||||
<dl class="method">
|
<dl class="method">
|
||||||
<dt id="pyFTS.models.hofts.HighOrderFTS.generate_lhs_flrg">
|
<dt id="pyFTS.models.hofts.HighOrderFTS.generate_lhs_flrg">
|
||||||
<code class="descname">generate_lhs_flrg</code><span class="sig-paren">(</span><em>sample</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/hofts.html#HighOrderFTS.generate_lhs_flrg"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.hofts.HighOrderFTS.generate_lhs_flrg" title="Permalink to this definition">¶</a></dt>
|
<code class="descname">generate_lhs_flrg</code><span class="sig-paren">(</span><em>sample</em>, <em>explain=False</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/hofts.html#HighOrderFTS.generate_lhs_flrg"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.hofts.HighOrderFTS.generate_lhs_flrg" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd></dd></dl>
|
<dd></dd></dl>
|
||||||
|
|
||||||
<dl class="method">
|
<dl class="method">
|
||||||
@ -575,7 +575,7 @@ In: Computational Intelligence (SSCI), 2016 IEEE Symposium Series on. IEEE, 2016
|
|||||||
</ul>
|
</ul>
|
||||||
</td>
|
</td>
|
||||||
</tr>
|
</tr>
|
||||||
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the forecasted intervals</p>
|
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the prediction intervals</p>
|
||||||
</td>
|
</td>
|
||||||
</tr>
|
</tr>
|
||||||
</tbody>
|
</tbody>
|
||||||
@ -893,7 +893,7 @@ US Dollar to Ringgit Malaysia,” Int. J. Comput. Intell. Appl., vol. 12, no. 1,
|
|||||||
</ul>
|
</ul>
|
||||||
</td>
|
</td>
|
||||||
</tr>
|
</tr>
|
||||||
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the forecasted Probability Distributions</p>
|
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions</p>
|
||||||
</td>
|
</td>
|
||||||
</tr>
|
</tr>
|
||||||
</tbody>
|
</tbody>
|
||||||
@ -914,7 +914,7 @@ US Dollar to Ringgit Malaysia,” Int. J. Comput. Intell. Appl., vol. 12, no. 1,
|
|||||||
</ul>
|
</ul>
|
||||||
</td>
|
</td>
|
||||||
</tr>
|
</tr>
|
||||||
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the forecasted intervals</p>
|
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the prediction intervals</p>
|
||||||
</td>
|
</td>
|
||||||
</tr>
|
</tr>
|
||||||
</tbody>
|
</tbody>
|
||||||
@ -928,7 +928,7 @@ US Dollar to Ringgit Malaysia,” Int. J. Comput. Intell. Appl., vol. 12, no. 1,
|
|||||||
|
|
||||||
<dl class="method">
|
<dl class="method">
|
||||||
<dt id="pyFTS.models.pwfts.ProbabilisticWeightedFTS.generate_lhs_flrg">
|
<dt id="pyFTS.models.pwfts.ProbabilisticWeightedFTS.generate_lhs_flrg">
|
||||||
<code class="descname">generate_lhs_flrg</code><span class="sig-paren">(</span><em>sample</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.generate_lhs_flrg"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.generate_lhs_flrg" title="Permalink to this definition">¶</a></dt>
|
<code class="descname">generate_lhs_flrg</code><span class="sig-paren">(</span><em>sample</em>, <em>explain=False</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.generate_lhs_flrg"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.generate_lhs_flrg" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd></dd></dl>
|
<dd></dd></dl>
|
||||||
|
|
||||||
<dl class="method">
|
<dl class="method">
|
||||||
|
@ -299,7 +299,7 @@ IEEE Transactions on Fuzzy Systems, v. 16, n. 4, p. 1072-1086, 2008.</p>
|
|||||||
</ul>
|
</ul>
|
||||||
</td>
|
</td>
|
||||||
</tr>
|
</tr>
|
||||||
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the forecasted intervals</p>
|
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the prediction intervals</p>
|
||||||
</td>
|
</td>
|
||||||
</tr>
|
</tr>
|
||||||
</tbody>
|
</tbody>
|
||||||
@ -507,7 +507,7 @@ IEEE Transactions on Fuzzy Systems, v. 16, n. 4, p. 1072-1086, 2008.</p>
|
|||||||
</ul>
|
</ul>
|
||||||
</td>
|
</td>
|
||||||
</tr>
|
</tr>
|
||||||
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the forecasted intervals</p>
|
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the prediction intervals</p>
|
||||||
</td>
|
</td>
|
||||||
</tr>
|
</tr>
|
||||||
</tbody>
|
</tbody>
|
||||||
@ -605,7 +605,7 @@ IEEE Transactions on Fuzzy Systems, v. 16, n. 4, p. 1072-1086, 2008.</p>
|
|||||||
</ul>
|
</ul>
|
||||||
</td>
|
</td>
|
||||||
</tr>
|
</tr>
|
||||||
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the forecasted intervals</p>
|
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the prediction intervals</p>
|
||||||
</td>
|
</td>
|
||||||
</tr>
|
</tr>
|
||||||
</tbody>
|
</tbody>
|
||||||
@ -745,7 +745,7 @@ IEEE Transactions on Fuzzy Systems, v. 16, n. 4, p. 1072-1086, 2008.</p>
|
|||||||
|
|
||||||
<dl class="function">
|
<dl class="function">
|
||||||
<dt id="pyFTS.models.nonstationary.util.plot_sets_conditional">
|
<dt id="pyFTS.models.nonstationary.util.plot_sets_conditional">
|
||||||
<code class="descclassname">pyFTS.models.nonstationary.util.</code><code class="descname">plot_sets_conditional</code><span class="sig-paren">(</span><em>model, data, step=1, size=[5, 5], colors=None, save=False, file=None, axes=None</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/util.html#plot_sets_conditional"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.nonstationary.util.plot_sets_conditional" title="Permalink to this definition">¶</a></dt>
|
<code class="descclassname">pyFTS.models.nonstationary.util.</code><code class="descname">plot_sets_conditional</code><span class="sig-paren">(</span><em>model, data, step=1, size=[5, 5], colors=None, save=False, file=None, axes=None, fig=None</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/util.html#plot_sets_conditional"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.nonstationary.util.plot_sets_conditional" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd></dd></dl>
|
<dd></dd></dl>
|
||||||
|
|
||||||
</div>
|
</div>
|
||||||
|
62
docs/build/html/pyFTS.partitioners.html
vendored
62
docs/build/html/pyFTS.partitioners.html
vendored
@ -146,12 +146,32 @@
|
|||||||
<dl class="method">
|
<dl class="method">
|
||||||
<dt id="pyFTS.partitioners.partitioner.Partitioner.get_name">
|
<dt id="pyFTS.partitioners.partitioner.Partitioner.get_name">
|
||||||
<code class="descname">get_name</code><span class="sig-paren">(</span><em>counter</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/partitioners/partitioner.html#Partitioner.get_name"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.partitioners.partitioner.Partitioner.get_name" title="Permalink to this definition">¶</a></dt>
|
<code class="descname">get_name</code><span class="sig-paren">(</span><em>counter</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/partitioners/partitioner.html#Partitioner.get_name"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.partitioners.partitioner.Partitioner.get_name" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd></dd></dl>
|
<dd><p>Find the name of the fuzzy set given its counter id.</p>
|
||||||
|
<table class="docutils field-list" frame="void" rules="none">
