Autoencoder Transformation
This commit is contained in:
parent
64ece2c33b
commit
096e677731
@ -13,6 +13,7 @@ from pyFTS.common.transformations.boxcox import BoxCox
|
|||||||
from pyFTS.common.transformations.roi import ROI
|
from pyFTS.common.transformations.roi import ROI
|
||||||
from pyFTS.common.transformations.trend import LinearTrend
|
from pyFTS.common.transformations.trend import LinearTrend
|
||||||
from pyFTS.common.transformations.som import SOMTransformation
|
from pyFTS.common.transformations.som import SOMTransformation
|
||||||
|
from pyFTS.common.transformations.autoencoder import AutoencoderTransformation
|
||||||
from pyFTS.common.transformations.normalization import Normalization
|
from pyFTS.common.transformations.normalization import Normalization
|
||||||
|
|
||||||
|
|
||||||
|
126
pyFTS/common/transformations/autoencoder.py
Normal file
126
pyFTS/common/transformations/autoencoder.py
Normal file
@ -0,0 +1,126 @@
|
|||||||
|
"""
|
||||||
|
Autoencoders for Fuzzy Time Series
|
||||||
|
"""
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
from keras.models import Model
|
||||||
|
from keras.layers import Dense, Input
|
||||||
|
from keras import regularizers
|
||||||
|
from sklearn.preprocessing import MinMaxScaler
|
||||||
|
from pyFTS.common.transformations.transformation import Transformation
|
||||||
|
|
||||||
|
|
||||||
|
class AutoencoderTransformation(Transformation):
|
||||||
|
def __init__(self,
|
||||||
|
reduced_dimension:int = 2,
|
||||||
|
**kwargs):
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# Autoencoder attributes
|
||||||
|
self.load_file = kwargs.get('loadFile')
|
||||||
|
self.data: pd.DataFrame = None
|
||||||
|
|
||||||
|
self.is_multivariate = True
|
||||||
|
self.reduced_dimension = reduced_dimension
|
||||||
|
self.encoder_layers = []
|
||||||
|
self.decoder_layers = []
|
||||||
|
self.input = None
|
||||||
|
self.scaler = MinMaxScaler()
|
||||||
|
|
||||||
|
|
||||||
|
# debug attributes
|
||||||
|
self.name = 'Autoencoders FTS'
|
||||||
|
self.shortname = 'Autoencoders-FTS'
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def apply(self,
|
||||||
|
data: pd.DataFrame,
|
||||||
|
param=None,
|
||||||
|
**kwargs):
|
||||||
|
"""
|
||||||
|
Transform a N-dimensional dataset into a n-dimensional dataset, where one dimension is the endogen variable
|
||||||
|
If endogen_variable = None, the last column will be the endogen_variable.
|
||||||
|
Args:
|
||||||
|
data (pd.DataFrame): N-Dimensional dataset
|
||||||
|
endogen_variable (str): column of dataset
|
||||||
|
names (Tuple): names for new columns created by the AutoEncoders Transformation.
|
||||||
|
param:
|
||||||
|
**kwargs: params of AE's train process
|
||||||
|
percentage_train (float). Percentage of dataset that will be used for train SOM network. default: 0.7
|
||||||
|
epochs: epochs of SOM network. default: 10000
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
endogen_variable = kwargs.get('endogen_variable', None)
|
||||||
|
names = kwargs.get('names', ('x', 'y'))
|
||||||
|
|
||||||
|
if endogen_variable not in data.columns:
|
||||||
|
endogen_variable = None
|
||||||
|
|
||||||
|
encoder = Model(inputs=self.input, outputs=self.encoder_layers[-1])
|
||||||
|
|
||||||
|
cols = data.columns[:-1] if endogen_variable is None else [col for col in data.columns if
|
||||||
|
col != endogen_variable]
|
||||||
|
|
||||||
|
data_scaled = self.scaler.fit_transform(data[cols])
|
||||||
|
|
||||||
|
new_data = pd.DataFrame(encoder.predict(data_scaled), columns = names)
|
||||||
|
|
||||||
|
endogen = endogen_variable if endogen_variable is not None else data.columns[-1]
|
||||||
|
new_data[endogen] = data[endogen].values
|
||||||
|
return new_data
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def train(self,
|
||||||
|
data: pd.DataFrame,
|
||||||
|
percentage_train: float = .7, #usar todos os dados ou só o treino para treinar a RNA?
|
||||||
|
epochs: int = 100,
|
||||||
|
n_layers: int = 2,
|
||||||
|
neuron_per_layer: list = []):
|
||||||
|
|
||||||
|
self.encoder_layers.clear()
|
||||||
|
self.decoder_layers.clear()
|
||||||
|
data = data.dropna()
|
||||||
|
self.data = data.values
|
||||||
|
limit = round(len(self.data) * percentage_train)
|
||||||
|
train = self.data[:limit]
|
||||||
|
counter = 0
|
||||||
|
if (n_layers==1):
|
||||||
|
multi_layer = False
|
||||||
|
else:
|
||||||
|
multi_layer = True
|
||||||
|
|
||||||
|
data_scaled = self.scaler.fit_transform(data)
|
||||||
|
if (neuron_per_layer == []):
|
||||||
|
n = data_scaled.shape[1] - self.reduced_dimension
|
||||||
|
aux = (n/n_layers)
|
||||||
|
for i in range (1, n_layers):
|
||||||
|
neuron_per_layer.append(data_scaled.shape[1] - round(aux*i))
|
||||||
|
|
||||||
|
self.input = Input(shape=(data_scaled.shape[1], ))
|
||||||
|
if (multi_layer):
|
||||||
|
self.encoder_layers.append(Dense(neuron_per_layer[0], activation="tanh", activity_regularizer=regularizers.l1(10e-5))(self.input))
|
||||||
|
for i in range (1, n_layers-1):
|
||||||
|
self.encoder_layers.append(Dense(neuron_per_layer[i], activation="tanh")(self.encoder_layers[i-1]))
|
||||||
|
self.encoder_layers.append(Dense(self.reduced_dimension, activation="tanh")(self.encoder_layers[-1]))
|
||||||
|
self.decoder_layers.append(Dense(neuron_per_layer[-1], activation="tanh", activity_regularizer=regularizers.l1(10e-5))(self.encoder_layers[-1]))
|
||||||
|
for i in range (n_layers-3, -1, -1):
|
||||||
|
self.decoder_layers.append(Dense(neuron_per_layer[i], activation="tanh")(self.decoder_layers[counter]))
|
||||||
|
counter+=1
|
||||||
|
self.decoder_layers.append(Dense(data_scaled.shape[1], activation="tanh")(self.decoder_layers[counter]))
|
||||||
|
else:
|
||||||
|
self.encoder_layers.append(Dense(self.reduced_dimension, activation="tanh", activity_regularizer=regularizers.l1(10e-5))(self.input))
|
||||||
|
self.decoder_layers.append(Dense(data_scaled.shape[1], activation="tanh", activity_regularizer=regularizers.l1(10e-5))(self.encoder_layers[0]))
|
||||||
|
autoencoder = Model(self.input, self.decoder_layers[-1])
|
||||||
|
autoencoder.compile(optimizer = 'adam', loss='mse')
|
||||||
|
X_train = data_scaled
|
||||||
|
autoencoder.fit(x=X_train, y=X_train, epochs=epochs)
|
Loading…
Reference in New Issue
Block a user