Several bugfixes and refactorings

This commit is contained in:
Petrônio Cândido 2017-09-08 14:18:02 -03:00
parent b672cdf08a
commit 0764d249ea
22 changed files with 277 additions and 74 deletions

View File

@ -267,17 +267,17 @@ def get_point_statistics(data, model, indexer=None):
try: try:
ret.append(np.round(rmse(ndata, nforecasts), 2)) ret.append(np.round(rmse(ndata, nforecasts), 2))
except Exception as ex: except Exception as ex:
print(ex) print('Error in RMSE: {}'.format(ex))
ret.append(np.nan) ret.append(np.nan)
try: try:
ret.append(np.round(smape(ndata, nforecasts), 2)) ret.append(np.round(smape(ndata, nforecasts), 2))
except Exception as ex: except Exception as ex:
print(ex) print('Error in SMAPE: {}'.format(ex))
ret.append(np.nan) ret.append(np.nan)
try: try:
ret.append(np.round(UStatistic(ndata, nforecasts), 2)) ret.append(np.round(UStatistic(ndata, nforecasts), 2))
except Exception as ex: except Exception as ex:
print(ex) print('Error in U: {}'.format(ex))
ret.append(np.nan) ret.append(np.nan)
return ret return ret

View File

@ -34,7 +34,7 @@ class ConventionalFLRG(object):
class ConventionalFTS(fts.FTS): class ConventionalFTS(fts.FTS):
"""Conventional Fuzzy Time Series""" """Conventional Fuzzy Time Series"""
def __init__(self, name, **kwargs): def __init__(self, name, **kwargs):
super(ConventionalFTS, self).__init__(1, "CFTS " + name) super(ConventionalFTS, self).__init__(1, "CFTS " + name, **kwargs)
self.name = "Conventional FTS" self.name = "Conventional FTS"
self.detail = "Chen" self.detail = "Chen"
self.flrgs = {} self.flrgs = {}

View File

@ -43,7 +43,7 @@ class TrendWeightedFLRG(yu.WeightedFLRG):
class TrendWeightedFTS(yu.WeightedFTS): class TrendWeightedFTS(yu.WeightedFTS):
"""First Order Trend Weighted Fuzzy Time Series""" """First Order Trend Weighted Fuzzy Time Series"""
def __init__(self, name, **kwargs): def __init__(self, name, **kwargs):
super(TrendWeightedFTS, self).__init__("") super(TrendWeightedFTS, self).__init__("", **kwargs)
self.shortname = "TWFTS " + name self.shortname = "TWFTS " + name
self.name = "Trend Weighted FTS" self.name = "Trend Weighted FTS"
self.detail = "Cheng" self.detail = "Cheng"

View File

@ -37,11 +37,17 @@ class FuzzySet:
return self.mf(x, self.parameters) return self.mf(x, self.parameters)
def partition_function(self,uod=None, nbins=100): def partition_function(self,uod=None, nbins=100):
"""
Calculate the partition function over the membership function.
:param uod:
:param nbins:
:return:
"""
if self.Z is None and uod is not None: if self.Z is None and uod is not None:
self.Z = 0.0 self.Z = 0.0
for k in np.linspace(uod[0], uod[1], nbins): for k in np.linspace(uod[0], uod[1], nbins):
self.Z += self.membership(k) self.Z += self.membership(k)
else:
return self.Z return self.Z
def __str__(self): def __str__(self):

View File

@ -10,7 +10,7 @@ def trimf(x, parameters):
:param parameters: a list with 3 real values :param parameters: a list with 3 real values
:return: the membership value of x given the parameters :return: the membership value of x given the parameters
""" """
xx = round(x, 3) xx = np.round(x, 3)
if xx < parameters[0]: if xx < parameters[0]:
return 0 return 0
elif parameters[0] <= xx < parameters[1]: elif parameters[0] <= xx < parameters[1]:

View File

@ -92,6 +92,15 @@ class EnsembleFTS(fts.FTS):
return ret return ret
def get_distribution_interquantile(self,forecasts, alpha):
size = len(forecasts)
qt_lower = int(np.ceil(size * alpha)) - 1
qt_upper = int(np.ceil(size * (1- alpha))) - 1
ret = sorted(forecasts)[qt_lower : qt_upper]
return ret
def forecast(self, data, **kwargs): def forecast(self, data, **kwargs):
if "method" in kwargs: if "method" in kwargs:

View File

@ -11,7 +11,7 @@ from pyFTS.benchmarks import arima, quantreg
from pyFTS.common import Transformations, Util as cUtil from pyFTS.common import Transformations, Util as cUtil
import scipy.stats as st import scipy.stats as st
from pyFTS.ensemble import ensemble from pyFTS.ensemble import ensemble
from pyFTS.models import msfts from pyFTS.models import msfts, cmsfts
from pyFTS.probabilistic import ProbabilityDistribution, kde from pyFTS.probabilistic import ProbabilityDistribution, kde
from copy import deepcopy from copy import deepcopy
from joblib import Parallel, delayed from joblib import Parallel, delayed
@ -25,7 +25,7 @@ def train_individual_model(partitioner, train_data, indexer):
print(_key) print(_key)
model = msfts.MultiSeasonalFTS(_key, indexer=indexer) model = cmsfts.ContextualMultiSeasonalFTS(_key, indexer=indexer)
model.appendTransformation(partitioner.transformation) model.appendTransformation(partitioner.transformation)
model.train(train_data, partitioner.sets, order=1) model.train(train_data, partitioner.sets, order=1)
@ -74,17 +74,22 @@ class SeasonalEnsembleFTS(ensemble.EnsembleFTS):
ret = [] ret = []
h = kwargs.get("h",10) smooth = kwargs.get("smooth", "KDE")
alpha = kwargs.get("alpha", None)
for k in data.index: for k in data.index:
tmp = self.get_models_forecasts(data.ix[k]) tmp = self.get_models_forecasts(data.ix[k])
if alpha is None:
tmp = np.ravel(tmp).tolist() tmp = np.ravel(tmp).tolist()
else:
tmp = self.get_distribution_interquantile( np.ravel(tmp).tolist(), alpha)
name = str(self.indexer.get_index(data.ix[k])) name = str(self.indexer.get_index(data.ix[k]))
dist = ProbabilityDistribution.ProbabilityDistribution("KDE", uod=[self.original_min, self.original_max], dist = ProbabilityDistribution.ProbabilityDistribution(smooth,
uod=[self.original_min, self.original_max],
data=tmp, name=name, **kwargs) data=tmp, name=name, **kwargs)
ret.append(dist) ret.append(dist)

View File

@ -33,7 +33,7 @@ class FTS(object):
self.transformations_param = [] self.transformations_param = []
self.original_max = 0 self.original_max = 0
self.original_min = 0 self.original_min = 0
self.partitioner = None self.partitioner = kwargs.get("partitioner", None)
self.auto_update = False self.auto_update = False
self.benchmark_only = False self.benchmark_only = False
self.indexer = None self.indexer = None
@ -219,6 +219,9 @@ class FTS(object):
grid[k] += 1 grid[k] += 1
return grid return grid
def get_UoD(self):
return [self.original_min, self.original_max]

View File

@ -49,7 +49,7 @@ class HighOrderFLRG(object):
class HighOrderFTS(fts.FTS): class HighOrderFTS(fts.FTS):
"""Conventional High Order Fuzzy Time Series""" """Conventional High Order Fuzzy Time Series"""
def __init__(self, name, **kwargs): def __init__(self, name, **kwargs):
super(HighOrderFTS, self).__init__(1, "HOFTS" + name) super(HighOrderFTS, self).__init__(1, "HOFTS" + name, **kwargs)
self.name = "High Order FTS" self.name = "High Order FTS"
self.shortname = "HOFTS" + name self.shortname = "HOFTS" + name
self.detail = "Chen" self.detail = "Chen"

View File

@ -12,7 +12,7 @@ from pyFTS import fts
class HighOrderFTS(fts.FTS): class HighOrderFTS(fts.FTS):
def __init__(self, name, **kwargs): def __init__(self, name, **kwargs):
super(HighOrderFTS, self).__init__(1, name) super(HighOrderFTS, self).__init__(1, name, **kwargs)
self.is_high_order = True self.is_high_order = True
self.min_order = 2 self.min_order = 2
self.name = "Hwang High Order FTS" self.name = "Hwang High Order FTS"

View File

@ -9,7 +9,7 @@ from pyFTS import hofts, fts, tree
class IntervalFTS(hofts.HighOrderFTS): class IntervalFTS(hofts.HighOrderFTS):
"""High Order Interval Fuzzy Time Series""" """High Order Interval Fuzzy Time Series"""
def __init__(self, name, **kwargs): def __init__(self, name, **kwargs):
super(IntervalFTS, self).__init__(order=1, name="IFTS " + name) super(IntervalFTS, self).__init__(order=1, name="IFTS " + name, **kwargs)
self.shortname = "IFTS " + name self.shortname = "IFTS " + name
self.name = "Interval FTS" self.name = "Interval FTS"
self.detail = "Silva, P.; Guimarães, F.; Sadaei, H. (2016)" self.detail = "Silva, P.; Guimarães, F.; Sadaei, H. (2016)"

