diff --git a/docs/build/doctrees/environment.pickle b/docs/build/doctrees/environment.pickle
index 96eb47f..6612a88 100644
Binary files a/docs/build/doctrees/environment.pickle and b/docs/build/doctrees/environment.pickle differ
diff --git a/docs/build/doctrees/pyFTS.partitioners.doctree b/docs/build/doctrees/pyFTS.partitioners.doctree
index 01ff734..8a0fc7d 100644
Binary files a/docs/build/doctrees/pyFTS.partitioners.doctree and b/docs/build/doctrees/pyFTS.partitioners.doctree differ
diff --git a/docs/build/html/_modules/index.html b/docs/build/html/_modules/index.html
index 85b5b4f..0c07298 100644
--- a/docs/build/html/_modules/index.html
+++ b/docs/build/html/_modules/index.html
@@ -94,7 +94,7 @@
pyFTS.models.seasonal.common
pyFTS.models.seasonal.partitioner
pyFTS.partitioners.CMeans
-pyFTS.partitioners.ClassPartitioner
+pyFTS.partitioners.Class
pyFTS.partitioners.Entropy
pyFTS.partitioners.FCM
pyFTS.partitioners.Grid
diff --git a/docs/build/html/_modules/pyFTS/partitioners/Class.html b/docs/build/html/_modules/pyFTS/partitioners/Class.html
new file mode 100644
index 0000000..5391c5a
--- /dev/null
+++ b/docs/build/html/_modules/pyFTS/partitioners/Class.html
@@ -0,0 +1,126 @@
+
+
+
+
+
+
+
+
+ pyFTS.partitioners.Class — pyFTS 1.7 documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Source code for pyFTS.partitioners.Class
+"""Class Partitioner with Singleton Fuzzy Sets"""
+
+import numpy as np
+import math
+import random as rnd
+import functools, operator
+from pyFTS.common import FuzzySet, Membership
+from pyFTS.partitioners import partitioner
+
+
+[docs]class ClassPartitioner(partitioner.Partitioner):
+
"""Class Partitioner: Given a dictionary with class/values pairs, create singleton fuzzy sets for each class"""
+
+
def __init__(self, **kwargs):
+
"""
+
Class Partitioner
+
"""
+
super(ClassPartitioner, self).__init__(name="Class", preprocess = False)
+
+
self.ordered_sets = []
+
+
self.min = 0
+
self.max = 0
+
self.partitions = 0
+
+
classes = kwargs.get("classes", {})
+
+
for k,v in classes.items():
+
self.min = min([self.min, v])
+
self.max = max([self.max, v])
+
self.partitions += 1
+
self.sets[k] = FuzzySet.FuzzySet(k, Membership.singleton, [v], v, **kwargs)
+
self.ordered_sets.append(k)
+
+
[docs] def build(self, data : list):
+
pass
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/docs/build/html/_sources/pyFTS.partitioners.rst.txt b/docs/build/html/_sources/pyFTS.partitioners.rst.txt
index f6f4969..29de726 100644
--- a/docs/build/html/_sources/pyFTS.partitioners.rst.txt
+++ b/docs/build/html/_sources/pyFTS.partitioners.rst.txt
@@ -20,10 +20,10 @@ pyFTS.partitioners.partitioner module
:undoc-members:
:show-inheritance:
-pyFTS.partitioners.ClassPartitioner module
------------------------------------
+pyFTS.partitioners.Class module
+-------------------------------
-.. automodule:: pyFTS.partitioners.ClassPartitioner
+.. automodule:: pyFTS.partitioners.Class
:members:
:undoc-members:
:show-inheritance:
diff --git a/docs/build/html/genindex.html b/docs/build/html/genindex.html
index 00aa215..7bdfd18 100644
--- a/docs/build/html/genindex.html
+++ b/docs/build/html/genindex.html
@@ -159,7 +159,7 @@
(pyFTS.models.seasonal.partitioner.TimeGridPartitioner method)
- (pyFTS.partitioners.ClassPartitioner.ClassPartitioner method)
+ (pyFTS.partitioners.Class.ClassPartitioner method)
(pyFTS.partitioners.CMeans.CMeansPartitioner method)
@@ -216,7 +216,7 @@
- pyFTS.partitioners.ClassPartitioner
+ pyFTS.partitioners.Class
diff --git a/docs/build/html/objects.inv b/docs/build/html/objects.inv
index 5239cc5..9c6512f 100644
Binary files a/docs/build/html/objects.inv and b/docs/build/html/objects.inv differ
diff --git a/docs/build/html/py-modindex.html b/docs/build/html/py-modindex.html
index 8813918..367cf0d 100644
--- a/docs/build/html/py-modindex.html
+++ b/docs/build/html/py-modindex.html
@@ -389,7 +389,7 @@
|
- pyFTS.partitioners.ClassPartitioner |
+ pyFTS.partitioners.Class |
|
|
diff --git a/docs/build/html/pyFTS.html b/docs/build/html/pyFTS.html
index a7f7dd0..5b1ce7f 100644
--- a/docs/build/html/pyFTS.html
+++ b/docs/build/html/pyFTS.html
@@ -221,7 +221,7 @@
Module contents
Submodules
pyFTS.partitioners.partitioner module
-pyFTS.partitioners.ClassPartitioner module
+pyFTS.partitioners.Class module
pyFTS.partitioners.CMeans module
pyFTS.partitioners.Entropy module
pyFTS.partitioners.FCM module
diff --git a/docs/build/html/pyFTS.partitioners.html b/docs/build/html/pyFTS.partitioners.html
index 5858055..364b4a8 100644
--- a/docs/build/html/pyFTS.partitioners.html
+++ b/docs/build/html/pyFTS.partitioners.html
@@ -299,17 +299,17 @@ overlapped fuzzy sets.
-
-pyFTS.partitioners.ClassPartitioner module
-Class Partitioner with Singleton Fuzzy Sets
+
+pyFTS.partitioners.Class module
+Class Partitioner with Singleton Fuzzy Sets
--
-class pyFTS.partitioners.ClassPartitioner.ClassPartitioner(**kwargs)[source]
+-
+class pyFTS.partitioners.Class.ClassPartitioner(**kwargs)[source]
Bases: pyFTS.partitioners.partitioner.Partitioner
Class Partitioner: Given a dictionary with class/values pairs, create singleton fuzzy sets for each class
--
-build(data: list)[source]
+-
+build(data: list)[source]
Perform the partitioning of the Universe of Discourse
- Parameters
@@ -604,7 +604,7 @@ Comput. Math. Appl., vol. 56, no. 12, pp. 3052–3063, Dec. 2008. DOI: 10.1016/j
- Module contents
- Submodules
- pyFTS.partitioners.partitioner module
-- pyFTS.partitioners.ClassPartitioner module
+- pyFTS.partitioners.Class module
- pyFTS.partitioners.CMeans module
- pyFTS.partitioners.Entropy module
- pyFTS.partitioners.FCM module
diff --git a/docs/build/html/searchindex.js b/docs/build/html/searchindex.js
index c59a902..86fea52 100644
--- a/docs/build/html/searchindex.js
+++ b/docs/build/html/searchindex.js
@@ -1 +1 @@
-Search.setIndex({docnames:["index","modules","pyFTS","pyFTS.benchmarks","pyFTS.common","pyFTS.common.transformations","pyFTS.data","pyFTS.distributed","pyFTS.hyperparam","pyFTS.models","pyFTS.models.ensemble","pyFTS.models.incremental","pyFTS.models.multivariate","pyFTS.models.nonstationary","pyFTS.models.seasonal","pyFTS.partitioners","pyFTS.probabilistic","quickstart"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":4,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.intersphinx":1,"sphinx.ext.viewcode":1,sphinx:56},filenames:["index.rst","modules.rst","pyFTS.rst","pyFTS.benchmarks.rst","pyFTS.common.rst","pyFTS.common.transformations.rst","pyFTS.data.rst","pyFTS.distributed.rst","pyFTS.hyperparam.rst","pyFTS.models.rst","pyFTS.models.ensemble.rst","pyFTS.models.incremental.rst","pyFTS.models.multivariate.rst","pyFTS.models.nonstationary.rst","pyFTS.models.seasonal.rst","pyFTS.partitioners.rst","pyFTS.probabilistic.rst","quickstart.rst"],objects:{"":[[2,0,0,"-","pyFTS"]],"pyFTS.common":[[4,0,0,"-","Activations"],[4,0,0,"-","Composite"],[4,0,0,"-","FLR"],[4,0,0,"-","FuzzySet"],[4,0,0,"-","Membership"],[4,0,0,"-","SortedCollection"],[4,0,0,"-","flrg"],[5,0,0,"-","transformations"],[4,0,0,"-","tree"]],"pyFTS.common.Activations":[[4,1,1,"","argmax"],[4,1,1,"","scale"],[4,1,1,"","softmax"]],"pyFTS.common.Composite":[[4,2,1,"","FuzzySet"]],"pyFTS.common.Composite.FuzzySet":[[4,3,1,"","append"],[4,3,1,"","append_set"],[4,3,1,"","membership"],[4,3,1,"","transform"]],"pyFTS.common.FLR":[[4,2,1,"","FLR"],[4,2,1,"","IndexedFLR"],[4,1,1,"","generate_high_order_recurrent_flr"],[4,1,1,"","generate_indexed_flrs"],[4,1,1,"","generate_non_recurrent_flrs"],[4,1,1,"","generate_recurrent_flrs"]],"pyFTS.common.FLR.FLR":[[4,4,1,"","LHS"],[4,4,1,"","RHS"]],"pyFTS.common.FLR.IndexedFLR":[[4,4,1,"","index"]],"pyFTS.common.FuzzySet":[[4,2,1,"","FuzzySet"],[4,1,1,"","check_bounds"],[4,1,1,"","check_bounds_index"],[4,1,1,"","fuzzyfy"],[4,1,1,"","fuzzyfy_instance"],[4,1,1,"","fuzzyfy_instances"],[4,1,1,"","fuzzyfy_series"],[4,1,1,"","fuzzyfy_series_old"],[4,1,1,"","get_fuzzysets"],[4,1,1,"","get_maximum_membership_fuzzyset"],[4,1,1,"","get_maximum_membership_fuzzyset_index"],[4,1,1,"","grant_bounds"],[4,1,1,"","set_ordered"]],"pyFTS.common.FuzzySet.FuzzySet":[[4,4,1,"","Z"],[4,4,1,"","alpha"],[4,4,1,"","centroid"],[4,3,1,"","membership"],[4,4,1,"","mf"],[4,4,1,"","name"],[4,4,1,"","parameters"],[4,3,1,"","partition_function"],[4,3,1,"","transform"],[4,4,1,"","type"],[4,4,1,"","variable"]],"pyFTS.common.Membership":[[4,1,1,"","bellmf"],[4,1,1,"","gaussmf"],[4,1,1,"","sigmf"],[4,1,1,"","singleton"],[4,1,1,"","trapmf"],[4,1,1,"","trimf"]],"pyFTS.common.SortedCollection":[[4,2,1,"","SortedCollection"]],"pyFTS.common.SortedCollection.SortedCollection":[[4,3,1,"","around"],[4,3,1,"","between"],[4,3,1,"","clear"],[4,3,1,"","copy"],[4,3,1,"","count"],[4,3,1,"","find"],[4,3,1,"","find_ge"],[4,3,1,"","find_gt"],[4,3,1,"","find_le"],[4,3,1,"","find_lt"],[4,3,1,"","index"],[4,3,1,"","insert"],[4,3,1,"","insert_right"],[4,3,1,"","inside"],[4,5,1,"","key"],[4,3,1,"","remove"]],"pyFTS.common.flrg":[[4,2,1,"","FLRG"]],"pyFTS.common.flrg.FLRG":[[4,4,1,"","LHS"],[4,4,1,"","RHS"],[4,3,1,"","append_rhs"],[4,3,1,"","get_key"],[4,3,1,"","get_lower"],[4,3,1,"","get_membership"],[4,3,1,"","get_midpoint"],[4,3,1,"","get_midpoints"],[4,3,1,"","get_upper"],[4,4,1,"","order"],[4,3,1,"","reset_calculated_values"]],"pyFTS.common.transformations":[[5,0,0,"-","boxcox"],[5,0,0,"-","differential"],[5,0,0,"-","normalization"],[5,0,0,"-","roi"],[5,0,0,"-","scale"],[5,0,0,"-","smoothing"],[5,0,0,"-","som"],[5,0,0,"-","transformation"]],"pyFTS.common.transformations.boxcox":[[5,2,1,"","BoxCox"]],"pyFTS.common.transformations.boxcox.BoxCox":[[5,3,1,"","apply"],[5,3,1,"","inverse"],[5,5,1,"","parameters"]],"pyFTS.common.transformations.differential":[[5,2,1,"","Differential"]],"pyFTS.common.transformations.differential.Differential":[[5,3,1,"","apply"],[5,3,1,"","inverse"],[5,5,1,"","parameters"]],"pyFTS.common.transformations.normalization":[[5,2,1,"","Normalization"]],"pyFTS.common.transformations.normalization.Normalization":[[5,3,1,"","apply"],[5,3,1,"","inverse"],[5,3,1,"","train"]],"pyFTS.common.transformations.roi":[[5,2,1,"","ROI"]],"pyFTS.common.transformations.roi.ROI":[[5,3,1,"","apply"],[5,3,1,"","inverse"]],"pyFTS.common.transformations.scale":[[5,2,1,"","Scale"]],"pyFTS.common.transformations.scale.Scale":[[5,3,1,"","apply"],[5,3,1,"","inverse"],[5,5,1,"","parameters"]],"pyFTS.common.transformations.smoothing":[[5,2,1,"","AveragePooling"],[5,2,1,"","ExponentialSmoothing"],[5,2,1,"","MaxPooling"],[5,2,1,"","MovingAverage"]],"pyFTS.common.transformations.smoothing.AveragePooling":[[5,3,1,"","apply"],[5,3,1,"","inverse"]],"pyFTS.common.transformations.smoothing.ExponentialSmoothing":[[5,3,1,"","apply"],[5,3,1,"","inverse"]],"pyFTS.common.transformations.smoothing.MaxPooling":[[5,3,1,"","apply"],[5,3,1,"","inverse"]],"pyFTS.common.transformations.smoothing.MovingAverage":[[5,3,1,"","apply"],[5,3,1,"","inverse"]],"pyFTS.common.transformations.som":[[5,2,1,"","SOMTransformation"]],"pyFTS.common.transformations.som.SOMTransformation":[[5,3,1,"","apply"],[5,3,1,"","save_net"],[5,3,1,"","show_grid"],[5,3,1,"","train"]],"pyFTS.common.transformations.transformation":[[5,2,1,"","Transformation"]],"pyFTS.common.transformations.transformation.Transformation":[[5,3,1,"","apply"],[5,3,1,"","inverse"],[5,4,1,"","is_multivariate"]],"pyFTS.common.tree":[[4,2,1,"","FLRGTree"],[4,2,1,"","FLRGTreeNode"],[4,1,1,"","build_tree_without_order"],[4,1,1,"","flat"]],"pyFTS.common.tree.FLRGTreeNode":[[4,3,1,"","appendChild"],[4,3,1,"","getChildren"],[4,3,1,"","getStr"],[4,3,1,"","paths"]],"pyFTS.data":[[6,0,0,"-","AirPassengers"],[6,0,0,"-","Bitcoin"],[6,0,0,"-","DowJones"],[6,0,0,"-","EURGBP"],[6,0,0,"-","EURUSD"],[6,0,0,"-","Enrollments"],[6,0,0,"-","Ethereum"],[6,0,0,"-","GBPUSD"],[6,0,0,"-","INMET"],[6,0,0,"-","Malaysia"],[6,0,0,"-","NASDAQ"],[6,0,0,"-","SONDA"],[6,0,0,"-","SP500"],[6,0,0,"-","TAIEX"],[6,0,0,"-","artificial"],[6,0,0,"-","common"],[6,0,0,"-","henon"],[6,0,0,"-","logistic_map"],[6,0,0,"-","lorentz"],[6,0,0,"-","mackey_glass"],[6,0,0,"-","rossler"],[6,0,0,"-","sunspots"]],"pyFTS.data.AirPassengers":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.data.Bitcoin":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.data.DowJones":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.data.EURGBP":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.data.EURUSD":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.data.Enrollments":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.data.Ethereum":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.data.GBPUSD":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.data.INMET":[[6,1,1,"","get_dataframe"]],"pyFTS.data.Malaysia":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.data.NASDAQ":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.data.SONDA":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.data.SP500":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.data.TAIEX":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.data.artificial":[[6,2,1,"","SignalEmulator"],[6,1,1,"","generate_gaussian_linear"],[6,1,1,"","generate_linear_periodic_gaussian"],[6,1,1,"","generate_sinoidal_periodic_gaussian"],[6,1,1,"","generate_uniform_linear"],[6,1,1,"","random_walk"],[6,1,1,"","white_noise"]],"pyFTS.data.artificial.SignalEmulator":[[6,3,1,"","blip"],[6,4,1,"","components"],[6,3,1,"","incremental_gaussian"],[6,3,1,"","periodic_gaussian"],[6,3,1,"","run"],[6,3,1,"","stationary_gaussian"]],"pyFTS.data.common":[[6,1,1,"","get_dataframe"]],"pyFTS.data.henon":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.data.logistic_map":[[6,1,1,"","get_data"]],"pyFTS.data.lorentz":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.data.mackey_glass":[[6,1,1,"","get_data"]],"pyFTS.data.rossler":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.data.sunspots":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.hyperparam":[[8,0,0,"-","Util"]],"pyFTS.hyperparam.Util":[[8,1,1,"","create_hyperparam_tables"],[8,1,1,"","insert_hyperparam"],[8,1,1,"","open_hyperparam_db"]],"pyFTS.models":[[10,0,0,"-","ensemble"],[11,0,0,"-","incremental"],[12,0,0,"-","multivariate"],[13,0,0,"-","nonstationary"],[14,0,0,"-","seasonal"]],"pyFTS.models.multivariate":[[12,0,0,"-","FLR"],[12,0,0,"-","common"],[12,0,0,"-","flrg"],[12,0,0,"-","grid"],[12,0,0,"-","partitioner"]],"pyFTS.models.multivariate.FLR":[[12,2,1,"","FLR"]],"pyFTS.models.multivariate.FLR.FLR":[[12,3,1,"","set_lhs"],[12,3,1,"","set_rhs"]],"pyFTS.models.multivariate.common":[[12,2,1,"","MultivariateFuzzySet"],[12,1,1,"","fuzzyfy_instance"],[12,1,1,"","fuzzyfy_instance_clustered"]],"pyFTS.models.multivariate.common.MultivariateFuzzySet":[[12,3,1,"","append_set"],[12,3,1,"","membership"],[12,3,1,"","set_target_variable"]],"pyFTS.models.multivariate.flrg":[[12,2,1,"","FLRG"]],"pyFTS.models.multivariate.flrg.FLRG":[[12,3,1,"","append_rhs"],[12,3,1,"","get_lower"],[12,3,1,"","get_membership"],[12,3,1,"","get_upper"],[12,3,1,"","set_lhs"]],"pyFTS.models.multivariate.grid":[[12,2,1,"","GridCluster"],[12,2,1,"","IncrementalGridCluster"]],"pyFTS.models.multivariate.grid.GridCluster":[[12,3,1,"","build"],[12,3,1,"","defuzzyfy"]],"pyFTS.models.multivariate.grid.IncrementalGridCluster":[[12,3,1,"","fuzzyfy"],[12,3,1,"","incremental_search"],[12,3,1,"","prune"]],"pyFTS.models.multivariate.partitioner":[[12,2,1,"","MultivariatePartitioner"]],"pyFTS.models.multivariate.partitioner.MultivariatePartitioner":[[12,3,1,"","append"],[12,3,1,"","build"],[12,3,1,"","build_index"],[12,3,1,"","change_target_variable"],[12,3,1,"","format_data"],[12,3,1,"","fuzzyfy"],[12,3,1,"","prune"],[12,3,1,"","search"]],"pyFTS.models.nonstationary":[[13,0,0,"-","common"],[13,0,0,"-","flrg"],[13,0,0,"-","partitioners"],[13,0,0,"-","perturbation"]],"pyFTS.models.nonstationary.common":[[13,2,1,"","FuzzySet"],[13,1,1,"","check_bounds"],[13,1,1,"","check_bounds_index"],[13,1,1,"","fuzzify"],[13,1,1,"","fuzzySeries"],[13,1,1,"","window_index"]],"pyFTS.models.nonstationary.common.FuzzySet":[[13,3,1,"","get_lower"],[13,3,1,"","get_midpoint"],[13,3,1,"","get_upper"],[13,4,1,"","location"],[13,4,1,"","location_params"],[13,3,1,"","membership"],[13,4,1,"","noise"],[13,4,1,"","noise_params"],[13,3,1,"","perform_location"],[13,3,1,"","perform_width"],[13,3,1,"","perturbate_parameters"],[13,4,1,"","width"],[13,4,1,"","width_params"]],"pyFTS.models.nonstationary.flrg":[[13,2,1,"","NonStationaryFLRG"]],"pyFTS.models.nonstationary.flrg.NonStationaryFLRG":[[13,3,1,"","get_key"],[13,3,1,"","get_lower"],[13,3,1,"","get_membership"],[13,3,1,"","get_midpoint"],[13,3,1,"","get_upper"],[13,3,1,"","unpack_args"]],"pyFTS.models.nonstationary.partitioners":[[13,2,1,"","PolynomialNonStationaryPartitioner"],[13,2,1,"","SimpleNonStationaryPartitioner"],[13,1,1,"","simplenonstationary_gridpartitioner_builder"]],"pyFTS.models.nonstationary.partitioners.PolynomialNonStationaryPartitioner":[[13,3,1,"","build"],[13,3,1,"","get_polynomial_perturbations"],[13,3,1,"","poly_width"],[13,3,1,"","scale_down"],[13,3,1,"","scale_up"]],"pyFTS.models.nonstationary.partitioners.SimpleNonStationaryPartitioner":[[13,3,1,"","build"]],"pyFTS.models.nonstationary.perturbation":[[13,1,1,"","exponential"],[13,1,1,"","linear"],[13,1,1,"","periodic"],[13,1,1,"","polynomial"]],"pyFTS.models.seasonal":[[14,0,0,"-","SeasonalIndexer"],[14,0,0,"-","common"],[14,0,0,"-","partitioner"]],"pyFTS.models.seasonal.SeasonalIndexer":[[14,2,1,"","DataFrameSeasonalIndexer"],[14,2,1,"","DateTimeSeasonalIndexer"],[14,2,1,"","LinearSeasonalIndexer"],[14,2,1,"","SeasonalIndexer"]],"pyFTS.models.seasonal.SeasonalIndexer.DataFrameSeasonalIndexer":[[14,3,1,"","get_data"],[14,3,1,"","get_data_by_season"],[14,3,1,"","get_index_by_season"],[14,3,1,"","get_season_by_index"],[14,3,1,"","get_season_of_data"],[14,3,1,"","set_data"]],"pyFTS.models.seasonal.SeasonalIndexer.DateTimeSeasonalIndexer":[[14,3,1,"","get_data"],[14,3,1,"","get_data_by_season"],[14,3,1,"","get_index"],[14,3,1,"","get_index_by_season"],[14,3,1,"","get_season_by_index"],[14,3,1,"","get_season_of_data"],[14,3,1,"","set_data"]],"pyFTS.models.seasonal.SeasonalIndexer.LinearSeasonalIndexer":[[14,3,1,"","get_data"],[14,3,1,"","get_index_by_season"],[14,3,1,"","get_season_by_index"],[14,3,1,"","get_season_