|
||||||
|
<col class="field-name" />
|
||||||
|
<col class="field-body" />
|
||||||
|
<tbody valign="top">
|
||||||
|
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>counter</strong> – The number of the fuzzy set</td>
|
||||||
|
</tr>
|
||||||
|
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">String</td>
|
||||||
|
</tr>
|
||||||
|
</tbody>
|
||||||
|
</table>
|
||||||
|
</dd></dl>
|
||||||
|
|
||||||
<dl class="method">
|
<dl class="method">
|
||||||
<dt id="pyFTS.partitioners.partitioner.Partitioner.lower_set">
|
<dt id="pyFTS.partitioners.partitioner.Partitioner.lower_set">
|
||||||
<code class="descname">lower_set</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/partitioners/partitioner.html#Partitioner.lower_set"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.partitioners.partitioner.Partitioner.lower_set" title="Permalink to this definition">¶</a></dt>
|
<code class="descname">lower_set</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/partitioners/partitioner.html#Partitioner.lower_set"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.partitioners.partitioner.Partitioner.lower_set" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd></dd></dl>
|
<dd><p>Return the fuzzy set on lower bound of the universe of discourse.</p>
|
||||||
|
<table class="docutils field-list" frame="void" rules="none">
|
||||||
|
<col class="field-name" />
|
||||||
|
<col class="field-body" />
|
||||||
|
<tbody valign="top">
|
||||||
|
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">Fuzzy Set</td>
|
||||||
|
</tr>
|
||||||
|
</tbody>
|
||||||
|
</table>
|
||||||
|
</dd></dl>
|
||||||
|
|
||||||
<dl class="attribute">
|
<dl class="attribute">
|
||||||
<dt id="pyFTS.partitioners.partitioner.Partitioner.membership_function">
|
<dt id="pyFTS.partitioners.partitioner.Partitioner.membership_function">
|
||||||
@ -174,15 +194,34 @@
|
|||||||
<dl class="method">
|
<dl class="method">
|
||||||
<dt id="pyFTS.partitioners.partitioner.Partitioner.plot">
|
<dt id="pyFTS.partitioners.partitioner.Partitioner.plot">
|
||||||
<code class="descname">plot</code><span class="sig-paren">(</span><em>ax</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/partitioners/partitioner.html#Partitioner.plot"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.partitioners.partitioner.Partitioner.plot" title="Permalink to this definition">¶</a></dt>
|
<code class="descname">plot</code><span class="sig-paren">(</span><em>ax</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/partitioners/partitioner.html#Partitioner.plot"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.partitioners.partitioner.Partitioner.plot" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd><p>Plot the
|
<dd><p>Plot the partitioning using the Matplotlib axis ax</p>
|
||||||
:param ax:
|
<table class="docutils field-list" frame="void" rules="none">
|
||||||
:return:</p>
|
<col class="field-name" />
|
||||||
|
<col class="field-body" />
|
||||||
|
<tbody valign="top">
|
||||||
|
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>ax</strong> – Matplotlib axis</td>
|
||||||
|
</tr>
|
||||||
|
</tbody>
|
||||||
|
</table>
|
||||||
</dd></dl>
|
</dd></dl>
|
||||||
|
|
||||||
<dl class="method">
|
<dl class="method">
|
||||||
<dt id="pyFTS.partitioners.partitioner.Partitioner.plot_set">
|
<dt id="pyFTS.partitioners.partitioner.Partitioner.plot_set">
|
||||||
<code class="descname">plot_set</code><span class="sig-paren">(</span><em>ax</em>, <em>s</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/partitioners/partitioner.html#Partitioner.plot_set"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.partitioners.partitioner.Partitioner.plot_set" title="Permalink to this definition">¶</a></dt>
|
<code class="descname">plot_set</code><span class="sig-paren">(</span><em>ax</em>, <em>s</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/partitioners/partitioner.html#Partitioner.plot_set"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.partitioners.partitioner.Partitioner.plot_set" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd></dd></dl>
|
<dd><p>Plot an isolate fuzzy set on Matplotlib axis</p>
|
||||||
|
<table class="docutils field-list" frame="void" rules="none">
|
||||||
|
<col class="field-name" />
|
||||||
|
<col class="field-body" />
|
||||||
|
<tbody valign="top">
|
||||||
|
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
|
||||||
|
<li><strong>ax</strong> – Matplotlib axis</li>
|
||||||
|
<li><strong>s</strong> – Fuzzy Set</li>
|
||||||
|
</ul>
|
||||||
|
</td>
|
||||||
|
</tr>
|
||||||
|
</tbody>
|
||||||
|
</table>
|
||||||
|
</dd></dl>
|
||||||
|
|
||||||
<dl class="attribute">
|
<dl class="attribute">
|
||||||
<dt id="pyFTS.partitioners.partitioner.Partitioner.prefix">
|
<dt id="pyFTS.partitioners.partitioner.Partitioner.prefix">
|
||||||
@ -205,7 +244,16 @@
|
|||||||
<dl class="method">
|
<dl class="method">
|
||||||
<dt id="pyFTS.partitioners.partitioner.Partitioner.upper_set">
|
<dt id="pyFTS.partitioners.partitioner.Partitioner.upper_set">
|
||||||
<code class="descname">upper_set</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/partitioners/partitioner.html#Partitioner.upper_set"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.partitioners.partitioner.Partitioner.upper_set" title="Permalink to this definition">¶</a></dt>
|
<code class="descname">upper_set</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/partitioners/partitioner.html#Partitioner.upper_set"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.partitioners.partitioner.Partitioner.upper_set" title="Permalink to this definition">¶</a></dt>
|
||||||
<dd></dd></dl>
|
<dd><p>Return the fuzzy set on upper bound of the universe of discourse.</p>
|
||||||
|
<table class="docutils field-list" frame="void" rules="none">
|
||||||
|
<col class="field-name" />
|
||||||
|
<col class="field-body" />
|
||||||
|
<tbody valign="top">
|
||||||
|
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">Fuzzy Set</td>
|
||||||
|
</tr>
|
||||||
|
</tbody>
|
||||||
|
</table>
|
||||||
|
</dd></dl>
|
||||||
|
|
||||||
</dd></dl>
|
</dd></dl>
|
||||||
|
|
||||||
|
2
docs/build/html/searchindex.js
vendored
2
docs/build/html/searchindex.js
vendored
File diff suppressed because one or more lines are too long
@ -93,6 +93,7 @@ class FTS(object):
|
|||||||
:keyword start: in the multi step forecasting, the index of the data where to start forecasting
|
:keyword start: in the multi step forecasting, the index of the data where to start forecasting
|
||||||
:keyword distributed: boolean, indicate if the forecasting procedure will be distributed in a dispy cluster
|
:keyword distributed: boolean, indicate if the forecasting procedure will be distributed in a dispy cluster
|
||||||
:keyword nodes: a list with the dispy cluster nodes addresses
|
:keyword nodes: a list with the dispy cluster nodes addresses
|
||||||
|
:keyword explain: try to explain, step by step, the one-step-ahead point forecasting result given the input data.