View File

@ -43,7 +43,7 @@ class ImprovedWeightedFLRG(object):
class ImprovedWeightedFTS(fts.FTS): class ImprovedWeightedFTS(fts.FTS):
"""First Order Improved Weighted Fuzzy Time Series""" """First Order Improved Weighted Fuzzy Time Series"""
def __init__(self, name, **kwargs): def __init__(self, name, **kwargs):
super(ImprovedWeightedFTS, self).__init__(1, "IWFTS " + name) super(ImprovedWeightedFTS, self).__init__(1, "IWFTS " + name, **kwargs)
self.name = "Improved Weighted FTS" self.name = "Improved Weighted FTS"
self.detail = "Ismail & Efendi" self.detail = "Ismail & Efendi"
self.setsDict = {} self.setsDict = {}

View File

@ -30,7 +30,7 @@ class ContextualMultiSeasonalFTS(sfts.SeasonalFTS):
""" """
Contextual Multi-Seasonal Fuzzy Time Series Contextual Multi-Seasonal Fuzzy Time Series
""" """
def __init__(self, order, name, indexer, **kwargs): def __init__(self, name, indexer, **kwargs):
super(ContextualMultiSeasonalFTS, self).__init__("CMSFTS") super(ContextualMultiSeasonalFTS, self).__init__("CMSFTS")
self.name = "Contextual Multi Seasonal FTS" self.name = "Contextual Multi Seasonal FTS"
self.shortname = "CMSFTS " + name self.shortname = "CMSFTS " + name
@ -75,7 +75,7 @@ class ContextualMultiSeasonalFTS(sfts.SeasonalFTS):
index = self.indexer.get_season_of_data(data) index = self.indexer.get_season_of_data(data)
ndata = self.indexer.get_data(data) ndata = self.indexer.get_data(data)
for k in np.arange(1, len(data)): for k in np.arange(0, len(data)):
flrg = self.flrgs[str(index[k])] flrg = self.flrgs[str(index[k])]
@ -85,7 +85,7 @@ class ContextualMultiSeasonalFTS(sfts.SeasonalFTS):
ret.append(sum(mp) / len(mp)) ret.append(sum(mp) / len(mp))
ret = self.doInverseTransformations(ret, params=[ndata[self.order - 1:]]) ret = self.doInverseTransformations(ret, params=[ndata])
return ret return ret

View File

@ -200,7 +200,7 @@ class DateTimeSeasonalIndexer(SeasonalIndexer):
return data[self.data_fields].tolist() return data[self.data_fields].tolist()
def get_index(self, data): def get_index(self, data):
return data[self.date_field] return data[self.date_field].tolist() if isinstance(data, pd.DataFrame) else data[self.date_field]
def set_data(self, data, value): def set_data(self, data, value):
raise Exception("Operation not available!") raise Exception("Operation not available!")

View File

@ -44,7 +44,7 @@ class ProbabilityDistribution(object):
self.name = kwargs.get("name", "") self.name = kwargs.get("name", "")
def set(self, value, density): def set(self, value, density):
k = self.index.find_ge(value) k = self.index.find_ge(np.round(value,3))
self.distribution[k] = density self.distribution[k] = density
def append(self, values): def append(self, values):
@ -95,7 +95,7 @@ class ProbabilityDistribution(object):
ret = 0 ret = 0
for k in self.bins: for k in self.bins:
if k < value: if k < value:
ret += self.distribution[k] ret += self.density(k)
else: else:
return ret return ret
@ -156,7 +156,7 @@ class ProbabilityDistribution(object):
_s += np.log(k) _s += np.log(k)
return _s / len(data) return _s / len(data)
def plot(self,axis=None,color="black",tam=[10, 6]): def plot(self,axis=None,color="black",tam=[10, 6], title = None):
if axis is None: if axis is None:
fig = plt.figure(figsize=tam) fig = plt.figure(figsize=tam)
axis = fig.add_subplot(111) axis = fig.add_subplot(111)
@ -168,9 +168,10 @@ class ProbabilityDistribution(object):
yp = [0 for k in self.data] yp = [0 for k in self.data]
axis.plot(self.data, yp, c="red") axis.plot(self.data, yp, c="red")
if title is None:
title = self.name
axis.plot(self.bins, ys, c=color) axis.plot(self.bins, ys, c=color)
axis.set_title(self.name) axis.set_title(title)
axis.set_xlabel('Universe of Discourse') axis.set_xlabel('Universe of Discourse')
axis.set_ylabel('Probability') axis.set_ylabel('Probability')