of_data"]],"pyFTS.models.seasonal.SeasonalIndexer.SeasonalIndexer":[[14,3,1,"","get_data"],[14,3,1,"","get_data_by_season"],[14,3,1,"","get_index"],[14,3,1,"","get_index_by_season"],[14,3,1,"","get_season_by_index"],[14,3,1,"","get_season_of_data"]],"pyFTS.models.seasonal.common":[[14,2,1,"","DateTime"],[14,2,1,"","FuzzySet"],[14,1,1,"","strip_datepart"]],"pyFTS.models.seasonal.common.DateTime":[[14,4,1,"","day_of_month"],[14,4,1,"","day_of_week"],[14,4,1,"","day_of_year"],[14,4,1,"","half"],[14,4,1,"","hour"],[14,4,1,"","hour_of_day"],[14,4,1,"","hour_of_month"],[14,4,1,"","hour_of_week"],[14,4,1,"","hour_of_year"],[14,4,1,"","minute"],[14,4,1,"","minute_of_day"],[14,4,1,"","minute_of_hour"],[14,4,1,"","minute_of_month"],[14,4,1,"","minute_of_week"],[14,4,1,"","minute_of_year"],[14,4,1,"","month"],[14,4,1,"","quarter"],[14,4,1,"","second"],[14,4,1,"","second_of_day"],[14,4,1,"","second_of_hour"],[14,4,1,"","second_of_minute"],[14,4,1,"","sixth"],[14,4,1,"","third"],[14,4,1,"","year"]],"pyFTS.models.seasonal.common.FuzzySet":[[14,3,1,"","transform"]],"pyFTS.models.seasonal.partitioner":[[14,2,1,"","TimeGridPartitioner"]],"pyFTS.models.seasonal.partitioner.TimeGridPartitioner":[[14,3,1,"","build"],[14,3,1,"","build_index"],[14,3,1,"","extractor"],[14,4,1,"","mask"],[14,3,1,"","plot"],[14,3,1,"","search"],[14,4,1,"","season"]],"pyFTS.partitioners":[[15,0,0,"-","CMeans"],[15,0,0,"-","ClassPartitioner"],[15,0,0,"-","Entropy"],[15,0,0,"-","FCM"],[15,0,0,"-","Grid"],[15,0,0,"-","Simple"],[15,0,0,"-","Singleton"],[15,0,0,"-","SubClust"],[15,0,0,"-","partitioner"]],"pyFTS.partitioners.CMeans":[[15,2,1,"","CMeansPartitioner"],[15,1,1,"","c_means"],[15,1,1,"","distance"]],"pyFTS.partitioners.CMeans.CMeansPartitioner":[[15,3,1,"","build"]],"pyFTS.partitioners.ClassPartitioner":[[15,2,1,"","ClassPartitioner"]],"pyFTS.partitioners.ClassPartitioner.ClassPartitioner":[[15,3,1,"","build"]],"pyFTS.partitioners.Entropy":[[15,2,1,"","EntropyPartitioner"],[15,1,1,"","PMF"],[15,1,1,"","bestSplit"],[15,1,1,"","entropy"],[15,1,1,"","informationGain"],[15,1,1,"","splitAbove"],[15,1,1,"","splitBelow"]],"pyFTS.partitioners.Entropy.EntropyPartitioner":[[15,3,1,"","build"]],"pyFTS.partitioners.FCM":[[15,2,1,"","FCMPartitioner"],[15,1,1,"","fuzzy_cmeans"],[15,1,1,"","fuzzy_distance"],[15,1,1,"","membership"]],"pyFTS.partitioners.FCM.FCMPartitioner":[[15,3,1,"","build"]],"pyFTS.partitioners.Grid":[[15,2,1,"","GridPartitioner"],[15,2,1,"","PreFixedGridPartitioner"]],"pyFTS.partitioners.Grid.GridPartitioner":[[15,3,1,"","build"]],"pyFTS.partitioners.Simple":[[15,2,1,"","SimplePartitioner"]],"pyFTS.partitioners.Simple.SimplePartitioner":[[15,3,1,"","append"],[15,3,1,"","append_complex"]],"pyFTS.partitioners.Singleton":[[15,2,1,"","SingletonPartitioner"]],"pyFTS.partitioners.Singleton.SingletonPartitioner":[[15,3,1,"","build"]],"pyFTS.partitioners.SubClust":[[15,2,1,"","SubClustPartitioner"],[15,1,1,"","imax"],[15,1,1,"","subclust"]],"pyFTS.partitioners.SubClust.SubClustPartitioner":[[15,3,1,"","build"]],"pyFTS.partitioners.partitioner":[[15,2,1,"","Partitioner"]],"pyFTS.partitioners.partitioner.Partitioner":[[15,3,1,"","build"],[15,3,1,"","build_index"],[15,3,1,"","check_bounds"],[15,3,1,"","defuzzyfy"],[15,3,1,"","extractor"],[15,3,1,"","fuzzyfy"],[15,3,1,"","get_name"],[15,4,1,"","kdtree"],[15,4,1,"","lower_margin"],[15,3,1,"","lower_set"],[15,4,1,"","margin"],[15,4,1,"","membership_function"],[15,4,1,"","name"],[15,4,1,"","ordered_sets"],[15,4,1,"","partitions"],[15,3,1,"","plot"],[15,3,1,"","plot_set"],[15,4,1,"","prefix"],[15,3,1,"","search"],[15,4,1,"","setnames"],[15,4,1,"","sets"],[15,4,1,"","transformation"],[15,4,1,"","type"],[15,4,1,"","upper_margin"],[15,3,1,"","upper_set"],[15,4,1,"","variable"]],pyFTS:[[3,0,0,"-","benchmarks"],[4,0,0,"-","common"],[2,0,0,"-","conf"],[6,0,0,"-","data"],[7,0,0,"-","distributed"],[8,0,0,"-","hyperparam"],[9,0,0,"-","models"],[15,0,0,"-","partitioners"],[16,0,0,"-","probabilistic"]]},objnames:{"0":["py","module","Python module"],"1":["py","function","Python function"],"2":["py","class","Python class"],"3":["py","method","Python method"],"4":["py","attribute","Python attribute"],"5":["py","property","Python property"]},objtypes:{"0":"py:module","1":"py:function","2":"py:class","3":"py:method","4":"py:attribute","5":"py:property"},terms:{"0":[4,5,6,14,15],"00001":14,"001":[6,15],"01":[5,6],"0130":6,"020":6,"02941176":6,"033":15,"0469":6,"07":15,"08823529":6,"1":[4,5,6,13,14,15,17],"10":[0,6,15],"100":[4,6],"1000":6,"10000":5,"10080":14,"1016":15,"1038":6,"1072":13,"1086":13,"1175":6,"12":[6,14,15],"130":6,"141":6,"1440":14,"14705882":6,"1520":6,"16":13,"168":14,"17":6,"1749":6,"18":6,"1949":6,"1950":6,"1960":6,"1963":6,"197":6,"1971":6,"1976":6,"1977":6,"1985":6,"1992":6,"1994":15,"1995":6,"2":[4,6,14,15,17],"20":6,"2000":6,"2006":15,"2008":[13,15],"2010":6,"2012":6,"2014":[5,6],"2016":6,"2017":6,"2018":[0,6],"20588235":6,"22":4,"24":14,"261":6,"261459a0":6,"26470588":6,"267":15,"278":15,"28":[4,6],"287":6,"289":6,"29":4,"3":[4,5,6,14,15,17],"30":[4,14],"3052":15,"3063":15,"31":6,"32":4,"32352941":6,"3600":14,"364":14,"38235294":6,"397":6,"4":[4,6,13,14,17],"4300":6,"44117647":6,"44640":14,"459":6,"467":6,"5":[6,15],"50":6,"500":[1,2],"5000":6,"524":15,"524160":14,"5281":0,"542":15,"5560":6,"55882353":6,"56":15,"57a":6,"597359":0,"5egspc":6,"6":[14,17],"60":14,"61764706":6,"6666666666666665":6,"67647059":6,"69":6,"7":[5,6,14],"73":15,"73529412":6,"744":14,"77":6,"79411765":6,"8":6,"85294118":6,"86400":14,"8736":14,"91176471":6,"97058824":6,"case":[4,17],"class":[4,5,6,12,13,14,15,17],"default":[5,6,15],"enum":14,"final":6,"float":[4,5,6,15],"function":[4,8,12,13,14,15,17],"guimar\u00e3":0,"h\u00e9non":6,"import":[4,17],"int":[4,5,6,15],"new":[4,5,12,15],"organiza\u00e7\u00e3o":6,"r\u00f6ssler":6,"return":[4,5,6,8,12,13,14,15],"short":[0,4],"true":[6,12],"var":[6,12],"while":4,A:[0,2,4,6,12,14,15],IT:15,If:[4,5,6,15],In:[4,15,17],It:4,One:15,The:[4,6,8,15,17],Then:17,There:17,These:[0,17],To:17,_kdtree:15,acc:4,accord:[12,15],accuraci:8,activ:[1,2],ad:[4,6],adapativeexpect:[1,2],add:[4,13],addit:6,affect:13,after:6,ag:4,aggreg:10,ah:17,ahead:[4,17],airlin:6,airpasseng:[1,2],al:0,alabama:6,all:[4,12,15,17],almost:17,alpha:[4,8,14],alpha_cut:[4,12,15],alreadi:6,also:[0,17],ambientai:6,an:[4,6,12,14,15],angela:4,api:4,append:[4,12,15],append_complex:15,append_rh:[4,12],append_set:[4,12],appendchild:4,appl:15,appli:[5,15],approach:[15,17],ar:[0,4,15],arg:[5,13],argmax:4,argument:[4,15],arima:[1,2],around:4,arrai:[4,5,6,13,14],artifici:[1,2],aspx:6,assign:4,associ:6,atmospher:6,attibut:4,attractor:6,au:6,auto:15,autom:6,automat:4,averag:6,averagepool:5,avg:6,ax:[14,15],axi:15,ay:6,b:6,base:[4,5,6,12,13,14,15,17],befor:17,bell:4,bellmf:4,belo:[0,6],belog:4,below:17,benchmark:[1,2,8],bestsplit:15,better:17,between:4,bill:4,bisect:4,bitcoin:[1,2],bivari:6,blip:6,both:[4,12,15],bound:[4,6,12,13,15],box:[5,17],boxcox:[1,2],br:6,brasil:6,brasilia:6,brazil:0,brazilian:0,bst:[1,2],btc:6,build:[12,13,14,15],build_index:[12,14,15],build_tree_without_ord:4,built:6,buseco:6,busi:6,c:[0,6,15],c_mean:15,calcul:[4,12,13],call:4,camwa:15,can:[4,5,17],cancel:6,capit:6,cartesian:12,ccst:6,center:4,centroid:[4,14],chain:6,chang:[6,15],change_target_vari:12,chao:6,chaotic:[1,2],characterist:17,cheap:0,check:[4,6,15,17],check_bound:[4,13,15],check_bounds_index:[4,13],chen:[1,2],cheng:[1,2,15],child:4,chiu:15,classif:4,classpartition:[1,2],clear:4,clone:17,closest:15,cluster:[12,15],cmean:[1,2],cmeanspartition:15,cmsft:[2,9],cmvft:[2,9],co:6,code:17,coeffici:6,colab:17,colabor:0,column:5,com:[6,17],combin:12,common:[1,2,8,9,15,17],commun:6,complet:6,complex:6,complic:6,compon:6,composit:[1,2,6,12],compress:6,comput:15,computation:0,concept:17,conf:[0,1],conn:8,connect:8,consid:[4,12,15],const_t:13,constant:6,contain:[4,15,17],content:[0,1],context:15,continu:6,control:6,copi:4,core:[5,6],cost:15,count:4,counter:15,cox:[5,17],creat:[4,5,6,8,12,15,17],create_hyperparam_t:8,csv:6,current:6,cut:[4,8],cvft:[2,9],cy:6,cz:6,dado:[4,6,15],dai:6,daili:6,data:[0,1,2,4,5,8,12,13,14,15,17],data_field:14,data_point:12,databas:8,datafram:[5,6,14],dataframeseasonalindex:14,dataset:[1,2,5,8],date:14,date_field:14,date_part:14,datepart:14,datetim:14,datetimeseasonalindex:14,david:4,day_of_month:14,day_of_week:14,day_of_year:14,de:[6,15],dealer:6,dec:15,decemb:6,decompress:6,defin:8,defuzzyf:17,defuzzyfi:[12,15],deg:13,delet:4,deltadist:15,demand:12,demo:17,departa:0,depend:[4,12,15,17],design:[4,8,12,14,15],detemin:5,determinist:[6,15],develop:[0,17],dict:[4,15],dictionari:[4,15],differenti:[1,2,6,17],dimens:5,dimension:[5,6],directli:[4,17],discours:[12,13,14,15,17],dispi:[1,2],displac:13,dist:4,distanc:15,distinct:15,distribut:[1,2,6,16],dji:6,dnf:6,doi:[0,6,15],don:6,dow:6,dowjon:[1,2],download:6,drift:17,dt:6,dx:6,dy:6,dynam:6,dz:6,e:15,each:[6,15,17],easi:[0,4],easier:4,edu:6,edward:6,effici:4,electr:0,eletr:6,emul:6,en:6,endogen:5,endogen_vari:5,energi:17,engin:0,enrol:[1,2],ensembl:[1,2,9],entropi:[1,2],entropypartition:[15,17],epoch:5,eps_inf:15,eps_sup:15,equal:[4,17],