|
||||||
|
|
||||||
:return: a numpy array with the forecasted data
|
:return: a numpy array with the forecasted data
|
||||||
"""
|
"""
|
||||||
@ -342,6 +343,7 @@ class FTS(object):
|
|||||||
if save:
|
if save:
|
||||||
Util.persist_obj(self, file_path)
|
Util.persist_obj(self, file_path)
|
||||||
|
|
||||||
|
|
||||||
def clone_parameters(self, model):
|
def clone_parameters(self, model):
|
||||||
"""
|
"""
|
||||||
Import the parameters values from other model
|
Import the parameters values from other model
|
||||||
|
@ -56,21 +56,35 @@ class ConventionalFTS(fts.FTS):
|
|||||||
|
|
||||||
def forecast(self, ndata, **kwargs):
|
def forecast(self, ndata, **kwargs):
|
||||||
|
|
||||||
l = len(ndata)
|
explain = kwargs.get('explain',False)
|
||||||
|
|
||||||
|
l = len(ndata) if not explain else 1
|
||||||
|
|
||||||
ret = []
|
ret = []
|
||||||
|
|
||||||
for k in np.arange(0, l):
|
for k in np.arange(0, l):
|
||||||
|
|
||||||
mv = FuzzySet.fuzzyfy_instance(ndata[k], self.sets)
|
actual = FuzzySet.get_maximum_membership_fuzzyset(ndata[k], self.sets)
|
||||||
|
|
||||||
actual = FuzzySet.get_maximum_membership_fuzzyset(ndata[k], self.sets) #self.sets[np.argwhere(mv == max(mv))[0, 0]]
|
if explain:
|
||||||
|
print("Fuzzyfication:\n\n {} -> {} \n".format(ndata[k], actual.name))
|
||||||
|
|
||||||
if actual.name not in self.flrgs:
|
if actual.name not in self.flrgs:
|
||||||
ret.append(actual.centroid)
|
ret.append(actual.centroid)
|
||||||
|
|
||||||
|
if explain:
|
||||||
|
print("Rules:\n\n {} -> {} (Naïve)\t Midpoint: {} \n\n".format(actual.name, actual.name,actual.centroid))
|
||||||
|
|
||||||
else:
|
else:
|
||||||
_flrg = self.flrgs[actual.name]
|
_flrg = self.flrgs[actual.name]
|
||||||
|
|
||||||
ret.append(_flrg.get_midpoint(self.sets))
|
mp = _flrg.get_midpoint(self.sets)
|
||||||
|
|
||||||
|
ret.append(mp)
|
||||||
|
|
||||||
|
if explain:
|
||||||
|
print("Rules:\n\n {} \t Midpoint: {} \n".format(str(_flrg), mp))
|
||||||
|
|
||||||
|
print("Deffuzyfied value: {} \n".format(mp))
|
||||||
|
|
||||||
return ret
|
return ret
|
||||||
|
@ -62,7 +62,7 @@ class HighOrderFTS(fts.FTS):
|
|||||||
self.max_lag = self.order
|
self.max_lag = self.order
|
||||||
self.lags = np.arange(1, self.order+1)
|
self.lags = np.arange(1, self.order+1)
|
||||||
|
|
||||||
def generate_lhs_flrg(self, sample):
|
def generate_lhs_flrg(self, sample, explain=False):
|
||||||
lags = {}
|
lags = {}
|
||||||
|
|
||||||
flrgs = []
|
flrgs = []
|
||||||
@ -71,6 +71,9 @@ class HighOrderFTS(fts.FTS):
|
|||||||
lhs = FuzzySet.fuzzyfy(sample[o-1], partitioner=self.partitioner, mode="sets", alpha_cut=self.alpha_cut)
|
lhs = FuzzySet.fuzzyfy(sample[o-1], partitioner=self.partitioner, mode="sets", alpha_cut=self.alpha_cut)
|
||||||
lags[ct] = lhs
|
lags[ct] = lhs
|
||||||
|
|
||||||
|
if explain:
|
||||||
|
print("\t (Lag {}) {} -> {} \n".format(o, sample[o-1], lhs))
|
||||||
|
|
||||||
root = tree.FLRGTreeNode(None)
|
root = tree.FLRGTreeNode(None)
|
||||||
|
|
||||||
tree.build_tree_without_order(root, lags, 0)
|
tree.build_tree_without_order(root, lags, 0)
|
||||||
@ -111,26 +114,49 @@ class HighOrderFTS(fts.FTS):
|
|||||||
|
|
||||||
def forecast(self, ndata, **kwargs):
|
def forecast(self, ndata, **kwargs):
|
||||||
|
|
||||||
|
explain = kwargs.get('explain', False)
|
||||||
|
|
||||||
ret = []
|
ret = []
|
||||||
|
|
||||||
l = len(ndata)
|
l = len(ndata) if not explain else self.max_lag + 1
|
||||||
|
|
||||||
if l < self.max_lag:
|
if l < self.max_lag:
|
||||||
return ndata
|
return ndata
|
||||||
|
|
||||||
for k in np.arange(self.max_lag, l+1):
|
for k in np.arange(self.max_lag, l+1):
|
||||||
flrgs = self.generate_lhs_flrg(ndata[k - self.max_lag: k])
|
|
||||||
|
if explain:
|
||||||
|
print("Fuzzyfication \n")
|
||||||
|
|
||||||
|
flrgs = self.generate_lhs_flrg(ndata[k - self.max_lag: k], explain)
|
||||||
|
|
||||||
|
if explain:
|
||||||
|
print("Rules:\n")
|
||||||
|
|
||||||
tmp = []
|
tmp = []
|
||||||
for flrg in flrgs:
|
for flrg in flrgs:
|
||||||
|
|
||||||
if flrg.get_key() not in self.flrgs:
|
if flrg.get_key() not in self.flrgs:
|
||||||
if len(flrg.LHS) > 0:
|
if len(flrg.LHS) > 0:
|
||||||
tmp.append(self.sets[flrg.LHS[-1]].centroid)
|
mp = self.sets[flrg.LHS[-1]].centroid
|
||||||
|
tmp.append(mp)
|
||||||
|
|
||||||
|
if explain:
|
||||||
|
print("\t {} -> {} (Naïve)\t Midpoint: {}\n".format(str(flrg.LHS), flrg.LHS[-1],
|
||||||
|
mp))
|
||||||
|
|
||||||