View File

@ -15,11 +15,26 @@ class KernelSmoothing(object):
def kernel(self, u): def kernel(self, u):
if self.method == "epanechnikov": if self.method == "epanechnikov":
return (3/4)*(1 - u**2) tmp = (3/4)*(1.0 - u**2)
return tmp if tmp > 0 else 0
elif self.method == "gaussian": elif self.method == "gaussian":
return (1/np.sqrt(2*np.pi))*np.exp(-0.5*u**2) return (1.0/np.sqrt(2*np.pi))*np.exp(-0.5*u**2)
elif self.method == "uniform": elif self.method == "uniform":
return 0.5 return 0.5
elif self.method == "triangular":
tmp = 1.0 - np.abs(u)
return tmp if tmp > 0 else 0
elif self.method == "logistic":
return 1.0/(np.exp(u)+2+np.exp(-u))
elif self.method == "cosine":
return (np.pi/4.0)*np.cos((np.pi/2.0)*u)
elif self.method == "sigmoid":
return (2.0/np.pi)*(1.0/(np.exp(u)+np.exp(-u)))
elif self.method == "tophat":
return 1 if np.abs(u) < 0.5 else 0
elif self.method == "exponential":
return 0.5 * np.exp(-np.abs(u))
def probability(self, x, data): def probability(self, x, data):
l = len(data) l = len(data)