equat:6,espaciai:6,esrl:6,estim:15,et:0,etc:[4,17],eth:6,ethereum:[1,2],eur:[1,2],eurgbp:6,eurusd:6,even:[14,15],evolutionari:[1,2],exact:4,exampl:0,exceed:15,exchang:6,exist:6,exp:5,expert:0,exploit:0,exponenti:13,exponentialsmooth:5,extract:[6,14,15],extractor:[14,15],f:17,facil:[6,8],fals:[4,6],fcm:[1,2],fcmpartition:[15,17],feder:0,fetch:4,field:[6,14],file:6,filenam:[5,6],filenem:8,financ:6,find:[4,14,15],find_g:4,find_gt:4,find_l:4,find_lt:4,first:4,five:4,flashquot:6,flat:4,flow:6,flr:[1,2,9],flrg:[1,2,9],flrgtree:4,flrgtreenod:4,forecast:[5,15,17],forex:6,fork:0,format:[8,14],format_data:12,forward:4,found:[4,17],frame:[5,6],frederico:0,from:[0,4,5,6,12,14,15,17],fs:15,fset:12,ft:[0,1,2,3,5,8,10,11],fuzzi:[2,4,5,9,12,13,14,15],fuzzif:15,fuzzifi:[4,13],fuzzy_cmean:15,fuzzy_dist:15,fuzzy_set:4,fuzzydata:4,fuzzyf:[4,12,15,17],fuzzyfi:[4,12,15],fuzzyfy_inst:[4,12],fuzzyfy_instance_clust:12,fuzzyfy_seri:4,fuzzyfy_series_old:4,fuzzyseri:13,fuzzyset:[1,2,12,13,14],gadelha:0,garibaldi:13,gaussian:[4,6],gaussianproc:[1,2],gaussmf:4,gbp:[1,2],gbpusd:6,gcos_wgsp:6,ge:4,gener:[1,2,4,15,17],generate_gaussian_linear:6,generate_high_order_recurrent_flr:4,generate_indexed_flr:4,generate_linear_periodic_gaussian:6,generate_non_recurrent_flr:4,generate_recurrent_flr:4,generate_sinoidal_periodic_gaussian:6,generate_uniform_linear:6,gerai:0,get:[4,6],get_data:[6,14],get_data_by_season:14,get_datafram:6,get_fuzzyset:4,get_index:14,get_index_by_season:14,get_kei:[4,13],get_low:[4,12,13],get_maximum_membership_fuzzyset:4,get_maximum_membership_fuzzyset_index:4,get_membership:[4,12,13],get_midpoint:[4,13],get_nam:15,get_polynomial_perturb:13,get_season_by_index:14,get_season_of_data:14,get_upp:[4,12,13],getchildren:4,getstr:4,git:17,github:[0,17],given:[4,12,13,15],glass:[1,2],good:17,googl:17,gov:6,grant_bound:4,granular:[2,9,14],graph_typ:5,greater:[4,6],grid:[1,2,9,14],grid_dimens:5,gridclust:12,gridpartition:[15,17],gridsearch:[1,2],group:[4,12],h:15,half:14,hand:4,handl:4,hard:4,head:0,help:15,henon:[1,2],here:17,heteroskedast:13,high:17,histori:6,hoft:[1,2],honsft:[2,9],horizont:[0,6],hour:14,hour_of_dai:14,hour_of_month:14,hour_of_week:14,hour_of_year:14,hourli:6,http:[0,6,17],huarng:[1,2],huarngpartition:17,human:0,hwang:[1,2],hyndman:6,hyperparam:[1,2],hyperparamet:8,i:[15,17],id:15,identif:[14,15],identifi:[4,8,13],ieee:13,ifmg:0,ifnmg:0,ift:[1,2],ignor:14,ii:17,iii:17,imax:15,implement:[4,17],improv:17,increas:12,increment:[1,2,6,9,12],incremental_gaussian:6,incremental_search:12,incrementalensembl:[2,9],incrementalgridclust:12,ind:14,indentifi:8,index:[4,6,12,14,15],index_field:14,index_season:14,index_seri:6,indexedflr:4,indic:[4,6],infer:6,inform:15,informationgain:15,initi:[4,6],initial_valu:6,inmet:[1,2],inp:6,input:[4,5,12,13,15],insert:[4,6,8],insert_hyperparam:8,insert_right:4,insid:[4,5,14,15],inst:[4,13],instal:0,instanc:[6,12,13,14,15,17],instead:4,instituit:0,institut:0,instituto:6,integr:6,intellig:15,intend:0,interfer:6,internet:6,interpret:4,interv:[5,17],intervalar:17,introduc:17,introduct:17,introspect:4,invers:[5,17],invest:5,ipynb:17,is_multivari:5,ismailefendi:[1,2],isol:15,item:4,itemgett:4,iter:[4,6],its:[6,14,15,17],ixic:6,j:[6,15],januari:6,jaroszewski:13,jonathan:13,jone:[4,6],journal:[6,15],jun:15,jupyt:17,k:[4,15],kde:[1,2],kdtree:15,kei:4,knn:[1,2],known:15,kohonen:5,kwarg:[4,5,6,12,13,14,15],l:[0,6,15],lab:0,lag:[4,5,6,8,17],last:[4,5],later:17,layman:0,le:4,lean:5,leaning_r:5,learn:11,lee:5,left:4,length:[4,6,14,15,17],less:4,lett:6,level:4,lh:[4,13],li:15,librari:[2,6,17],like:[4,17],lin:15,linear:[6,13],linearseasonalindex:14,linspac:6,list:[4,6,12,13,14,15,17],load:6,local:6,locat:[4,6,13],location_param:13,log:[4,5],logic:[4,12,17],logist:[4,6],logistic_map:[1,2],look:4,lookup:4,lorentz:[1,2],lorenz:6,lower:[4,6,12,13,15],lower_margin:15,lower_set:15,m:[5,6,13,15],mackei:[1,2],mackey_glass:6,mai:6,main:17,malaysia:[1,2],mani:17,manual:15,map:[5,6],marcin:13,margin:15,market:6,mask:14,mass:4,match:4,math:[6,15],mathemat:6,matplotlib:15,max:[4,5],max_inc:6,max_ini:6,maximum:[4,6,12,15],maxpool:5,me:0,mean:[4,6],measur:[1,2,8],membership:[1,2,8,12,13,15,17],membership_funct:15,meta:10,meteorologia:6,method:[0,4,6,8,9,10,11,12,13,15,17],mf:[4,8,13,14,15],middl:15,midpoint:[4,13],min:[4,5],min_inc:6,min_ini:6,mina:0,mind:0,minim:[4,12,15],minimum:[6,17],minut:14,minute_of_dai:14,minute_of_hour:14,minute_of_month:14,minute_of_week:14,minute_of_year:14,mode:[4,12,15],model:[0,1,2,3,5,6,8,15,17],modul:[0,1,17],monash:6,month:14,monthli:6,more:17,most:17,movingaverag:5,msft:[2,9],mu:6,mu_inc:6,mu_ini:6,mu_max:6,mu_min:6,much:4,multilay:5,multiseason:[2,9],multivari:[1,2,4,5,6,9,15,17],multivariatefuzzyset:12,multivariatepartition:12,musikasuwan:13,mvft:[2,9],n:[4,6,13],nacion:6,naiv:[1,2],name:[4,5,6,8,12,13,14,15],nasdaq:[1,2],nation:6,nativ:[4,14],natur:6,nbin:4,nbsp:0,ndarrai:6,nearest:[12,14,15],network:5,next:17,nice:4,noaa:6,node:4,nodes_graph:5,nois:[6,13],noise_param:13,non:[4,6,13,14,17],none:[4,5,6,13,14,15],nonperiod:6,nonstationari:[1,2,4,9],nonstationaryflrg:13,normal:[1,2,17],north:0,norton:6,notebook:17,noth:17,now:4,np:6,npart:[13,15],nsft:[2,9],num:6,num_season:14,number:[4,6,8,14,15,17],numer:17,numpi:[5,6],o:4,object:[4,5,6,12,14,15,16],occur:4,occurr:4,old:4,older:4,oldest:4,onc:4,one:[4,5,6,8,17],onli:[4,12,15],onlin:11,open:8,open_hyperparam_db:8,oper:[4,17],optim:8,option:[4,15],order:[4,8,15,17],ordered_set:[4,13,15],ordin:4,org:[0,6],organ:5,origin:[4,17],os:17,oscil:6,other:10,ou:17,out:17,outlier:6,output:17,outsid:15,over:4,overlap:[12,14,15,17],p500:6,p:[0,1,2,13],packag:[0,1],page:0,pair:[6,15],panda:[5,6,14],par1:13,par2:13,parallel_util:[1,2],param:[5,6,13,14],paramet:[4,5,6,8,12,13,14,15,17],parametr:17,part:[13,17],partit:[4,8,12,13,14,15,17],partition:[1,2,4,8,9,17],partition_funct:4,passeng:6,path:4,pattern:4,pct:13,pd:5,percentag:5,percentage_train:5,perform:[8,12,13,14,15,17],perform_loc:13,perform_width:13,period:[6,13],periodic_gaussian:6,person:[4,6],pertub:13,perturb:[2,9],perturbate_paramet:13,pesquisa:6,php:6,phy:6,physiolog:6,pip:17,plambda:5,plot:[14,15],plot_set:15,pmf:15,point:[4,12,13,14,15,17],poly_width:13,polynomi:13,polynomialnonstationarypartition:13,poor:6,posit:[4,14],post:5,postprocess:17,power:5,pp:15,pprint:4,pre:5,predict:17,prefix:15,prefixedgridpartition:15,preprocess:[4,14,17],previou:6,primit:[14,15],probabilist:[1,2,17],probabilitydistribut:[1,2],probabl:16,process:[4,5,6],product:[6,12],prof:0,project:15,properti:[4,5],propos:17,provid:[0,4,17],prune:12,psd:6,pwft:[1,2],python:[2,17],quantreg:[1,2],quarter:14,quick:0,quot:6,quotat:6,r:[4,6,15],ra:15,rais:4,random:6,random_walk:6,rang:17,rate:5,rb:15,re:4,read:6,readabl:0,real:[4,17],recent:17,record:4,recurr:[4,6],relationship:[4,12],remov:4,render:6,repo:17,repr:4,repres:4,represent:17,research:[0,17],reset_calculated_valu:4,residualanalysi:[1,2],respect:4,respons:14,result:[4,8,14,15],retriev:5,revers:4,review:17,rh:[4,12,13],right:4,rng:13,robert:6,roger:4,roi:[1,2],rossler:[1,2],round:15,rule:[4,12,17],run:6,s:[1,2,4,5,15,17],sadaei:[1,2,5],salang:13,same:4,sampl:[6,17],save:4,save_net:5,scale:[1,2,4,17],scale_down:13,scale_up:13,scan:4,scheme:[8,17],scienc:6,scientist:0,scipi:15,search:[0,4,12,14,15],season:[1,2,4,9,17],seasonalindex:[2,9],second:14,second_of_dai:14,second_of_hour:14,second_of_minut:14,secur:6,select:6,self:[5,15],sep:6,separ:6,sequenc:4,seri:[1,2,4,5,9,12,13,15],set:[4,8,12,13,14,15,17],set_data:14,set_lh:12,set_ord:4,set_rh:12,set_target_vari:12,setnam:15,sever:[6,12,14,15],sft:[2,9],shape:4,show:4,show_grid:5,side:4,sigma:6,sigma_inc:6,sigma_ini:6,sigma_max:6,sigma_min:6,sigmf:4,sigmoid:4,signal:6,signalemul:6,silva:0,simpl:[0,1,2,6],simplenonstationary_gridpartitioner_build:13,simplenonstationarypartition:13,simplepartition:15,simpler:4,singl:[4,14,15],singleton:[1,2,4],singletonpartition:15,sinoid:6,sistema:6,sixth:14,size:15,slice:4,smith:4,smooth:[1,2,4,17],so:4,social:15,softmax:4,solar:17,som:[1,2],somnet:5,somtransform:5,sonda:[1,2],song:[1,2],sort:[4,15],sortedcollect:[1,2],sourc:[4,5,6,8,12,13,14,15],sp500:6,spark:[1,2],spatial:15,specif:[4,15],split:15,splitabov:15,splitbelow:15,splite:17,sqlite3:8,sqlite:8,standard:[6,17],start:[0,6],station:6,stationari:[13,17],stationary_gaussian:6,statist:0,step:[4,17],stephen:15,stochast:6,stock:[5,6],store:[4,8],str:[4,5,6,15],strang:6,string:[14,15],strip_datepart:14,structur:[4,14,15],student:0,studi:17,subclust:[1,2],subclustpartition:15,submodul:[0,1],subpackag:[0,1],subtract:15,suitabl:0,sunspot:[1,2],superset:4,support:4,symbol:6,synthet:[1,2],system:[6,13,15],t:[4,5,6,13,15,17],tabl:8,tag:8,taiex:[1,2],taiwan:6,take:17,tam:15,tau:6,technol:15,tempeatur:6,tempor:[4,14,17],test:[1,2,17],than:[4,6,17],thei:4,theori:17,thi:[0,4,5,6,12,13,14,15,17],third:14,thoma:4,those:4,thres1:15,thres2:15,threshold:15,through:6,time:[1,2,4,5,9,12,13,14,15],timegridpartition:14,timeseri:6,timevari:[2,9],tool:[0,17],total:6,train:[4,5,12,13,14,15],transact:13,transform:[1,2,4,8,13,14,15,17],transit:[4,17],translat:17,trapezoid:[4,15],trapmf:4,tree:[1,2],trend:[1,2],triangular:4,trigger:4,trimf:4,tsdl:6,tupl:[4,5,8,12,15],tutori:0,tw:6,two:6,twse:6,type:[4,6,12,14,15,17],u:17,ufmg:0,under:4,uniform:6,uniqu:[4,13],unit:14,univari:6,univers:[0,6,12,13,14,15,17],unpack_arg:13,uod:[4,8,15],upper:[4,6,12,13,15],upper_margin:15,upper_set:15,url:[0,6],us:[0,4,5,8,12,14,15,17],usa:6,usag:0,usd:[1,2],user:8,usual:[4,17],util:[1,2,9],v:13,val:15,valu:[4,6,8,12,13,14,15,17],valueerror:4,variabl:[2,4,5,9,15],varianc:[4,6],variant:17,variat:6,vec:15,vector:[4,12,15],veri:6,verifi:15,vmax:6,vmin:6,vol:15,wa:[4,8,17],walk:6,want:0,weight:[6,17],were:[12,14,15],when:[4,15],where:[4,5],which:[4,8,12,17],white_nois:6,whose:0,width:13,width_param:13,window_index:13,window_s:13,without:4,wmvft:[2,9],word:8,work:[4,12,14,15],www:6,x:[4,6,12,13,14,15],xy:6,y:[5,6,15,17],yahoo:6,year:14,yearli:6,yeh:15,you:4,young:4,younger:4,youngest:4,yu:[1,2],z:[4,6],zenodo:0},titles:["pyFTS - Fuzzy Time Series for Python","pyFTS","pyFTS package","pyFTS.benchmarks package","pyFTS.common package","pyFTS.common.transformations package","pyFTS.data package","pyFTS.distributed package","pyFTS.hyperparam package","pyFTS.models package","pyFTS.models.ensemble package","pyFTS.models.incremental package","pyFTS.models.multivariate package","pyFTS.models.nonstationary package","pyFTS.models.seasonal package","pyFTS.partitioners package","pyFTS.probabilistic package","pyFTS Quick Start"],titleterms:{"500":6,"short":17,A:17,activ:4,adapativeexpect:5,airpasseng:6,api:0,ar:17,arima:3,artifici:6,benchmark:3,bitcoin:6,boxcox:5,bst:3,chaotic:6,chen:9,cheng:9,classpartition:15,cmean:15,cmsft:14,cmvft:12,common:[4,5,6,12,13,14],composit:4,conf:2,content:[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],cvft:13,data:6,dataset:6,differenti:5,dispi:7,distribut:7,document:0,dowjon:6,enrol:6,ensembl:10,entropi:15,ethereum:6,eur:6,evolutionari:8,exampl:17,fcm:15,flr:[4,12],flrg:[4,12,13],ft:[4,17],fuzzi:[0,17],fuzzyset:4,gaussianproc:3,gbp:6,gener:6,glass:6,granular:12,grid:[12,15],gridsearch:8,henon:6,hoft:9,honsft:13,how:[0,17],huarng:15,hwang:9,hyperparam:8,ift:9,increment:11,incrementalensembl:11,index:0,inmet:6,instal:17,ismailefendi:9,kde:16,knn:3,librari:0,logistic_map:6,lorentz:6,mackei:6,malaysia:6,measur:3,membership:4,model:[9,10,11,12,13,14],modul:[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],msft:14,multiseason:10,multivari:12,mvft:12,naiv:3,nasdaq:6,nonstationari:13,normal:5,nsft:13,p:6,packag:[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],parallel_util:15,partition:[12,13,14,15],perturb:13,probabilist:16,probabilitydistribut:16,pwft:9,pyft:[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17],python:0,quantreg:3,quick:17,refer:0,residualanalysi:3,roi:5,rossler:6,s:6,sadaei:9,scale:5,season:14,seasonalindex:14,seri:[0,6,17],sft:14,simpl:15,singleton:15,smooth:5,som:5,sonda:6,song:9,sortedcollect:4,spark:7,start:17,subclust:15,submodul:[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],subpackag:[2,9],sunspot:6,synthet:6,taiex:6,test:3,time:[0,6,17],timevari:11,transform:5,tree:4,trend:5,tutori:17,usag:17,usd:6,util:[3,4,8,13,15],variabl:12,what:[0,17],wmvft:12,yu:9}})
\ No newline at end of file
+Search.setIndex({docnames:["index","modules","pyFTS","pyFTS.benchmarks","pyFTS.common","pyFTS.common.transformations","pyFTS.data","pyFTS.distributed","pyFTS.hyperparam","pyFTS.models","pyFTS.models.ensemble","pyFTS.models.incremental","pyFTS.models.multivariate","pyFTS.models.nonstationary","pyFTS.models.seasonal","pyFTS.partitioners","pyFTS.probabilistic","quickstart"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":4,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.intersphinx":1,"sphinx.ext.viewcode":1,sphinx:56},filenames:["index.rst","modules.rst","pyFTS.rst","pyFTS.benchmarks.rst","pyFTS.common.rst","pyFTS.common.transformations.rst","pyFTS.data.rst","pyFTS.distributed.rst","pyFTS.hyperparam.rst","pyFTS.models.rst","pyFTS.models.ensemble.rst","pyFTS.models.incremental.rst","pyFTS.models.multivariate.rst","pyFTS.models.nonstationary.rst","pyFTS.models.seasonal.rst","pyFTS.partitioners.rst","pyFTS.probabilistic.rst","quickstart.rst"],objects:{"":[[2,0,0,"-","pyFTS"]],"pyFTS.common":[[4,0,0,"-","Activations"],[4,0,0,"-","Composite"],[4,0,0,"-","FLR"],[4,0,0,"-","FuzzySet"],[4,0,0,"-","Membership"],[4,0,0,"-","SortedCollection"],[4,0,0,"-","flrg"],[5,0,0,"-","transformations"],[4,0,0,"-","tree"]],"pyFTS.common.Activations":[[4,1,1,"","argmax"],[4,1,1,"","scale"],[4,1,1,"","softmax"]],"pyFTS.common.Composite":[[4,2,1,"","FuzzySet"]],"pyFTS.common.Composite.FuzzySet":[[4,3,1,"","append"],[4,3,1,"","append_set"],[4,3,1,"","membership"],[4,3,1,"","transform"]],"pyFTS.common.FLR":[[4,2,1,"","FLR"],[4,2,1,"","IndexedFLR"],[4,1,1,"","generate_high_order_recurrent_flr"],[4,1,1,"","generate_indexed_flrs"],[4,1,1,"","generate_non_recurrent_flrs"],[4,1,1,"","generate_recurrent_flrs"]],"pyFTS.common.FLR.FLR":[[4,4,1,"","LHS"],[4,4,1,"","RHS"]],"pyFTS.common.FLR.IndexedFLR":[[4,4,1,"","index"]],"pyFTS.common.FuzzySet":[[4,2,1,"","FuzzySet"],[4,1,1,"","check_bounds"],[4,1,1,"","check_bounds_index"],[4,1,1,"","fuzzyfy"],[4,1,1,"","fuzzyfy_instance"],[4,1,1,"","fuzzyfy_instances"],[4,1,1,"","fuzzyfy_series"],[4,1,1,"","fuzzyfy_series_old"],[4,1,1,"","get_fuzzysets"],[4,1,1,"","get_maximum_membership_fuzzyset"],[4,1,1,"","get_maximum_membership_fuzzyset_index"],[4,1,1,"","grant_bounds"],[4,1,1,"","set_ordered"]],"pyFTS.common.FuzzySet.FuzzySet":[[4,4,1,"","Z"],[4,4,1,"","alpha"],[4,4,1,"","centroid"],[4,3,1,"","membership"],[4,4,1,"","mf"],[4,4,1,"","name"],[4,4,1,"","parameters"],[4,3,1,"","partition_function"],[4,3,1,"","transform"],[4,4,1,"","type"],[4,4,1,"","variable"]],"pyFTS.common.Membership":[[4,1,1,"","bellmf"],[4,1,1,"","gaussmf"],[4,1,1,"","sigmf"],[4,1,1,"","singleton"],[4,1,1,"","trapmf"],[4,1,1,"","trimf"]],"pyFTS.common.SortedCollection":[[4,2,1,"","SortedCollection"]],"pyFTS.common.SortedCollection.SortedCollection":[[4,3,1,"","around"],[4,3,1,"","between"],[4,3,1,"","clear"],[4,3,1,"","copy"],[4,3,1,"","count"],[4,3,1,"","find"],[4,3,1,"","find_ge"],[4,3,1,"","find_gt"],[4,3,1,"","find_le"],[4,3,1,"","find_lt"],[4,3,1,"","index"],[4,3,1,"","insert"],[4,3,1,"","insert_right"],[4,3,1,"","inside"],[4,5,1,"","key"],[4,3,1,"","remove"]],"pyFTS.common.flrg":[[4,2,1,"","FLRG"]],"pyFTS.common.flrg.FLRG":[[4,4,1,"","LHS"],[4,4,1,"","RHS"],[4,3,1,"","append_rhs"],[4,3,1,"","get_key"],[4,3,1,"","get_lower"],[4,3,1,"","get_membership"],[4,3,1,"","get_midpoint"],[4,3,1,"","get_midpoints"],[4,3,1,"","get_upper"],[4,4,1,"","order"],[4,3,1,"","reset_calculated_values"]],"pyFTS.common.transformations":[[5,0,0,"-","boxcox"],[5,0,0,"-","differential"],[5,0,0,"-","normalization"],[5,0,0,"-","roi"],[5,0,0,"-","scale"],[5,0,0,"-","smoothing"],[5,0,0,"-","som"],[5,0,0,"-","transformation"]],"pyFTS.common.transformations.boxcox":[[5,2,1,"","BoxCox"]],"pyFTS.common.transformations.boxcox.BoxCox":[[5,3,1,"","apply"],[5,3,1,"","inverse"],[5,5,1,"","parameters"]],"pyFTS.common.transformations.differential":[[5,2,1,"","Differential"]],"pyFTS.common.transformations.differential.Differential":[[5,3,1,"","apply"],[5,3,1,"","inverse"],[5,5,1,"","parameters"]],"pyFTS.common.transformations.normalization":[[5,2,1,"","Normalization"]],"pyFTS.common.transformations.normalization.Normalization":[[5,3,1,"","apply"],[5,3,1,"","inverse"],[5,3,1,"","train"]],"pyFTS.common.transformations.roi":[[5,2,1,"","ROI"]],"pyFTS.common.transformations.roi.ROI":[[5,3,1,"","apply"],[5,3,1,"","inverse"]],"pyFTS.common.transformations.scale":[[5,2,1,"","Scale"]],"pyFTS.common.transformations.scale.Scale":[[5,3,1,"","apply"],[5,3,1,"","inverse"],[5,5,1,"","parameters"]],"pyFTS.common.transformations.smoothing":[[5,2,1,"","AveragePooling"],[5,2,1,"","ExponentialSmoothing"],[5,2,1,"","MaxPooling"],[5,2,1,"","MovingAverage"]],"pyFTS.common.transformations.smoothing.AveragePooling":[[5,3,1,"","apply"],[5,3,1,"","inverse"]],"pyFTS.common.transformations.smoothing.ExponentialSmoothing":[[5,3,1,"","apply"],[5,3,1,"","inverse"]],"pyFTS.common.transformations.smoothing.MaxPooling":[[5,3,1,"","apply"],[5,3,1,"","inverse"]],"pyFTS.common.transformations.smoothing.MovingAverage":[[5,3,1,"","apply"],[5,3,1,"","inverse"]],"pyFTS.common.transformations.som":[[5,2,1,"","SOMTransformation"]],"pyFTS.common.transformations.som.SOMTransformation":[[5,3,1,"","apply"],[5,3,1,"","save_net"],[5,3,1,"","show_grid"],[5,3,1,"","train"]],"pyFTS.common.transformations.transformation":[[5,2,1,"","Transformation"]],"pyFTS.common.transformations.transformation.Transformation":[[5,3,1,"","apply"],[5,3,1,"","inverse"],[5,4,1,"","is_multivariate"]],"pyFTS.common.tree":[[4,2,1,"","FLRGTree"],[4,2,1,"","FLRGTreeNode"],[4,1,1,"","build_tree_without_order"],[4,1,1,"","flat"]],"pyFTS.common.tree.FLRGTreeNode":[[4,3,1,"","appendChild"],[4,3,1,"","getChildren"],[4,3,1,"","getStr"],[4,3,1,"","paths"]],"pyFTS.data":[[6,0,0,"-","AirPassengers"],[6,0,0,"-","Bitcoin"],[6,0,0,"-","DowJones"],[6,0,0,"-","EURGBP"],[6,0,0,"-","EURUSD"],[6,0,0,"-","Enrollments"],[6,0,0,"-","Ethereum"],[6,0,0,"-","GBPUSD"],[6,0,0,"-","INMET"],[6,0,0,"-","Malaysia"],[6,0,0,"-","NASDAQ"],[6,0,0,"-","SONDA"],[6,0,0,"-","SP500"],[6,0,0,"-","TAIEX"],[6,0,0,"-","artificial"],[6,0,0,"-","common"],[6,0,0,"-","henon"],[6,0,0,"-","logistic_map"],[6,0,0,"-","lorentz"],[6,0,0,"-","mackey_glass"],[6,0,0,"-","rossler"],[6,0,0,"-","sunspots"]],"pyFTS.data.AirPassengers":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.data.Bitcoin":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.data.DowJones":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.data.EURGBP":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.data.EURUSD":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.data.Enrollments":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.data.Ethereum":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.data.GBPUSD":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.data.INMET":[[6,1,1,"","get_dataframe"]],"pyFTS.data.Malaysia":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.data.NASDAQ":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.data.SONDA":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.data.SP500":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.data.TAIEX":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.data.artificial":[[6,2,1,"","SignalEmulator"],[6,1,1,"","generate_gaussian_linear"],[6,1,1,"","generate_linear_periodic_gaussian"],[6,1,1,"","generate_sinoidal_periodic_gaussian"],[6,1,1,"","generate_uniform_linear"],[6,1,1,"","random_walk"],[6,1,1,"","white_noise"]],"pyFTS.data.artificial.SignalEmulator":[[6,3,1,"","blip"],[6,4,1,"","components"],[6,3,1,"","incremental_gaussian"],[6,3,1,"","periodic_gaussian"],[6,3,1,"","run"],[6,3,1,"","stationary_gaussian"]],"pyFTS.data.common":[[6,1,1,"","get_dataframe"]],"pyFTS.data.henon":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.data.logistic_map":[[6,1,1,"","get_data"]],"pyFTS.data.lorentz":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.data.mackey_glass":[[6,1,1,"","get_data"]],"pyFTS.data.rossler":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.data.sunspots":[[6,1,1,"","get_data"],[6,1,1,"","get_dataframe"]],"pyFTS.hyperparam":[[8,0,0,"-","Util"]],"pyFTS.hyperparam.Util":[[8,1,1,"","create_hyperparam_tables"],[8,1,1,"","insert_hyperparam"],[8,1,1,"","open_hyperparam_db"]],"pyFTS.models":[[10,0,0,"-","ensemble"],[11,0,0,"-","incremental"],[12,0,0,"-","multivariate"],[13,0,0,"-","nonstationary"],[14,0,0,"-","seasonal"]],"pyFTS.models.multivariate":[[12,0,0,"-","FLR"],[12,0,0,"-","common"],[12,0,0,"-","flrg"],[12,0,0,"-","grid"],[12,0,0,"-","partitioner"]],"pyFTS.models.multivariate.FLR":[[12,2,1,"","FLR"]],"pyFTS.models.multivariate.FLR.FLR":[[12,3,1,"","set_lhs"],[12,3,1,"","set_rhs"]],"pyFTS.models.multivariate.common":[[12,2,1,"","MultivariateFuzzySet"],[12,1,1,"","fuzzyfy_instance"],[12,1,1,"","fuzzyfy_instance_clustered"]],"pyFTS.models.multivariate.common.MultivariateFuzzySet":[[12,3,1,"","append_set"],[12,3,1,"","membership"],[12,3,1,"","set_target_variable"]],"pyFTS.models.multivariate.flrg":[[12,2,1,"","FLRG"]],"pyFTS.models.multivariate.flrg.FLRG":[[12,3,1,"","append_rhs"],[12,3,1,"","get_lower"],[12,3,1,"","get_membership"],[12,3,1,"","get_upper"],[12,3,1,"","set_lhs"]],"pyFTS.models.multivariate.grid":[[12,2,1,"","GridCluster"],[12,2,1,"","IncrementalGridCluster"]],"pyFTS.models.multivariate.grid.GridCluster":[[12,3,1,"","build"],[12,3,1,"","defuzzyfy"]],"pyFTS.models.multivariate.grid.IncrementalGridCluster":[[12,3,1,"","fuzzyfy"],[12,3,1,"","incremental_search"],[12,3,1,"","prune"]],"pyFTS.models.multivariate.partitioner":[[12,2,1,"","MultivariatePartitioner"]],"pyFTS.models.multivariate.partitioner.MultivariatePartitioner":[[12,3,1,"","append"],[12,3,1,"","build"],[12,3,1,"","build_index"],[12,3,1,"","change_target_variable"],[12,3,1,"","format_data"],[12,3,1,"","fuzzyfy"],[12,3,1,"","prune"],[12,3,1,"","search"]],"pyFTS.models.nonstationary":[[13,0,0,"-","common"],[13,0,0,"-","flrg"],[13,0,0,"-","partitioners"],[13,0,0,"-","perturbation"]],"pyFTS.models.nonstationary.common":[[13,2,1,"","FuzzySet"],[13,1,1,"","check_bounds"],[13,1,1,"","check_bounds_index"],[13,1,1,"","fuzzify"],[13,1,1,"","fuzzySeries"],[13,1,1,"","window_index"]],"pyFTS.models.nonstationary.common.FuzzySet":[[13,3,1,"","get_lower"],[13,3,1,"","get_midpoint"],[13,3,1,"","get_upper"],[13,4,1,"","location"],[13,4,1,"","location_params"],[13,3,1,"","membership"],[13,4,1,"","noise"],[13,4,1,"","noise_params"],[13,3,1,"","perform_location"],[13,3,1,"","perform_width"],[13,3,1,"","perturbate_parameters"],[13,4,1,"","width"],[13,4,1,"","width_params"]],"pyFTS.models.nonstationary.flrg":[[13,2,1,"","NonStationaryFLRG"]],"pyFTS.models.nonstationary.flrg.NonStationaryFLRG":[[13,3,1,"","get_key"],[13,3,1,"","get_lower"],[13,3,1,"","get_membership"],[13,3,1,"","get_midpoint"],[13,3,1,"","get_upper"],[13,3,1,"","unpack_args"]],"pyFTS.models.nonstationary.partitioners":[[13,2,1,"","PolynomialNonStationaryPartitioner"],[13,2,1,"","SimpleNonStationaryPartitioner"],[13,1,1,"","simplenonstationary_gridpartitioner_builder"]],"pyFTS.models.nonstationary.partitioners.PolynomialNonStationaryPartitioner":[[13,3,1,"","build"],[13,3,1,"","get_polynomial_perturbations"],[13,3,1,"","poly_width"],[13,3,1,"","scale_down"],[13,3,1,"","scale_up"]],"pyFTS.models.nonstationary.partitioners.SimpleNonStationaryPartitioner":[[13,3,1,"","build"]],"pyFTS.models.nonstationary.perturbation":[[13,1,1,"","exponential"],[13,1,1,"","linear"],[13,1,1,"","periodic"],[13,1,1,"","polynomial"]],"pyFTS.models.seasonal":[[14,0,0,"-","SeasonalIndexer"],[14,0,0,"-","common"],[14,0,0,"-","partitioner"]],"pyFTS.models.seasonal.SeasonalIndexer":[[14,2,1,"","DataFrameSeasonalIndexer"],[14,2,1,"","DateTimeSeasonalIndexer"],[14,2,1,"","LinearSeasonalIndexer"],[14,2,1,"","SeasonalIndexer"]],"pyFTS.models.seasonal.SeasonalIndexer.DataFrameSeasonalIndexer":[[14,3,1,"","get_data"],[14,3,1,"","get_data_by_season"],[14,3,1,"","get_index_by_season"],[14,3,1,"","get_season_by_index"],[14,3,1,"","get_season_of_data"],[14,3,1,"","set_data"]],"pyFTS.models.seasonal.SeasonalIndexer.DateTimeSeasonalIndexer":[[14,3,1,"","get_data"],[14,3,1,"","get_data_by_season"],[14,3,1,"","get_index"],[14,3,1,"","get_index_by_season"],[14,3,1,"","get_season_by_index"],[14,3,1,"","get_season_of_data"],[14,3,1,"","set_data"]],"pyFTS.models.seasonal.SeasonalIndexer.LinearSeasonalIndexer":[[14,3,1,"","get_data"],[14,3,1,"","get_index_by_season"],[14,3,1,"","get_season_by_index"],[14,3,1,"","get_season_of_data"]],"pyFTS.models.seasonal.SeasonalIndexer.SeasonalIndexer":[[14,3,1,"","get_data"],[14,3,1,"","get_data_by_season"],[14,3,1,"","get_index"],[14,3,1,"","get_index_by_season"],[14,3,1,"","get_season_by_index"],[14,3,1,"","get_season_of_data"]],"pyFTS.models.seasonal.common":[[14,2,1,"","DateTime"],[14,2,1,"","FuzzySet"],[14,1,1,"","strip_datepart"]],"pyFTS.models.seasonal.common.DateTime":[[14,4,1,"","day_of_month"],[14,4,1,"","day_of_week"],[14,4,1,"","day_of_year"],[14,4,1,"","half"],[14,4,1,"","hour"],[14,4,1,"","hour_of_day"],[14,4,1,"","hour_of_month"],[14,4,1,"","hour_of_week"],[14,4,1,"","hour_of_year"],[14,4,1,"","minute"],[14,4,1,"","minute_of_day"],[14,4,1,"","minute_of_hour"],[14,4,1,"","minute_of_month"],[14,4,1,"","minute_of_week"],[14,4,1,"","minute_of_year"],[14,4,1,"","month"],[14,4,1,"","quarter"],[14,4,1,"","second"],[14,4,1,"","second_of_day"],[14,4,1,"","second_of_hour"],[14,4,1,"","second_of_minute"],[14,4,1,"","sixth"],[14,4,1,"","third"],[14,4,1,"","year"]],"pyFTS.models.seasonal.common.FuzzySet":[[14,3,1,"","transform"]],"pyFTS.models.seasonal.partitioner":[[14,2,1,"","TimeGridPartitioner"]],"pyFTS.models.seasonal.partitioner.TimeGridPartitioner":[[14,3,1,"","build"],[14,3,1,"","build_index"],[14,3,1,"","extractor"],[14,4,1,"","mask"],[14,3,1,"","plot"],[14,3,1,"","search"],[14,4,1,"","season"]],"pyFTS.partitioners":[[15,0,0,"-","CMeans"],[15,0,0,"-","Class"],[15,0,0,"-","Entropy"],[15,0,0,"-","FCM"],[15,0,0,"-","Grid"],[15,0,0,"-","Simple"],[15,0,0,"-","Singleton"],[15,0,0,"-","SubClust"],[15,0,0,"-","partitioner"]],"pyFTS.partitioners.CMeans":[[15,2,1,"","CMeansPartitioner"],[15,1,1,"","c_means"],[15,1,1,"","distance"]],"pyFTS.partitioners.CMeans.CMeansPartitioner":[[15,3,1,"","build"]],"pyFTS.partitioners.Class":[[15,2,1,"","ClassPartitioner"]],"pyFTS.partitioners.Class.ClassPartitioner":[[15,3,1,"","build"]],"pyFTS.partitioners.Entropy":[[15,2,1,"","EntropyPartitioner"],[15,1,1,"","PMF"],[15,1,1,"","bestSplit"],[15,1,1,"","entropy"],[15,1,1,"","informationGain"],[15,1,1,"","splitAbove"],[15,1,1,"","splitBelow"]],"pyFTS.partitioners.Entropy.EntropyPartitioner":[[15,3,1,"","build"]],"pyFTS.partitioners.FCM":[[15,2,1,"","FCMPartitioner"],[15,1,1,"","fuzzy_cmeans"],[15,1,1,"","fuzzy_distance"],[15,1,1,"","membership"]],"pyFTS.partitioners.FCM.FCMPartitioner":[[15,3,1,"","build"]],"pyFTS.partitioners.Grid":[[15,2,1,"","GridPartitioner"],[15,2,1,"","PreFixedGridPartitioner"]],"pyFTS.partitioners.Grid.GridPartitioner":[[15,3,1,"","build"]],"pyFTS.partitioners.Simple":[[15,2,1,"","SimplePartitioner"]],"pyFTS.partitioners.