else:
|
else:
|
||||||
flrg = self.flrgs[flrg.get_key()]
|
flrg = self.flrgs[flrg.get_key()]
|
||||||
tmp.append(flrg.get_midpoint(self.sets))
|
mp = flrg.get_midpoint(self.sets)
|
||||||
|
tmp.append(mp)
|
||||||
|
|
||||||
ret.append(np.nanmean(tmp))
|
if explain:
|
||||||
|
print("\t {} \t Midpoint: {}\n".format(str(flrg), mp))
|
||||||
|
|
||||||
|
final = np.nanmean(tmp)
|
||||||
|
ret.append(final)
|
||||||
|
|
||||||
|
if explain:
|
||||||
|
print("Deffuzyfied value: {} \n".format(final))
|
||||||
|
|
||||||
return ret
|
return ret
|
||||||
|
@ -74,7 +74,7 @@ class IntervalFTS(hofts.HighOrderFTS):
|
|||||||
|
|
||||||
for flrg in flrgs:
|
for flrg in flrgs:
|
||||||
if len(flrg.LHS) > 0:
|
if len(flrg.LHS) > 0:
|
||||||
# achar o os bounds de cada FLRG, ponderados pela pertinência
|
|
||||||
mv = flrg.get_membership(sample, self.sets)
|
mv = flrg.get_membership(sample, self.sets)
|
||||||
up.append(mv * self.get_upper(flrg))
|
up.append(mv * self.get_upper(flrg))
|
||||||
lo.append(mv * self.get_lower(flrg))
|
lo.append(mv * self.get_lower(flrg))
|
||||||
|
@ -57,7 +57,7 @@ class ImprovedWeightedFTS(fts.FTS):
|
|||||||
if flr.LHS in self.flrgs:
|
if flr.LHS in self.flrgs:
|
||||||
self.flrgs[flr.LHS].append_rhs(flr.RHS)
|
self.flrgs[flr.LHS].append_rhs(flr.RHS)
|
||||||
else:
|
else:
|
||||||
self.flrgs[flr.LHS] = ImprovedWeightedFLRG(flr.LHS);
|
self.flrgs[flr.LHS] = ImprovedWeightedFLRG(flr.LHS)
|
||||||
self.flrgs[flr.LHS].append_rhs(flr.RHS)
|
self.flrgs[flr.LHS].append_rhs(flr.RHS)
|
||||||
|
|
||||||
def train(self, ndata, **kwargs):
|
def train(self, ndata, **kwargs):
|
||||||
@ -67,7 +67,8 @@ class ImprovedWeightedFTS(fts.FTS):
|
|||||||
self.generate_flrg(flrs)
|
self.generate_flrg(flrs)
|
||||||
|
|
||||||
def forecast(self, ndata, **kwargs):
|
def forecast(self, ndata, **kwargs):
|
||||||
l = 1
|
|
||||||
|
explain = kwargs.get('explain', False)
|
||||||
|
|
||||||
if self.partitioner is not None:
|
if self.partitioner is not None:
|
||||||
ordered_sets = self.partitioner.ordered_sets
|
ordered_sets = self.partitioner.ordered_sets
|
||||||
@ -75,7 +76,8 @@ class ImprovedWeightedFTS(fts.FTS):
|
|||||||
ordered_sets = FuzzySet.set_ordered(self.sets)
|
ordered_sets = FuzzySet.set_ordered(self.sets)
|
||||||
|
|
||||||
ndata = np.array(ndata)
|
ndata = np.array(ndata)
|
||||||
l = len(ndata)
|
|
||||||
|
l = len(ndata) if not explain else 1
|
||||||
|
|
||||||
ret = []
|
ret = []
|
||||||
|
|
||||||
@ -83,12 +85,27 @@ class ImprovedWeightedFTS(fts.FTS):
|
|||||||
|
|
||||||
actual = FuzzySet.get_maximum_membership_fuzzyset(ndata[k], self.sets, ordered_sets)
|
actual = FuzzySet.get_maximum_membership_fuzzyset(ndata[k], self.sets, ordered_sets)
|
||||||
|
|
||||||
|
if explain:
|
||||||
|
print("Fuzzyfication:\n\n {} -> {} \n".format(ndata[k], actual.name))
|
||||||
|
|
||||||
if actual.name not in self.flrgs:
|
if actual.name not in self.flrgs:
|
||||||
ret.append(actual.centroid)
|
ret.append(actual.centroid)
|
||||||
|
|
||||||
|
if explain:
|
||||||
|
print("Rules:\n\n {} -> {} (Naïve)\t Midpoint: {} \n\n".format(actual.name, actual.name,actual.centroid))
|
||||||
|
|
||||||
else:
|
else:
|
||||||
flrg = self.flrgs[actual.name]
|
flrg = self.flrgs[actual.name]
|
||||||
mp = flrg.get_midpoints(self.sets)
|
mp = flrg.get_midpoints(self.sets)
|
||||||
|
|
||||||
ret.append(mp.dot(flrg.weights()))
|
final = mp.dot(flrg.weights())
|
||||||
|
|
||||||
|
ret.append(final)
|
||||||
|
|
||||||
|
if explain:
|
||||||
|
print("Rules:\n\n {} \n\n ".format(str(flrg)))
|
||||||
|
print("Midpoints: \n\n {}\n\n".format(mp))
|
||||||
|
|
||||||
|
print("Deffuzyfied value: {} \n".format(final))
|
||||||
|
|
||||||
return ret
|
return ret
|
||||||
|
@ -55,7 +55,7 @@ def plot_sets(partitioner, start=0, end=10, step=1, tam=[5, 5], colors=None,
|
|||||||
|
|
||||||
|
|
||||||
def plot_sets_conditional(model, data, step=1, size=[5, 5], colors=None,
|
def plot_sets_conditional(model, data, step=1, size=[5, 5], colors=None,
|
||||||
save=False, file=None, axes=None):
|
save=False, file=None, axes=None, fig=None):
|
||||||
range = np.arange(0, len(data), step)
|
range = np.arange(0, len(data), step)
|
||||||
ticks = []
|
ticks = []
|
||||||
if axes is None:
|
if axes is None:
|
||||||
@ -77,11 +77,11 @@ def plot_sets_conditional(model, data, step=1, size=[5, 5], colors=None,
|
|||||||
else:
|
else:
|
||||||
axes.plot([t, t + 1, t], param,c=set.metadata['color'])
|