View File

@ -7,6 +7,7 @@ import math
from operator import itemgetter from operator import itemgetter
from pyFTS.common import FLR, FuzzySet, SortedCollection from pyFTS.common import FLR, FuzzySet, SortedCollection
from pyFTS import hofts, ifts, tree from pyFTS import hofts, ifts, tree
from pyFTS.probabilistic import ProbabilityDistribution
class ProbabilisticWeightedFLRG(hofts.HighOrderFLRG): class ProbabilisticWeightedFLRG(hofts.HighOrderFLRG):
@ -15,6 +16,7 @@ class ProbabilisticWeightedFLRG(hofts.HighOrderFLRG):
super(ProbabilisticWeightedFLRG, self).__init__(order) super(ProbabilisticWeightedFLRG, self).__init__(order)
self.RHS = {} self.RHS = {}
self.frequency_count = 0.0 self.frequency_count = 0.0
self.Z = None
def appendRHS(self, c): def appendRHS(self, c):
self.frequency_count += 1.0 self.frequency_count += 1.0
@ -30,9 +32,29 @@ class ProbabilisticWeightedFLRG(hofts.HighOrderFLRG):
else: else:
self.RHS[c.name] = mv self.RHS[c.name] = mv
def get_probability(self, c): def get_RHSprobability(self, c):
return self.RHS[c] / self.frequency_count return self.RHS[c] / self.frequency_count
def get_LHSprobability(self, x, norm, uod, nbins):
pk = self.frequency_count / norm
mv = []
for set in self.LHS:
mv.append( set.membership(x) )
min_mv = np.prod(mv)
tmp = pk * (min_mv / self.partition_function(uod, nbins=nbins))
return tmp
def partition_function(self, uod, nbins=100):
if self.Z is None:
self.Z = 0.0
for k in np.linspace(uod[0], uod[1], nbins):
for set in self.LHS:
self.Z += set.membership(k)
return self.Z
def __str__(self): def __str__(self):
tmp2 = "" tmp2 = ""
for c in sorted(self.RHS): for c in sorted(self.RHS):
@ -45,7 +67,7 @@ class ProbabilisticWeightedFLRG(hofts.HighOrderFLRG):
class ProbabilisticWeightedFTS(ifts.IntervalFTS): class ProbabilisticWeightedFTS(ifts.IntervalFTS):
"""High Order Probabilistic Weighted Fuzzy Time Series""" """High Order Probabilistic Weighted Fuzzy Time Series"""
def __init__(self, name, **kwargs): def __init__(self, name, **kwargs):
super(ProbabilisticWeightedFTS, self).__init__(order=1, name=name) super(ProbabilisticWeightedFTS, self).__init__(order=1, name=name, **kwargs)
self.shortname = "PWFTS " + name self.shortname = "PWFTS " + name
self.name = "Probabilistic FTS" self.name = "Probabilistic FTS"
self.detail = "Silva, P.; Guimarães, F.; Sadaei, H." self.detail = "Silva, P.; Guimarães, F.; Sadaei, H."
@ -57,30 +79,40 @@ class ProbabilisticWeightedFTS(ifts.IntervalFTS):
self.is_high_order = True self.is_high_order = True
self.auto_update = kwargs.get('update',False) self.auto_update = kwargs.get('update',False)
def train(self, data, sets, order=1,parameters=None): def train(self, data, sets, order=1,parameters='Fuzzy'):
data = self.doTransformations(data, updateUoD=True) data = self.doTransformations(data, updateUoD=True)
self.order = order self.order = order
if sets is None and self.partitioner is not None:
self.sets = self.partitioner.sets
self.original_min = self.partitioner.min
self.original_max = self.partitioner.max
else:
self.sets = sets self.sets = sets
for s in self.sets: self.setsDict[s.name] = s for s in self.sets: self.setsDict[s.name] = s
if parameters == 'Monotonic':
tmpdata = FuzzySet.fuzzySeries(data, sets) tmpdata = FuzzySet.fuzzySeries(data, sets)
flrs = FLR.generateRecurrentFLRs(tmpdata) flrs = FLR.generateRecurrentFLRs(tmpdata)
self.flrgs = self.generateFLRG(flrs) self.flrgs = self.generateFLRG(flrs)
#self.flrgs = self.generateFLRG2(data) else:
self.flrgs = self.generateFLRGfuzzy(data)
def generateFLRG2(self, data): def generateFLRGfuzzy(self, data):
flrgs = {} flrgs = {}
l = len(data) l = len(data)
for k in np.arange(self.order, l): for k in np.arange(self.order, l):
if self.dump: print("FLR: " + str(k)) if self.dump: print("FLR: " + str(k))
flrg = ProbabilisticWeightedFLRG(self.order)
sample = data[k - self.order: k] sample = data[k - self.order: k]
mvs = FuzzySet.fuzzyInstances(sample, self.sets) mvs = FuzzySet.fuzzyInstances(sample, self.sets)
lags = {} lags = {}
mv = FuzzySet.fuzzyInstance(data[k], self.sets)
tmp = np.argwhere(mv)
idx = np.ravel(tmp) # flatten the array
for o in np.arange(0, self.order): for o in np.arange(0, self.order):
_sets = [self.sets[kk] for kk in np.arange(0, len(self.sets)) if mvs[o][kk] > 0] _sets = [self.sets[kk] for kk in np.arange(0, len(self.sets)) if mvs[o][kk] > 0]
@ -92,25 +124,25 @@ class ProbabilisticWeightedFTS(ifts.IntervalFTS):
# Trace the possible paths # Trace the possible paths
for p in root.paths(): for p in root.paths():
flrg = ProbabilisticWeightedFLRG(self.order)
path = list(reversed(list(filter(None.__ne__, p)))) path = list(reversed(list(filter(None.__ne__, p))))
lhs_mv = [] tmp_path = []