Simple.SimplePartitioner":[[15,3,1,"","append"],[15,3,1,"","append_complex"]],"pyFTS.partitioners.Singleton":[[15,2,1,"","SingletonPartitioner"]],"pyFTS.partitioners.Singleton.SingletonPartitioner":[[15,3,1,"","build"]],"pyFTS.partitioners.SubClust":[[15,2,1,"","SubClustPartitioner"],[15,1,1,"","imax"],[15,1,1,"","subclust"]],"pyFTS.partitioners.SubClust.SubClustPartitioner":[[15,3,1,"","build"]],"pyFTS.partitioners.partitioner":[[15,2,1,"","Partitioner"]],"pyFTS.partitioners.partitioner.Partitioner":[[15,3,1,"","build"],[15,3,1,"","build_index"],[15,3,1,"","check_bounds"],[15,3,1,"","defuzzyfy"],[15,3,1,"","extractor"],[15,3,1,"","fuzzyfy"],[15,3,1,"","get_name"],[15,4,1,"","kdtree"],[15,4,1,"","lower_margin"],[15,3,1,"","lower_set"],[15,4,1,"","margin"],[15,4,1,"","membership_function"],[15,4,1,"","name"],[15,4,1,"","ordered_sets"],[15,4,1,"","partitions"],[15,3,1,"","plot"],[15,3,1,"","plot_set"],[15,4,1,"","prefix"],[15,3,1,"","search"],[15,4,1,"","setnames"],[15,4,1,"","sets"],[15,4,1,"","transformation"],[15,4,1,"","type"],[15,4,1,"","upper_margin"],[15,3,1,"","upper_set"],[15,4,1,"","variable"]],pyFTS:[[3,0,0,"-","benchmarks"],[4,0,0,"-","common"],[2,0,0,"-","conf"],[6,0,0,"-","data"],[7,0,0,"-","distributed"],[8,0,0,"-","hyperparam"],[9,0,0,"-","models"],[15,0,0,"-","partitioners"],[16,0,0,"-","probabilistic"]]},objnames:{"0":["py","module","Python module"],"1":["py","function","Python function"],"2":["py","class","Python class"],"3":["py","method","Python method"],"4":["py","attribute","Python attribute"],"5":["py","property","Python property"]},objtypes:{"0":"py:module","1":"py:function","2":"py:class","3":"py:method","4":"py:attribute","5":"py:property"},terms:{"0":[4,5,6,14,15],"00001":14,"001":[6,15],"01":[5,6],"0130":6,"020":6,"02941176":6,"033":15,"0469":6,"07":15,"08823529":6,"1":[4,5,6,13,14,15,17],"10":[0,6,15],"100":[4,6],"1000":6,"10000":5,"10080":14,"1016":15,"1038":6,"1072":13,"1086":13,"1175":6,"12":[6,14,15],"130":6,"141":6,"1440":14,"14705882":6,"1520":6,"16":13,"168":14,"17":6,"1749":6,"18":6,"1949":6,"1950":6,"1960":6,"1963":6,"197":6,"1971":6,"1976":6,"1977":6,"1985":6,"1992":6,"1994":15,"1995":6,"2":[4,6,14,15,17],"20":6,"2000":6,"2006":15,"2008":[13,15],"2010":6,"2012":6,"2014":[5,6],"2016":6,"2017":6,"2018":[0,6],"20588235":6,"22":4,"24":14,"261":6,"261459a0":6,"26470588":6,"267":15,"278":15,"28":[4,6],"287":6,"289":6,"29":4,"3":[4,5,6,14,15,17],"30":[4,14],"3052":15,"3063":15,"31":6,"32":4,"32352941":6,"3600":14,"364":14,"38235294":6,"397":6,"4":[4,6,13,14,17],"4300":6,"44117647":6,"44640":14,"459":6,"467":6,"5":[6,15],"50":6,"500":[1,2],"5000":6,"524":15,"524160":14,"5281":0,"542":15,"5560":6,"55882353":6,"56":15,"57a":6,"597359":0,"5egspc":6,"6":[14,17],"60":14,"61764706":6,"6666666666666665":6,"67647059":6,"69":6,"7":[5,6,14],"73":15,"73529412":6,"744":14,"77":6,"79411765":6,"8":6,"85294118":6,"86400":14,"8736":14,"91176471":6,"97058824":6,"case":[4,17],"class":[2,4,5,6,12,13,14,17],"default":[5,6,15],"enum":14,"final":6,"float":[4,5,6,15],"function":[4,8,12,13,14,15,17],"guimar\u00e3":0,"h\u00e9non":6,"import":[4,17],"int":[4,5,6,15],"new":[4,5,12,15],"organiza\u00e7\u00e3o":6,"r\u00f6ssler":6,"return":[4,5,6,8,12,13,14,15],"short":[0,4],"true":[6,12],"var":[6,12],"while":4,A:[0,2,4,6,12,14,15],IT:15,If:[4,5,6,15],In:[4,15,17],It:4,One:15,The:[4,6,8,15,17],Then:17,There:17,These:[0,17],To:17,_kdtree:15,acc:4,accord:[12,15],accuraci:8,activ:[1,2],ad:[4,6],adapativeexpect:[1,2],add:[4,13],addit:6,affect:13,after:6,ag:4,aggreg:10,ah:17,ahead:[4,17],airlin:6,airpasseng:[1,2],al:0,alabama:6,all:[4,12,15,17],almost:17,alpha:[4,8,14],alpha_cut:[4,12,15],alreadi:6,also:[0,17],ambientai:6,an:[4,6,12,14,15],angela:4,api:4,append:[4,12,15],append_complex:15,append_rh:[4,12],append_set:[4,12],appendchild:4,appl:15,appli:[5,15],approach:[15,17],ar:[0,4,15],arg:[5,13],argmax:4,argument:[4,15],arima:[1,2],around:4,arrai:[4,5,6,13,14],artifici:[1,2],aspx:6,assign:4,associ:6,atmospher:6,attibut:4,attractor:6,au:6,auto:15,autom:6,automat:4,averag:6,averagepool:5,avg:6,ax:[14,15],axi:15,ay:6,b:6,base:[4,5,6,12,13,14,15,17],befor:17,bell:4,bellmf:4,belo:[0,6],belog:4,below:17,benchmark:[1,2,8],bestsplit:15,better:17,between:4,bill:4,bisect:4,bitcoin:[1,2],bivari:6,blip:6,both:[4,12,15],bound:[4,6,12,13,15],box:[5,17],boxcox:[1,2],br:6,brasil:6,brasilia:6,brazil:0,brazilian:0,bst:[1,2],btc:6,build:[12,13,14,15],build_index:[12,14,15],build_tree_without_ord:4,built:6,buseco:6,busi:6,c:[0,6,15],c_mean:15,calcul:[4,12,13],call:4,camwa:15,can:[4,5,17],cancel:6,capit:6,cartesian:12,ccst:6,center:4,centroid:[4,14],chain:6,chang:[6,15],change_target_vari:12,chao:6,chaotic:[1,2],characterist:17,cheap:0,check:[4,6,15,17],check_bound:[4,13,15],check_bounds_index:[4,13],chen:[1,2],cheng:[1,2,15],child:4,chiu:15,classif:4,classpartition:[1,15],clear:4,clone:17,closest:15,cluster:[12,15],cmean:[1,2],cmeanspartition:15,cmsft:[2,9],cmvft:[2,9],co:6,code:17,coeffici:6,colab:17,colabor:0,column:5,com:[6,17],combin:12,common:[1,2,8,9,15,17],commun:6,complet:6,complex:6,complic:6,compon:6,composit:[1,2,6,12],compress:6,comput:15,computation:0,concept:17,conf:[0,1],conn:8,connect:8,consid:[4,12,15],const_t:13,constant:6,contain:[4,15,17],content:[0,1],context:15,continu:6,control:6,copi:4,core:[5,6],cost:15,count:4,counter:15,cox:[5,17],creat:[4,5,6,8,12,15,17],create_hyperparam_t:8,csv:6,current:6,cut:[4,8],cvft:[2,9],cy:6,cz:6,dado:[4,6,15],dai:6,daili:6,data:[0,1,2,4,5,8,12,13,14,15,17],data_field:14,data_point:12,databas:8,datafram:[5,6,14],dataframeseasonalindex:14,dataset:[1,2,5,8],date:14,date_field:14,date_part:14,datepart:14,datetim:14,datetimeseasonalindex:14,david:4,day_of_month:14,day_of_week:14,day_of_year:14,de:[6,15],dealer:6,dec:15,decemb:6,decompress:6,defin:8,defuzzyf:17,defuzzyfi:[12,15],deg:13,delet:4,deltadist:15,demand:12,demo:17,departa:0,depend:[4,12,15,17],design:[4,8,12,14,15],detemin:5,determinist:[6,15],develop:[0,17],dict:[4,15],dictionari:[4,15],differenti:[1,2,6,17],dimens:5,dimension:[5,6],directli:[4,17],discours:[12,13,14,15,17],dispi:[1,2],displac:13,dist:4,distanc:15,distinct:15,distribut:[1,2,6,16],dji:6,dnf:6,doi:[0,6,15],don:6,dow:6,dowjon:[1,2],download:6,drift:17,dt:6,dx:6,dy:6,dynam:6,dz:6,e:15,each:[6,15,17],easi:[0,4],easier:4,edu:6,edward:6,effici:4,electr:0,eletr:6,emul:6,en:6,endogen:5,endogen_vari:5,energi:17,engin:0,enrol:[1,2],ensembl:[1,2,9],entropi:[1,2],entropypartition:[15,17],epoch:5,eps_inf:15,eps_sup:15,equal:[4,17],equat:6,espaciai:6,esrl:6,estim:15,et:0,etc:[4,17],eth:6,ethereum:[1,2],eur:[1,2],eurgbp:6,eurusd:6,even:[14,15],evolutionari:[1,2],exact:4,exampl:0,exceed:15,exchang:6,exist:6,exp:5,expert:0,exploit:0,exponenti:13,exponentialsmooth:5,extract:[6,14,15],extractor:[14,15],f:17,facil:[6,8],fals:[4,6],fcm:[1,2],fcmpartition:[15,17],feder:0,fetch:4,field:[6,14],file:6,filenam:[5,6],filenem:8,financ:6,find:[4,14,15],find_g:4,find_gt:4,find_l:4,find_lt:4,first:4,five:4,flashquot:6,flat:4,flow:6,flr:[1,2,9],flrg:[1,2,9],flrgtree:4,flrgtreenod:4,forecast:[5,15,17],forex:6,fork:0,format:[8,14],format_data:12,forward:4,found:[4,17],frame:[5,6],frederico:0,from:[0,4,5,6,12,14,15,17],fs:15,fset:12,ft:[0,1,2,3,5,8,10,11],fuzzi:[2,4,5,9,12,13,14,15],fuzzif:15,fuzzifi:[4,13],fuzzy_cmean:15,fuzzy_dist:15,fuzzy_set:4,fuzzydata:4,fuzzyf:[4,12,15,17],fuzzyfi:[4,12,15],fuzzyfy_inst:[4,12],fuzzyfy_instance_clust:12,fuzzyfy_seri:4,fuzzyfy_series_old:4,fuzzyseri:13,fuzzyset:[1,2,12,13,14],gadelha:0,garibaldi:13,gaussian:[4,6],gaussianproc:[1,2],gaussmf:4,gbp:[1,2],gbpusd:6,gcos_wgsp:6,ge:4,gener:[1,2,4,15,17],generate_gaussian_linear:6,generate_high_order_recurrent_flr:4,generate_indexed_flr:4,generate_linear_periodic_gaussian:6,generate_non_recurrent_flr:4,generate_recurrent_flr:4,generate_sinoidal_periodic_gaussian:6,generate_uniform_linear:6,gerai:0,get:[4,6],get_data:[6,14],get_data_by_season:14,get_datafram:6,get_fuzzyset:4,get_index:14,get_index_by_season:14,get_kei:[4,13],get_low:[4,12,13],get_maximum_membership_fuzzyset:4,get_maximum_membership_fuzzyset_index:4,get_membership:[4,12,13],get_midpoint:[4,13],get_nam:15,get_polynomial_perturb:13,get_season_by_index:14,get_season_of_data:14,get_upp:[4,12,13],getchildren:4,getstr:4,git:17,github:[0,17],given:[4,12,13,15],glass:[1,2],good:17,googl:17,gov:6,grant_bound:4,granular:[2,9,14],graph_typ:5,greater:[4,6],grid:[1,2,9,14],grid_dimens:5,gridclust:12,gridpartition:[15,17],gridsearch:[1,2],group:[4,12],h:15,half:14,hand:4,handl:4,hard:4,head:0,help:15,henon:[1,2],here:17,heteroskedast:13,high:17,histori:6,hoft:[1,2],honsft:[2,9],horizont:[0,6],hour:14,hour_of_dai:14,hour_of_month:14,hour_of_week:14,hour_of_year:14,hourli:6,http:[0,6,17],huarng:[1,2],huarngpartition:17,human:0,hwang:[1,2],hyndman:6,hyperparam:[1,2],hyperparamet:8,i:[15,17],id:15,identif:[14,15],identifi:[4,8,13],ieee:13,ifmg:0,ifnmg:0,ift:[1,2],ignor:14,ii:17,iii:17,imax:15,implement:[4,17],improv:17,increas:12,increment:[1,2,6,9,12],incremental_gaussian:6,incremental_search:12,incrementalensembl:[2,9],incrementalgridclust:12,ind:14,indentifi:8,index:[4,6,12,14,15],index_field:14,index