axes.plot([t, t + 1, t], param,c=set.metadata['color'])
|
||||||
|
|
||||||
ticks.extend(["t+"+str(t),""])
|
#ticks.extend(["t+"+str(t),""])
|
||||||
|
|
||||||
axes.set_ylabel("Universe of Discourse")
|
axes.set_ylabel("Universe of Discourse")
|
||||||
axes.set_xlabel("Time")
|
axes.set_xlabel("Time")
|
||||||
plt.xticks([k for k in range], ticks, rotation='vertical')
|
#plt.xticks([k for k in range], ticks, rotation='vertical')
|
||||||
|
|
||||||
handles0, labels0 = axes.get_legend_handles_labels()
|
handles0, labels0 = axes.get_legend_handles_labels()
|
||||||
lgd = axes.legend(handles0, labels0, loc=2, bbox_to_anchor=(1, 1))
|
lgd = axes.legend(handles0, labels0, loc=2, bbox_to_anchor=(1, 1))
|
||||||
|
@ -122,7 +122,7 @@ class ProbabilisticWeightedFTS(ifts.IntervalFTS):
|
|||||||
else:
|
else:
|
||||||
self.generate_flrg(data)
|
self.generate_flrg(data)
|
||||||
|
|
||||||
def generate_lhs_flrg(self, sample):
|
def generate_lhs_flrg(self, sample, explain=False):
|
||||||
lags = {}
|
lags = {}
|
||||||
|
|
||||||
flrgs = []
|
flrgs = []
|
||||||
@ -132,6 +132,9 @@ class ProbabilisticWeightedFTS(ifts.IntervalFTS):
|
|||||||
|
|
||||||
lags[ct] = lhs
|
lags[ct] = lhs
|
||||||
|
|
||||||
|
if explain:
|
||||||
|
print("\t (Lag {}) {} -> {} \n".format(o, sample[o-1], lhs))
|
||||||
|
|
||||||
root = tree.FLRGTreeNode(None)
|
root = tree.FLRGTreeNode(None)
|
||||||
|
|
||||||
tree.build_tree_without_order(root, lags, 0)
|
tree.build_tree_without_order(root, lags, 0)
|
||||||
@ -226,9 +229,6 @@ class ProbabilisticWeightedFTS(ifts.IntervalFTS):
|
|||||||
cond.append(tmp)
|
cond.append(tmp)
|
||||||
ret = sum(np.array(cond))
|
ret = sum(np.array(cond))
|
||||||
else:
|
else:
|
||||||
##########################################
|
|
||||||
# this may be the problem! TEST IT!!!
|
|
||||||
##########################################
|
|
||||||
pi = 1 / len(flrg.LHS)
|
pi = 1 / len(flrg.LHS)
|
||||||
ret = sum(np.array([pi * self.sets[s].membership(x) for s in flrg.LHS]))
|
ret = sum(np.array([pi * self.sets[s].membership(x) for s in flrg.LHS]))
|
||||||
return ret
|
return ret
|
||||||
@ -272,27 +272,48 @@ class ProbabilisticWeightedFTS(ifts.IntervalFTS):
|
|||||||
|
|
||||||
def point_heuristic(self, sample, **kwargs):
|
def point_heuristic(self, sample, **kwargs):
|
||||||
|
|
||||||
flrgs = self.generate_lhs_flrg(sample)
|
explain = kwargs.get('explain', False)
|
||||||
|
|
||||||
|
if explain:
|
||||||
|
print("Fuzzyfication \n")
|
||||||
|
|
||||||
|
flrgs = self.generate_lhs_flrg(sample, explain)
|
||||||
|
|
||||||
mp = []
|
mp = []
|
||||||
norms = []
|
norms = []
|
||||||
|
|
||||||
|
if explain:
|
||||||
|
print("Rules:\n")
|
||||||
|
|
||||||
for flrg in flrgs:
|
for flrg in flrgs:
|
||||||
norm = self.flrg_lhs_conditional_probability(sample, flrg)
|
norm = self.flrg_lhs_conditional_probability(sample, flrg)
|
||||||
|
|
||||||
if norm == 0:
|
if norm == 0:
|
||||||
norm = self.flrg_lhs_unconditional_probability(flrg)
|
norm = self.flrg_lhs_unconditional_probability(flrg)
|
||||||
|
|
||||||
|
|
||||||
|
if explain:
|
||||||
|
print("\t {} \t Midpoint: {}\t Norm: {}\n".format(str(self.flrgs[flrg.get_key()]),
|
||||||
|
self.get_midpoint(flrg), norm))
|
||||||
|
|
||||||
mp.append(norm * self.get_midpoint(flrg))
|
mp.append(norm * self.get_midpoint(flrg))
|
||||||
norms.append(norm)
|
norms.append(norm)
|
||||||
|
|
||||||
norm = sum(norms)
|
norm = sum(norms)
|
||||||
if norm == 0:
|
|
||||||
return 0
|
|
||||||
else:
|
|
||||||
return sum(mp) / norm
|
|
||||||
|
|
||||||
|
final = sum(mp) / norm if norm != 0 else 0
|
||||||
|
|
||||||
|
if explain:
|
||||||
|
print("Deffuzyfied value: {} \n".format(final))
|
||||||
|
return final
|
||||||
|
|
||||||
def point_expected_value(self, sample, **kwargs):
|
def point_expected_value(self, sample, **kwargs):
|
||||||
return self.forecast_distribution(sample)[0].expected_value()
|
explain = kwargs.get('explain', False)
|
||||||
|
|
||||||
|
dist = self.forecast_distribution(sample)[0]
|
||||||
|
|
||||||
|
final = dist.expected_value()
|
||||||
|
return final
|
||||||
|
|
||||||
def forecast_interval(self, ndata, **kwargs):
|
def forecast_interval(self, ndata, **kwargs):
|
||||||
|
|
||||||
|
@ -71,7 +71,8 @@ class ExponentialyWeightedFTS(fts.FTS):
|
|||||||
self.generate_flrg(flrs, self.c)
|
self.generate_flrg(flrs, self.c)
|
||||||
|
|
||||||
def forecast(self, ndata, **kwargs):
|
def forecast(self, ndata, **kwargs):
|