for c, e in enumerate(path, start=0): for c, e in enumerate(path, start=0):
lhs_mv.append( e.membership( sample[c] ) ) tmp_path.append( e.membership( sample[c] ) )
flrg.appendLHS(e) flrg.appendLHS(e)
lhs_mv = np.prod(tmp_path)
if flrg.strLHS() not in flrgs: if flrg.strLHS() not in flrgs:
flrgs[flrg.strLHS()] = flrg; flrgs[flrg.strLHS()] = flrg;
mv = FuzzySet.fuzzyInstance(data[k], self.sets) for st in idx:
flrgs[flrg.strLHS()].appendRHSFuzzy(self.sets[st], lhs_mv*mv[st])
rhs_mv = [mv[kk] for kk in np.arange(0, len(self.sets)) if mv[kk] > 0] tmp_fq = sum([lhs_mv*kk for kk in mv if kk > 0])
_sets = [self.sets[kk] for kk in np.arange(0, len(self.sets)) if mv[kk] > 0]
for c, e in enumerate(_sets, start=0): self.global_frequency_count = self.global_frequency_count + tmp_fq
flrgs[flrg.strLHS()].appendRHSFuzzy(e,rhs_mv[c]*max(lhs_mv))
self.global_frequency_count += max(lhs_mv)
return (flrgs) return (flrgs)
@ -159,26 +191,44 @@ class ProbabilisticWeightedFTS(ifts.IntervalFTS):
self.flrgs[tmp.strLHS()] = tmp; self.flrgs[tmp.strLHS()] = tmp;
self.global_frequency_count += 1 self.global_frequency_count += 1
def get_probability(self, flrg): def get_flrg_global_probability(self, flrg):
if flrg.strLHS() in self.flrgs: if flrg.strLHS() in self.flrgs:
return self.flrgs[flrg.strLHS()].frequency_count / self.global_frequency_count return self.flrgs[flrg.strLHS()].frequency_count / self.global_frequency_count
else: else:
self.add_new_PWFLGR(flrg) self.add_new_PWFLGR(flrg)
return self.get_probability(flrg) return self.get_flrg_global_probability(flrg)
def getMidpoints(self, flrg): def getMidpoints(self, flrg):
if flrg.strLHS() in self.flrgs: if flrg.strLHS() in self.flrgs:
tmp = self.flrgs[flrg.strLHS()] tmp = self.flrgs[flrg.strLHS()]
ret = sum(np.array([tmp.get_probability(s) * self.setsDict[s].centroid for s in tmp.RHS])) ret = sum(np.array([tmp.get_RHSprobability(s) * self.setsDict[s].centroid for s in tmp.RHS]))
else: else:
pi = 1 / len(flrg.LHS) pi = 1 / len(flrg.LHS)
ret = sum(np.array([pi * s.centroid for s in flrg.LHS])) ret = sum(np.array([pi * s.centroid for s in flrg.LHS]))
return ret return ret
def get_conditional_probability(self, x, flrg):
if flrg.strLHS() in self.flrgs:
_flrg = self.flrgs[flrg.strLHS()]
cond = []
for s in _flrg.RHS:
_set = self.setsDict[s]
tmp = _flrg.get_RHSprobability(s) * (_set.membership(x) / _set.partition_function(uod=self.get_UoD()))
cond.append(tmp)
ret = sum(np.array(cond))
else:
##########################################
# this may be the problem! TEST IT!!!
##########################################
pi = 1 / len(flrg.LHS)
ret = sum(np.array([pi * self.setsDict[s].membership(x) for s in flrg.LHS]))
return ret
def getUpper(self, flrg): def getUpper(self, flrg):
if flrg.strLHS() in self.flrgs: if flrg.strLHS() in self.flrgs:
tmp = self.flrgs[flrg.strLHS()] tmp = self.flrgs[flrg.strLHS()]
ret = sum(np.array([tmp.get_probability(s) * self.setsDict[s].upper for s in tmp.RHS])) ret = sum(np.array([tmp.get_RHSprobability(s) * self.setsDict[s].upper for s in tmp.RHS]))
else: else:
pi = 1 / len(flrg.LHS) pi = 1 / len(flrg.LHS)
ret = sum(np.array([pi * s.upper for s in flrg.LHS])) ret = sum(np.array([pi * s.upper for s in flrg.LHS]))
@ -187,7 +237,7 @@ class ProbabilisticWeightedFTS(ifts.IntervalFTS):
def getLower(self, flrg): def getLower(self, flrg):
if flrg.strLHS() in self.flrgs: if flrg.strLHS() in self.flrgs:
tmp = self.flrgs[flrg.strLHS()] tmp = self.flrgs[flrg.strLHS()]
ret = sum(np.array([tmp.get_probability(s) * self.setsDict[s].lower for s in tmp.RHS])) ret = sum(np.array([tmp.get_RHSprobability(s) * self.setsDict[s].lower for s in tmp.RHS]))
else: else:
pi = 1 / len(flrg.LHS) pi = 1 / len(flrg.LHS)
ret = sum(np.array([pi * s.lower for s in flrg.LHS])) ret = sum(np.array([pi * s.lower for s in flrg.LHS]))
@ -287,15 +337,13 @@ class ProbabilisticWeightedFTS(ifts.IntervalFTS):
affected_flrgs.append(flrg) affected_flrgs.append(flrg)
affected_flrgs_memberships.append(mv[kk]) affected_flrgs_memberships.append(mv[kk])
count = 0 for count, flrg in enumerate(affected_flrgs):
for flrg in affected_flrgs:
# achar o os bounds de cada FLRG, ponderados pela probabilidade e pertinência # achar o os bounds de cada FLRG, ponderados pela probabilidade e pertinência
norm = self.get_probability(flrg) * affected_flrgs_memberships[count] norm = self.get_flrg_global_probability(flrg) * affected_flrgs_memberships[count]
if norm == 0: if norm == 0:
norm = self.get_probability(flrg) # * 0.001 norm = self.get_flrg_global_probability(flrg) # * 0.001
mp.append(norm * self.getMidpoints(flrg)) mp.append(norm * self.getMidpoints(flrg))
norms.append(norm) norms.append(norm)
count = count + 1
# gerar o intervalo # gerar o intervalo
norm = sum(norms) norm = sum(norms)
