Bugfix in forecast_ahead
This commit is contained in:
parent
07832878c9
commit
0b03fbfa57
@ -239,9 +239,9 @@ class FTS(object):
|
|||||||
|
|
||||||
start = kwargs.get('start_at',0)
|
start = kwargs.get('start_at',0)
|
||||||
|
|
||||||
ret = []
|
ret = data[:start+self.max_lag]
|
||||||
for k in np.arange(start+self.max_lag, steps+start+self.max_lag):
|
for k in np.arange(start+self.max_lag, steps+start+self.max_lag):
|
||||||
tmp = self.forecast(data[k-self.max_lag:k], **kwargs)
|
tmp = self.forecast(ret[k-self.max_lag:k], **kwargs)
|
||||||
|
|
||||||
if isinstance(tmp,(list, np.ndarray)):
|
if isinstance(tmp,(list, np.ndarray)):
|
||||||
tmp = tmp[-1]
|
tmp = tmp[-1]
|
||||||
@ -364,7 +364,7 @@ class FTS(object):
|
|||||||
if dump == 'time':
|
if dump == 'time':
|
||||||
print("[{0: %H:%M:%S}] Start training".format(datetime.datetime.now()))
|
print("[{0: %H:%M:%S}] Start training".format(datetime.datetime.now()))
|
||||||
|
|
||||||
if num_batches is not None:
|
if num_batches is not None and not self.is_wrapper:
|
||||||
n = len(data)
|
n = len(data)
|
||||||
batch_size = int(n / num_batches)
|
batch_size = int(n / num_batches)
|
||||||
bcount = 1
|
bcount = 1
|
||||||
|
@ -29,12 +29,19 @@ from pyFTS.partitioners import Grid
|
|||||||
|
|
||||||
partitioner = Grid.GridPartitioner(data=train_data, npart=35)
|
partitioner = Grid.GridPartitioner(data=train_data, npart=35)
|
||||||
|
|
||||||
from pyFTS.models import pwfts
|
from pyFTS.models import pwfts, hofts
|
||||||
|
|
||||||
model = pwfts.ProbabilisticWeightedFTS(partitioner=partitioner, order=2)
|
#model = pwfts.ProbabilisticWeightedFTS(partitioner=partitioner, order=2)
|
||||||
model.train(train_data)
|
#from pyFTS.models.incremental import TimeVariant
|
||||||
|
|
||||||
print(model.predict(test_data[:100]))
|
#model = TimeVariant.Retrainer(partitioner_method=Grid.GridPartitioner, partitioner_params={'npart': 35},
|
||||||
|
# fts_method=pwfts.ProbabilisticWeightedFTS, fts_params={}, order=2 ,
|
||||||
|
# batch_size=100, window_length=500)
|
||||||
|
|
||||||
|
model = hofts.HighOrderFTS(partitioner=partitioner, order=2)
|
||||||
|
model.fit(train_data)
|
||||||
|
|
||||||
|
print(model.predict(test_data, steps_ahead=10))
|
||||||
|
|
||||||
|
|
||||||
'''
|
'''
|
||||||
|
Loading…
Reference in New Issue
Block a user