||||||
l = 1
|
|
||||||
|
explain = kwargs.get('explain', False)
|
||||||
|
|
||||||
if self.partitioner is not None:
|
if self.partitioner is not None:
|
||||||
ordered_sets = self.partitioner.ordered_sets
|
ordered_sets = self.partitioner.ordered_sets
|
||||||
@ -88,12 +89,27 @@ class ExponentialyWeightedFTS(fts.FTS):
|
|||||||
|
|
||||||
actual = FuzzySet.get_maximum_membership_fuzzyset(ndata[k], self.sets, ordered_sets)
|
actual = FuzzySet.get_maximum_membership_fuzzyset(ndata[k], self.sets, ordered_sets)
|
||||||
|
|
||||||
|
if explain:
|
||||||
|
print("Fuzzyfication:\n\n {} -> {} \n".format(ndata[k], actual.name))
|
||||||
|
|
||||||
if actual.name not in self.flrgs:
|
if actual.name not in self.flrgs:
|
||||||
ret.append(actual.centroid)
|
ret.append(actual.centroid)
|
||||||
|
|
||||||
|
if explain:
|
||||||
|
print("Rules:\n\n {} -> {} (Naïve)\t Midpoint: {} \n\n".format(actual.name, actual.name,actual.centroid))
|
||||||
|
|
||||||
else:
|
else:
|
||||||
flrg = self.flrgs[actual.name]
|
flrg = self.flrgs[actual.name]
|
||||||
mp = flrg.get_midpoints(self.sets)
|
mp = flrg.get_midpoints(self.sets)
|
||||||
|
|
||||||
ret.append(mp.dot(flrg.weights()))
|
final = mp.dot(flrg.weights())
|
||||||
|
|
||||||
|
ret.append(final)
|
||||||
|
|
||||||
|
if explain:
|
||||||
|
print("Rules:\n\n {} \n\n ".format(str(flrg)))
|
||||||
|
print("Midpoints: \n\n {}\n\n".format(mp))
|
||||||
|
|
||||||
|
print("Deffuzyfied value: {} \n".format(final))
|
||||||
|
|
||||||
return ret
|
return ret
|
||||||
|
@ -64,6 +64,8 @@ class WeightedFTS(fts.FTS):
|
|||||||
|
|
||||||
def forecast(self, ndata, **kwargs):
|
def forecast(self, ndata, **kwargs):
|
||||||
|
|
||||||
|
explain = kwargs.get('explain', False)
|
||||||
|
|
||||||
if self.partitioner is not None:
|
if self.partitioner is not None:
|
||||||
ordered_sets = self.partitioner.ordered_sets
|
ordered_sets = self.partitioner.ordered_sets
|
||||||
else:
|
else:
|
||||||
@ -71,7 +73,7 @@ class WeightedFTS(fts.FTS):
|
|||||||
|
|
||||||
ndata = np.array(ndata)
|
ndata = np.array(ndata)
|
||||||
|
|
||||||
l = len(ndata)
|
l = len(ndata) if not explain else 1
|
||||||
|
|
||||||
ret = []
|
ret = []
|
||||||
|
|
||||||
@ -79,12 +81,27 @@ class WeightedFTS(fts.FTS):
|
|||||||
|
|
||||||
actual = FuzzySet.get_maximum_membership_fuzzyset(ndata[k], self.sets, ordered_sets)
|
actual = FuzzySet.get_maximum_membership_fuzzyset(ndata[k], self.sets, ordered_sets)
|
||||||
|
|
||||||
|
if explain:
|
||||||
|
print("Fuzzyfication:\n\n {} -> {} \n\n".format(ndata[k], actual.name))
|
||||||
|
|
||||||
if actual.name not in self.flrgs:
|
if actual.name not in self.flrgs:
|
||||||
ret.append(actual.centroid)
|
ret.append(actual.centroid)
|
||||||
|
|
||||||
|
if explain:
|
||||||
|
print("Rules:\n\n {} -> {} (Naïve)\t Midpoint: {} \n\n".format(actual.name, actual.name,actual.centroid))
|
||||||
|
|
||||||
else:
|
else:
|
||||||
flrg = self.flrgs[actual.name]
|
flrg = self.flrgs[actual.name]
|
||||||
mp = flrg.get_midpoints(self.sets)
|
mp = flrg.get_midpoints(self.sets)
|
||||||
|
|
||||||
ret.append(mp.dot(flrg.weights(self.sets)))
|
final = mp.dot(flrg.weights(self.sets))
|
||||||
|
|
||||||
|
ret.append(final)
|
||||||
|
|
||||||
|
if explain:
|
||||||
|
print("Rules:\n\n {} \n\n ".format(str(flrg)))
|
||||||
|
print("Midpoints: \n\n {}\n\n".format(mp))
|
||||||
|
|
||||||
|
print("Deffuzyfied value: {} \n".format(final))
|
||||||
|
|
||||||
return ret
|
return ret
|
||||||
|
@ -76,19 +76,35 @@ class Partitioner(object):
|
|||||||
pass
|
pass
|
||||||
|
|
||||||
def get_name(self, counter):
|
def get_name(self, counter):
|
||||||
|
"""
|
||||||
|
Find the name of the fuzzy set given its counter id.
|
||||||
|
|
||||||
|
:param counter: The number of the fuzzy set
|
||||||
|
:return: String
|
||||||
|
"""
|
||||||
return self.prefix + str(counter) if self.setnames is None else self.setnames[counter]
|
return self.prefix + str(counter) if self.setnames is None else self.setnames[counter]
|
||||||
|
|
||||||
def lower_set(self):
|
def lower_set(self):
|
||||||
|
"""
|
||||||
|
Return the fuzzy set on lower bound of the universe of discourse.
|
||||||
|
|
||||||
|
:return: Fuzzy Set
|
||||||
|
"""
|
||||||
return self.sets[self.ordered_sets[0]]
|
return self.sets[self.ordered_sets[0]]
|
||||||
|
|
||||||
def upper_set(self):
|
def upper_set(self):
|
||||||
|
"""
|
||||||
|
Return the fuzzy set on upper bound of the universe of discourse.