@ -394,16 +442,14 @@ class ProbabilisticWeightedFTS(ifts.IntervalFTS):
affected_flrgs.append(flrg) affected_flrgs.append(flrg)
affected_flrgs_memberships.append(mv[kk]) affected_flrgs_memberships.append(mv[kk])
count = 0 for count, flrg in enumerate(affected_flrgs):
for flrg in affected_flrgs:
# achar o os bounds de cada FLRG, ponderados pela probabilidade e pertinência # achar o os bounds de cada FLRG, ponderados pela probabilidade e pertinência
norm = self.get_probability(flrg) * affected_flrgs_memberships[count] norm = self.get_flrg_global_probability(flrg) * affected_flrgs_memberships[count]
if norm == 0: if norm == 0:
norm = self.get_probability(flrg) # * 0.001 norm = self.get_flrg_global_probability(flrg) # * 0.001
up.append(norm * self.getUpper(flrg)) up.append(norm * self.getUpper(flrg))
lo.append(norm * self.getLower(flrg)) lo.append(norm * self.getLower(flrg))
norms.append(norm) norms.append(norm)
count = count + 1
# gerar o intervalo # gerar o intervalo
norm = sum(norms) norm = sum(norms)
@ -418,6 +464,32 @@ class ProbabilisticWeightedFTS(ifts.IntervalFTS):
return ret return ret
def forecastDistribution(self, data, **kwargs):
ret = []
smooth = kwargs.get("smooth", "KDE")
alpha = kwargs.get("alpha", None)
for k in data.index:
tmp = self.get_models_forecasts(data.ix[k])
if alpha is None:
tmp = np.ravel(tmp).tolist()
else:
tmp = self.get_distribution_interquantile( np.ravel(tmp).tolist(), alpha)
name = str(self.indexer.get_index(data.ix[k]))
dist = ProbabilityDistribution.ProbabilityDistribution(smooth,
uod=[self.original_min, self.original_max],
data=tmp, name=name, **kwargs)
ret.append(dist)
return ret
def forecastAhead(self, data, steps, **kwargs): def forecastAhead(self, data, steps, **kwargs):
ret = [data[k] for k in np.arange(len(data) - self.order, len(data))] ret = [data[k] for k in np.arange(len(data) - self.order, len(data))]
@ -558,10 +630,87 @@ class ProbabilisticWeightedFTS(ifts.IntervalFTS):
df = pd.DataFrame(ret, columns=sorted(grid)) df = pd.DataFrame(ret, columns=sorted(grid))
return df return df
def density(self, x, num_bins=100):
affected_flrgs = []
affected_flrgs_memberships = []
mv = FuzzySet.fuzzyInstance(x, self.sets)
tmp = np.argwhere(mv)
idx = np.ravel(tmp)
if idx.size == 0: # the element is out of the bounds of the Universe of Discourse
if x <= self.sets[0].lower:
idx = [0]
elif x >= self.sets[-1].upper:
idx = [len(self.sets) - 1]
else:
raise Exception(x)
for kk in idx:
flrg = ProbabilisticWeightedFLRG(self.order)
flrg.appendLHS(self.sets[kk])
affected_flrgs.append(flrg)
affected_flrgs_memberships.append(mv[kk])
total_prob = 0.0
for count, flrg in enumerate(affected_flrgs):
_flrg = self.flrgs[flrg.strLHS()]
pk = _flrg.frequency_count / self.global_frequency_count
priori = pk * (affected_flrgs_memberships[count]) # / _flrg.partition_function(uod=self.get_UoD(), nbins=num_bins))
#print(flrg.strLHS() + ": PK=" + str(pk) + " Priori=" + str(priori))
#posteriori = self.get_conditional_probability(k, flrg) * priori
total_prob += priori
return total_prob
def AprioriPDF(self, **kwargs):
nbins = kwargs.get('num_bins', 100)
pdf = ProbabilityDistribution.ProbabilityDistribution(uod=[self.original_min, self.original_max], num_bins=nbins)
t = 0.0
for k in pdf.bins:
#print("BIN: " + str(k) )
affected_flrgs = []
affected_flrgs_memberships = []
mv = FuzzySet.fuzzyInstance(k, self.sets)
tmp = np.argwhere(mv)
idx = np.ravel(tmp)
if idx.size == 0: # the element is out of the bounds of the Universe of Discourse
if k <= self.sets[0].lower:
idx = [0]
elif k >= self.sets[-1].upper:
idx = [len(self.sets) - 1]
else:
raise Exception(k)
for kk in idx:
flrg = ProbabilisticWeightedFLRG(self.order)
flrg.appendLHS(self.sets[kk])
affected_flrgs.append(flrg)
affected_flrgs_memberships.append(mv[kk])
total_prob = 0.0
for count, flrg in enumerate(affected_flrgs):
_flrg = self.flrgs[flrg.strLHS()]
pk = _flrg.frequency_count / self.global_frequency_count
priori = pk * (affected_flrgs_memberships[count] / _flrg.partition_function(uod=self.get_UoD()))
#print(flrg.strLHS() + ": PK=" + str(pk) + " Priori=" + str(priori))
posteriori = self.get_conditional_probability(k, flrg) * priori
total_prob += posteriori
t += total_prob
pdf.set(k, total_prob)
print(t)
return pdf
def __str__(self): def __str__(self):
tmp = self.name + ":\n" tmp = self.name + ":\n"
for r in sorted(self.flrgs): for r in sorted(self.flrgs):
p = round(self.flrgs[r].frequencyCount / self.global_frequency_count, 3) p = round(self.flrgs[r].frequency_count / self.global_frequency_count, 3)
tmp = tmp + "(" + str(p) + ") " + str(self.flrgs[r]) + "\n" tmp = tmp + "(" + str(p) + ") " + str(self.flrgs[r]) + "\n"
return tmp return tmp