|
||||||
|
|
||||||
|
:return: Fuzzy Set
|
||||||
|
"""
|
||||||
return self.sets[self.ordered_sets[-1]]
|
return self.sets[self.ordered_sets[-1]]
|
||||||
|
|
||||||
def plot(self, ax):
|
def plot(self, ax):
|
||||||
"""
|
"""
|
||||||
Plot the
|
Plot the partitioning using the Matplotlib axis ax
|
||||||
:param ax:
|
|
||||||
:return:
|
:param ax: Matplotlib axis
|
||||||
"""
|
"""
|
||||||
ax.set_title(self.name)
|
ax.set_title(self.name)
|
||||||
ax.set_ylim([0, 1])
|
ax.set_ylim([0, 1])
|
||||||
@ -108,6 +124,12 @@ class Partitioner(object):
|
|||||||
ax.xaxis.set_ticks(x)
|
ax.xaxis.set_ticks(x)
|
||||||
|
|
||||||
def plot_set(self, ax, s):
|
def plot_set(self, ax, s):
|
||||||
|
"""
|
||||||
|
Plot an isolate fuzzy set on Matplotlib axis
|
||||||
|
|
||||||
|
:param ax: Matplotlib axis
|
||||||
|
:param s: Fuzzy Set
|
||||||
|
"""
|
||||||
if s.mf == Membership.trimf:
|
if s.mf == Membership.trimf:
|
||||||
ax.plot([s.parameters[0], s.parameters[1], s.parameters[2]], [0, s.alpha, 0])
|
ax.plot([s.parameters[0], s.parameters[1], s.parameters[2]], [0, s.alpha, 0])
|
||||||
elif s.mf == Membership.gaussmf:
|
elif s.mf == Membership.gaussmf:
|
||||||
@ -117,9 +139,21 @@ class Partitioner(object):
|
|||||||
elif s.mf == Membership.trapmf:
|
elif s.mf == Membership.trapmf:
|
||||||
ax.plot(s.parameters, [0, s.alpha, s.alpha, 0])
|
ax.plot(s.parameters, [0, s.alpha, s.alpha, 0])
|
||||||
|
|
||||||
|
|
||||||
def __str__(self):
|
def __str__(self):
|
||||||
|
"""
|
||||||
|
Return a string representation of the partitioner, the list of fuzzy sets and their parameters
|
||||||
|
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
tmp = self.name + ":\n"
|
tmp = self.name + ":\n"
|
||||||
for key in self.sets.keys():
|
for key in self.sets.keys():
|
||||||
tmp += str(self.sets[key])+ "\n"
|
tmp += str(self.sets[key])+ "\n"
|
||||||
return tmp
|
return tmp
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
"""
|
||||||
|
Return the number of partitions
|
||||||
|
|
||||||
|
:return: number of partitions
|
||||||
|
"""
|
||||||
|
return self.partitions
|
||||||
|
@ -11,7 +11,7 @@ import pandas as pd
|
|||||||
from pyFTS.common import Util as cUtil, FuzzySet
|
from pyFTS.common import Util as cUtil, FuzzySet
|
||||||
from pyFTS.partitioners import Grid, Util as pUtil
|
from pyFTS.partitioners import Grid, Util as pUtil
|
||||||
from pyFTS.benchmarks import benchmarks as bchmk
|
from pyFTS.benchmarks import benchmarks as bchmk
|
||||||
from pyFTS.models import chen
|
from pyFTS.models import chen, yu, cheng, ismailefendi, hofts, pwfts
|
||||||
from pyFTS.common import Transformations
|
from pyFTS.common import Transformations
|
||||||
|
|
||||||
tdiff = Transformations.Differential(1)
|
tdiff = Transformations.Differential(1)
|
||||||
@ -19,15 +19,18 @@ tdiff = Transformations.Differential(1)
|
|||||||
from pyFTS.data import TAIEX, SP500, NASDAQ
|
from pyFTS.data import TAIEX, SP500, NASDAQ
|
||||||
|
|
||||||
dataset = TAIEX.get_data()
|
dataset = TAIEX.get_data()
|
||||||
'''
|
|
||||||
partitioner = Grid.GridPartitioner(data=dataset[:800], npart=3, transformation=tdiff)
|
|
||||||
|
|
||||||
model = chen.ConventionalFTS(partitioner=partitioner)
|
partitioner = Grid.GridPartitioner(data=dataset[:800], npart=30) #, transformation=tdiff)
|
||||||
model.append_transformation(tdiff)
|
|
||||||
|
|
||||||
model.fit([0, 90.00])
|
model = pwfts.ProbabilisticWeightedFTS(partitioner=partitioner, order=2)
|
||||||
|
#model.append_transformation(tdiff)
|
||||||
|
|
||||||
|
model.fit(dataset[:800])
|
||||||
|
|
||||||
print(model)
|
print(model)
|
||||||
|
|
||||||
|
ret = model.predict([5000.00, 5200.00, 5400.00], explain=True)
|
||||||
|
|
||||||
'''
|
'''
|
||||||
#dataset = SP500.get_data()[11500:16000]
|
#dataset = SP500.get_data()[11500:16000]
|
||||||
#dataset = NASDAQ.get_data()
|
#dataset = NASDAQ.get_data()
|
||||||
@ -57,7 +60,7 @@ bchmk.sliding_window_benchmarks(dataset, 1000, train=0.8, inc=0.2,
|
|||||||
#steps_ahead=[1,2,4,6,8,10],
|
#steps_ahead=[1,2,4,6,8,10],
|
||||||
distributed=False, nodes=['192.168.0.110', '192.168.0.107', '192.168.0.106'],
|
distributed=False, nodes=['192.168.0.110', '192.168.0.107', '192.168.0.106'],
|
||||||
file="benchmarks.db", dataset="NASDAQ", tag="comparisons")
|
file="benchmarks.db", dataset="NASDAQ", tag="comparisons")
|
||||||
'''
|
|
||||||
'''
|
'''
|
||||||
'''
|
'''
|
||||||
from pyFTS.partitioners import Grid, Util as pUtil
|
from pyFTS.partitioners import Grid, Util as pUtil
|
||||||
|
@ -10,7 +10,7 @@ import pandas as pd
|
|||||||
|
|
||||||
from pyFTS.data import TAIEX, NASDAQ, SP500, artificial, mackey_glass
|
from pyFTS.data import TAIEX, NASDAQ, SP500, artificial, mackey_glass
|
||||||
|
|
||||||
mackey_glass.get_data()
|
#mackey_glass.get_data()
|
||||||
|
|
||||||
datasets = {
|
datasets = {
|
||||||
"TAIEX": TAIEX.get_data()[:4000],
|
"TAIEX": TAIEX.get_data()[:4000],
|
||||||
@ -54,14 +54,31 @@ partitions = {'CMIV': {'BoxCox(0)': 36, 'Differential(1)': 11, 'None': 8},
|
|||||||
'TAIEX': {'BoxCox(0)': 39, 'Differential(1)': 31, 'None': 33}}
|
'TAIEX': {'BoxCox(0)': 39, 'Differential(1)': 31, 'None': 33}}
|
||||||
|
|
||||||