View File

@ -47,7 +47,7 @@ class ExponentialyWeightedFLRG(object):
class ExponentialyWeightedFTS(fts.FTS): class ExponentialyWeightedFTS(fts.FTS):
"""First Order Exponentialy Weighted Fuzzy Time Series""" """First Order Exponentialy Weighted Fuzzy Time Series"""
def __init__(self, name, **kwargs): def __init__(self, name, **kwargs):
super(ExponentialyWeightedFTS, self).__init__(1, "EWFTS") super(ExponentialyWeightedFTS, self).__init__(1, "EWFTS", **kwargs)
self.name = "Exponentialy Weighted FTS" self.name = "Exponentialy Weighted FTS"
self.detail = "Sadaei" self.detail = "Sadaei"
self.c = 1 self.c = 1

View File

@ -37,7 +37,7 @@ class SeasonalFLRG(FLR.FLR):
class SeasonalFTS(fts.FTS): class SeasonalFTS(fts.FTS):
"""First Order Seasonal Fuzzy Time Series""" """First Order Seasonal Fuzzy Time Series"""
def __init__(self, name, **kwargs): def __init__(self, name, **kwargs):
super(SeasonalFTS, self).__init__(1, "SFTS") super(SeasonalFTS, self).__init__(1, "SFTS", **kwargs)
self.name = "Seasonal FTS" self.name = "Seasonal FTS"
self.detail = "Chen" self.detail = "Chen"
self.seasonality = 1 self.seasonality = 1

View File

@ -12,7 +12,7 @@ from pyFTS import fts
class ConventionalFTS(fts.FTS): class ConventionalFTS(fts.FTS):
"""Traditional Fuzzy Time Series""" """Traditional Fuzzy Time Series"""
def __init__(self, name, **kwargs): def __init__(self, name, **kwargs):
super(ConventionalFTS, self).__init__(1, "FTS " + name) super(ConventionalFTS, self).__init__(1, "FTS " + name, **kwargs)
self.name = "Traditional FTS" self.name = "Traditional FTS"
self.detail = "Song & Chissom" self.detail = "Song & Chissom"
self.R = None self.R = None

View File

@ -35,13 +35,28 @@ from pyFTS import pwfts
from pyFTS import tree from pyFTS import tree
from pyFTS.benchmarks import benchmarks as bchmk from pyFTS.benchmarks import benchmarks as bchmk
enrollments_fs1 = Grid.GridPartitioner(enrollments, 6).sets uod = [10162, 21271]
for s in enrollments_fs1:
print(s)
pfts1_enrollments = pwfts.ProbabilisticWeightedFTS("1") enrollments_fs1 = Grid.GridPartitioner(enrollments, 6)
pfts1_enrollments.train(enrollments, enrollments_fs1, 1) for s in enrollments_fs1.sets:
print(s.partition_function(uod, 100))
pfts1_enrollments = pwfts.ProbabilisticWeightedFTS("1", partitioner=enrollments_fs1)
pfts1_enrollments.train(enrollments, None, 1)
pfts1_enrollments.shortname = "1st Order" pfts1_enrollments.shortname = "1st Order"
print(pfts1_enrollments)
#pfts1_enrollments.AprioriPDF
norm = pfts1_enrollments.global_frequency_count
uod = pfts1_enrollments.get_UoD()
print(uod)
for k in sorted(pfts1_enrollments.flrgs.keys()):
flrg = pfts1_enrollments.flrgs[k]
#tmp = flrg.get_LHSprobability(15000, norm, uod, 100)
print(flrg.partition_function(uod,100))
'''
pfts2_enrollments = pwfts.ProbabilisticWeightedFTS("2") pfts2_enrollments = pwfts.ProbabilisticWeightedFTS("2")
pfts2_enrollments.dump = False pfts2_enrollments.dump = False
pfts2_enrollments.shortname = "2nd Order" pfts2_enrollments.shortname = "2nd Order"
@ -55,7 +70,7 @@ bchmk.plot_compared_series(enrollments,[pfts1_enrollments,pfts2_enrollments, pft
["red","blue","green"], linewidth=2, ["red","blue","green"], linewidth=2,
typeonlegend=True,save=False,file="pictures/pwfts_enrollments_interval.png", typeonlegend=True,save=False,file="pictures/pwfts_enrollments_interval.png",
tam=[20,7],points=False, intervals=True) tam=[20,7],points=False, intervals=True)
'''

View File

@ -41,7 +41,7 @@ class WeightedFLRG(object):
class WeightedFTS(fts.FTS): class WeightedFTS(fts.FTS):
"""First Order Weighted Fuzzy Time Series""" """First Order Weighted Fuzzy Time Series"""
def __init__(self, name, **kwargs): def __init__(self, name, **kwargs):
super(WeightedFTS, self).__init__(1, "WFTS " + name) super(WeightedFTS, self).__init__(1, "WFTS " + name, **kwargs)
self.name = "Weighted FTS" self.name = "Weighted FTS"
self.detail = "Yu" self.detail = "Yu"