from pyFTS.models.nonstationary import partitioners as nspart, cvfts, util as nsUtil
|
from pyFTS.models.nonstationary import partitioners as nspart, cvfts, util as nsUtil
|
||||||
|
'''
|
||||||
|
#fs = nspart.simplenonstationary_gridpartitioner_builder(data=datasets['SP500'][:300],
|
||||||
|
# npart=partitions['SP500']['None'],
|
||||||
|
# transformation=None)
|
||||||
|
fs = Grid.GridPartitioner(data=datasets['SP500'][:300],
|
||||||
|
npart=15,
|
||||||
|
transformation=None)
|
||||||
|
fig, axes = plt.subplots(nrows=1, ncols=1, figsize=[15, 5])
|
||||||
|
|
||||||
|
fs.plot(axes)
|
||||||
|
|
||||||
|
from pyFTS.common import Util
|
||||||
|
|
||||||
|
Util.show_and_save_image(fig, "fig2.png", True)
|
||||||
|
|
||||||
|
#nsUtil.plot_sets(fs)
|
||||||
|
|
||||||
|
|
||||||
|
'''
|
||||||
def model_details(ds, tf, train_split, test_split):
|
def model_details(ds, tf, train_split, test_split):
|
||||||
data = datasets[ds]
|
data = datasets[ds]
|
||||||
train = data[:train_split]
|
train = data[:train_split]
|
||||||
test = data[train_split:test_split]
|
test = data[train_split:test_split]
|
||||||
transformation = transformations[tf]
|
transformation = transformations[tf]
|
||||||
fs = nspart.simplenonstationary_gridpartitioner_builder(data=train, npart=partitions[ds][tf],
|
fs = nspart.simplenonstationary_gridpartitioner_builder(data=train, npart=15, #partitions[ds][tf],
|
||||||
transformation=transformation)
|
transformation=transformation)
|
||||||
model = nsfts.NonStationaryFTS(partitioner=fs)
|
model = nsfts.NonStationaryFTS(partitioner=fs)
|
||||||
model.fit(train)
|
model.fit(train)
|
||||||
@ -69,21 +86,24 @@ def model_details(ds, tf, train_split, test_split):
|
|||||||
forecasts = model.predict(test)
|
forecasts = model.predict(test)
|
||||||
residuals = np.array(test[1:]) - np.array(forecasts[:-1])
|
residuals = np.array(test[1:]) - np.array(forecasts[:-1])
|
||||||
|
|
||||||
fig, axes = plt.subplots(nrows=2, ncols=1, figsize=[15, 10])
|
fig, axes = plt.subplots(nrows=3, ncols=1, figsize=[15, 10])
|
||||||
|
|
||||||
axes[0].plot(test[1:], label="Original")
|
axes[0].plot(test[1:], label="Original")
|
||||||
axes[0].plot(forecasts[:-1], label="Forecasts")
|
axes[0].plot(forecasts[:-1], label="Forecasts")
|
||||||
|
axes[0].set_ylabel("Univ. of Discourse")
|
||||||
|
|
||||||
axes[1].set_title("Residuals")
|
#axes[1].set_title("Residuals")
|
||||||
axes[1].plot(residuals)
|
axes[1].plot(residuals)
|
||||||
|
axes[1].set_ylabel("Error")
|
||||||
handles0, labels0 = axes[0].get_legend_handles_labels()
|
handles0, labels0 = axes[0].get_legend_handles_labels()
|
||||||
lgd = axes[0].legend(handles0, labels0, loc=2)
|
lgd = axes[0].legend(handles0, labels0, loc=2)
|
||||||
|
|
||||||
nsUtil.plot_sets_conditional(model, test, step=10, size=[12, 5])
|
nsUtil.plot_sets_conditional(model, test, step=10, size=[10, 7],
|
||||||
|
save=True,file="fig.png", axes=axes[2], fig=fig)
|
||||||
model_details('NASDAQ','None',200,2000)
|
|
||||||
|
|
||||||
|
|
||||||
|
model_details('SP500','None',200,400)
|
||||||
|
#'''
|
||||||
|
print("ts")
|
||||||
'''
|
'''
|
||||||
tag = 'benchmarks'
|
tag = 'benchmarks'
|
||||||
|
|
||||||
|
11
setup.py
11
setup.py
@ -5,16 +5,12 @@ setup(
|
|||||||
packages=['pyFTS', 'pyFTS.benchmarks', 'pyFTS.common', 'pyFTS.data', 'pyFTS.models.ensemble',
|
packages=['pyFTS', 'pyFTS.benchmarks', 'pyFTS.common', 'pyFTS.data', 'pyFTS.models.ensemble',
|
||||||
'pyFTS.models', 'pyFTS.models.seasonal', 'pyFTS.partitioners', 'pyFTS.probabilistic',
|
'pyFTS.models', 'pyFTS.models.seasonal', 'pyFTS.partitioners', 'pyFTS.probabilistic',
|
||||||
'pyFTS.tests', 'pyFTS.models.nonstationary', 'pyFTS.models.multivariate'],
|
'pyFTS.tests', 'pyFTS.models.nonstationary', 'pyFTS.models.multivariate'],
|
||||||
#package_dir={}
|
version='1.2.3',
|
||||||
#package_data={'pyFTS.data': ['*.csv','*.csv.bz2']},
|
|
||||||
#data_files=[('data', ['pyFTS/data/Enrollments.csv', 'pyFTS/data/AirPassengers.csv'])],
|
|
||||||
#include_package_data=True,
|
|
||||||
version='1.2.2',
|
|
||||||
description='Fuzzy Time Series for Python',
|
description='Fuzzy Time Series for Python',
|
||||||
author='Petronio Candido L. e Silva',
|
author='Petronio Candido L. e Silva',
|
||||||
author_email='petronio.candido@gmail.com',
|
author_email='petronio.candido@gmail.com',
|
||||||
url='https://github.com/petroniocandido/pyFTS',
|
url='https://pyfts.github.io/pyFTS/',
|
||||||
download_url='https://github.com/petroniocandido/pyFTS/archive/pkg1.2.3.tar.gz',
|
download_url='https://github.com/PYFTS/pyFTS/archive/docSphinx.tar.gz',
|
||||||
keywords=['forecasting', 'fuzzy time series', 'fuzzy', 'time series forecasting'],
|
keywords=['forecasting', 'fuzzy time series', 'fuzzy', 'time series forecasting'],
|
||||||
classifiers=[
|
classifiers=[
|
||||||
'Programming Language :: Python :: 3',
|
'Programming Language :: Python :: 3',
|
||||||
@ -22,4 +18,5 @@ setup(
|
|||||||
'Programming Language :: Python :: 3.5',
|
'Programming Language :: Python :: 3.5',
|
||||||
'Programming Language :: Python :: 3.6',
|
'Programming Language :: Python :: 3.6',
|
||||||
],
|
],
|
||||||
|
install_requires=['dill'],
|
||||||
)
|
)
|
||||||
|
Loading…
Reference in New Issue
Block a user