_season:14,index_seri:6,indexedflr:4,indic:[4,6],infer:6,inform:15,informationgain:15,initi:[4,6],initial_valu:6,inmet:[1,2],inp:6,input:[4,5,12,13,15],insert:[4,6,8],insert_hyperparam:8,insert_right:4,insid:[4,5,14,15],inst:[4,13],instal:0,instanc:[6,12,13,14,15,17],instead:4,instituit:0,institut:0,instituto:6,integr:6,intellig:15,intend:0,interfer:6,internet:6,interpret:4,interv:[5,17],intervalar:17,introduc:17,introduct:17,introspect:4,invers:[5,17],invest:5,ipynb:17,is_multivari:5,ismailefendi:[1,2],isol:15,item:4,itemgett:4,iter:[4,6],its:[6,14,15,17],ixic:6,j:[6,15],januari:6,jaroszewski:13,jonathan:13,jone:[4,6],journal:[6,15],jun:15,jupyt:17,k:[4,15],kde:[1,2],kdtree:15,kei:4,knn:[1,2],known:15,kohonen:5,kwarg:[4,5,6,12,13,14,15],l:[0,6,15],lab:0,lag:[4,5,6,8,17],last:[4,5],later:17,layman:0,le:4,lean:5,leaning_r:5,learn:11,lee:5,left:4,length:[4,6,14,15,17],less:4,lett:6,level:4,lh:[4,13],li:15,librari:[2,6,17],like:[4,17],lin:15,linear:[6,13],linearseasonalindex:14,linspac:6,list:[4,6,12,13,14,15,17],load:6,local:6,locat:[4,6,13],location_param:13,log:[4,5],logic:[4,12,17],logist:[4,6],logistic_map:[1,2],look:4,lookup:4,lorentz:[1,2],lorenz:6,lower:[4,6,12,13,15],lower_margin:15,lower_set:15,m:[5,6,13,15],mackei:[1,2],mackey_glass:6,mai:6,main:17,malaysia:[1,2],mani:17,manual:15,map:[5,6],marcin:13,margin:15,market:6,mask:14,mass:4,match:4,math:[6,15],mathemat:6,matplotlib:15,max:[4,5],max_inc:6,max_ini:6,maximum:[4,6,12,15],maxpool:5,me:0,mean:[4,6],measur:[1,2,8],membership:[1,2,8,12,13,15,17],membership_funct:15,meta:10,meteorologia:6,method:[0,4,6,8,9,10,11,12,13,15,17],mf:[4,8,13,14,15],middl:15,midpoint:[4,13],min:[4,5],min_inc:6,min_ini:6,mina:0,mind:0,minim:[4,12,15],minimum:[6,17],minut:14,minute_of_dai:14,minute_of_hour:14,minute_of_month:14,minute_of_week:14,minute_of_year:14,mode:[4,12,15],model:[0,1,2,3,5,6,8,15,17],modul:[0,1,17],monash:6,month:14,monthli:6,more:17,most:17,movingaverag:5,msft:[2,9],mu:6,mu_inc:6,mu_ini:6,mu_max:6,mu_min:6,much:4,multilay:5,multiseason:[2,9],multivari:[1,2,4,5,6,9,15,17],multivariatefuzzyset:12,multivariatepartition:12,musikasuwan:13,mvft:[2,9],n:[4,6,13],nacion:6,naiv:[1,2],name:[4,5,6,8,12,13,14,15],nasdaq:[1,2],nation:6,nativ:[4,14],natur:6,nbin:4,nbsp:0,ndarrai:6,nearest:[12,14,15],network:5,next:17,nice:4,noaa:6,node:4,nodes_graph:5,nois:[6,13],noise_param:13,non:[4,6,13,14,17],none:[4,5,6,13,14,15],nonperiod:6,nonstationari:[1,2,4,9],nonstationaryflrg:13,normal:[1,2,17],north:0,norton:6,notebook:17,noth:17,now:4,np:6,npart:[13,15],nsft:[2,9],num:6,num_season:14,number:[4,6,8,14,15,17],numer:17,numpi:[5,6],o:4,object:[4,5,6,12,14,15,16],occur:4,occurr:4,old:4,older:4,oldest:4,onc:4,one:[4,5,6,8,17],onli:[4,12,15],onlin:11,open:8,open_hyperparam_db:8,oper:[4,17],optim:8,option:[4,15],order:[4,8,15,17],ordered_set:[4,13,15],ordin:4,org:[0,6],organ:5,origin:[4,17],os:17,oscil:6,other:10,ou:17,out:17,outlier:6,output:17,outsid:15,over:4,overlap:[12,14,15,17],p500:6,p:[0,1,2,13],packag:[0,1],page:0,pair:[6,15],panda:[5,6,14],par1:13,par2:13,parallel_util:[1,2],param:[5,6,13,14],paramet:[4,5,6,8,12,13,14,15,17],parametr:17,part:[13,17],partit:[4,8,12,13,14,15,17],partition:[1,2,4,8,9,17],partition_funct:4,passeng:6,path:4,pattern:4,pct:13,pd:5,percentag:5,percentage_train:5,perform:[8,12,13,14,15,17],perform_loc:13,perform_width:13,period:[6,13],periodic_gaussian:6,person:[4,6],pertub:13,perturb:[2,9],perturbate_paramet:13,pesquisa:6,php:6,phy:6,physiolog:6,pip:17,plambda:5,plot:[14,15],plot_set:15,pmf:15,point:[4,12,13,14,15,17],poly_width:13,polynomi:13,polynomialnonstationarypartition:13,poor:6,posit:[4,14],post:5,postprocess:17,power:5,pp:15,pprint:4,pre:5,predict:17,prefix:15,prefixedgridpartition:15,preprocess:[4,14,17],previou:6,primit:[14,15],probabilist:[1,2,17],probabilitydistribut:[1,2],probabl:16,process:[4,5,6],product:[6,12],prof:0,project:15,properti:[4,5],propos:17,provid:[0,4,17],prune:12,psd:6,pwft:[1,2],python:[2,17],quantreg:[1,2],quarter:14,quick:0,quot:6,quotat:6,r:[4,6,15],ra:15,rais:4,random:6,random_walk:6,rang:17,rate:5,rb:15,re:4,read:6,readabl:0,real:[4,17],recent:17,record:4,recurr:[4,6],relationship:[4,12],remov:4,render:6,repo:17,repr:4,repres:4,represent:17,research:[0,17],reset_calculated_valu:4,residualanalysi:[1,2],respect:4,respons:14,result:[4,8,14,15],retriev:5,revers:4,review:17,rh:[4,12,13],right:4,rng:13,robert:6,roger:4,roi:[1,2],rossler:[1,2],round:15,rule:[4,12,17],run:6,s:[1,2,4,5,15,17],sadaei:[1,2,5],salang:13,same:4,sampl:[6,17],save:4,save_net:5,scale:[1,2,4,17],scale_down:13,scale_up:13,scan:4,scheme:[8,17],scienc:6,scientist:0,scipi:15,search:[0,4,12,14,15],season:[1,2,4,9,17],seasonalindex:[2,9],second:14,second_of_dai:14,second_of_hour:14,second_of_minut:14,secur:6,select:6,self:[5,15],sep:6,separ:6,sequenc:4,seri:[1,2,4,5,9,12,13,15],set:[4,8,12,13,14,15,17],set_data:14,set_lh:12,set_ord:4,set_rh:12,set_target_vari:12,setnam:15,sever:[6,12,14,15],sft:[2,9],shape:4,show:4,show_grid:5,side:4,sigma:6,sigma_inc:6,sigma_ini:6,sigma_max:6,sigma_min:6,sigmf:4,sigmoid:4,signal:6,signalemul:6,silva:0,simpl:[0,1,2,6],simplenonstationary_gridpartitioner_build:13,simplenonstationarypartition:13,simplepartition:15,simpler:4,singl:[4,14,15],singleton:[1,2,4],singletonpartition:15,sinoid:6,sistema:6,sixth:14,size:15,slice:4,smith:4,smooth:[1,2,4,17],so:4,social:15,softmax:4,solar:17,som:[1,2],somnet:5,somtransform:5,sonda:[1,2],song:[1,2],sort:[4,15],sortedcollect:[1,2],sourc:[4,5,6,8,12,13,14,15],sp500:6,spark:[1,2],spatial:15,specif:[4,15],split:15,splitabov:15,splitbelow:15,splite:17,sqlite3:8,sqlite:8,standard:[6,17],start:[0,6],station:6,stationari:[13,17],stationary_gaussian:6,statist:0,step:[4,17],stephen:15,stochast:6,stock:[5,6],store:[4,8],str:[4,5,6,15],strang:6,string:[14,15],strip_datepart:14,structur:[4,14,15],student:0,studi:17,subclust:[1,2],subclustpartition:15,submodul:[0,1],subpackag:[0,1],subtract:15,suitabl:0,sunspot:[1,2],superset:4,support:4,symbol:6,synthet:[1,2],system:[6,13,15],t:[4,5,6,13,15,17],tabl:8,tag:8,taiex:[1,2],taiwan:6,take:17,tam:15,tau:6,technol:15,tempeatur:6,tempor:[4,14,17],test:[1,2,17],than:[4,6,17],thei:4,theori:17,thi:[0,4,5,6,12,13,14,15,17],third:14,thoma:4,those:4,thres1:15,thres2:15,threshold:15,through:6,time:[1,2,4,5,9,12,13,14,15],timegridpartition:14,timeseri:6,timevari:[2,9],tool:[0,17],total:6,train:[4,5,12,13,14,15],transact:13,transform:[1,2,4,8,13,14,15,17],transit:[4,17],translat:17,trapezoid:[4,15],trapmf:4,tree:[1,2],trend:[1,2],triangular:4,trigger:4,trimf:4,tsdl:6,tupl:[4,5,8,12,15],tutori:0,tw:6,two:6,twse:6,type:[4,6,12,14,15,17],u:17,ufmg:0,under:4,uniform:6,uniqu:[4,13],unit:14,univari:6,univers:[0,6,12,13,14,15,17],unpack_arg:13,uod:[4,8,15],upper:[4,6,12,13,15],upper_margin:15,upper_set:15,url:[0,6],us:[0,4,5,8,12,14,15,17],usa:6,usag:0,usd:[1,2],user:8,usual:[4,17],util:[1,2,9],v:13,val:15,valu:[4,6,8,12,13,14,15,17],valueerror:4,variabl:[2,4,5,9,15],varianc:[4,6],variant:17,variat:6,vec:15,vector:[4,12,15],veri:6,verifi:15,vmax:6,vmin:6,vol:15,wa:[4,8,17],walk:6,want:0,weight:[6,17],were:[12,14,15],when:[4,15],where:[4,5],which:[4,8,12,17],white_nois:6,whose:0,width:13,width_param:13,window_index:13,window_s:13,without:4,wmvft:[2,9],word:8,work:[4,12,14,15],www:6,x:[4,6,12,13,14,15],xy:6,y:[5,6,15,17],yahoo:6,year:14,yearli:6,yeh:15,you:4,young:4,younger:4,youngest:4,yu:[1,2],z:[4,6],zenodo:0},titles:["pyFTS - Fuzzy Time Series for Python","pyFTS","pyFTS package","pyFTS.benchmarks package","pyFTS.common package","pyFTS.common.transformations package","pyFTS.data package","pyFTS.distributed package","pyFTS.hyperparam package","pyFTS.models package","pyFTS.models.ensemble package","pyFTS.models.incremental package","pyFTS.models.multivariate package","pyFTS.models.nonstationary package","pyFTS.models.seasonal package","pyFTS.partitioners package","pyFTS.probabilistic package","pyFTS Quick Start"],titleterms:{"500":6,"class":15,"short":17,A:17,activ:4,adapativeexpect:5,airpasseng:6,api:0,ar:17,arima:3,artifici:6,benchmark:3,bitcoin:6,boxcox:5,bst:3,chaotic:6,chen:9,cheng:9,classpartition:[],cmean:15,cmsft:14,cmvft:12,common:[4,5,6,12,13,14],composit:4,conf:2,content:[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],cvft:13,data:6,dataset:6,differenti:5,dispi:7,distribut:7,document:0,dowjon:6,enrol:6,ensembl:10,entropi:15,ethereum:6,eur:6,evolutionari:8,exampl:17,fcm:15,flr:[4,12],flrg:[4,12,13],ft:[4,17],fuzzi:[0,17],fuzzyset:4,gaussianproc:3,gbp:6,gener:6,glass:6,granular:12,grid:[12,15],gridsearch:8,henon:6,hoft:9,honsft:13,how:[0,17],huarng:15,hwang:9,hyperparam:8,ift:9,increment:11,incrementalensembl:11,index:0,inmet:6,instal:17,ismailefendi:9,kde:16,knn:3,librari:0,logistic_map:6,lorentz:6,mackei:6,malaysia:6,measur:3,membership:4,model:[9,10,11,12,13,14],modul:[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],msft:14,multiseason:10,multivari:12,mvft:12,naiv:3,nasdaq:6,nonstationari:13,normal:5,nsft:13,p:6,packag:[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],parallel_util:15,partition:[12,13,14,15],perturb:13,probabilist:16,probabilitydistribut:16,pwft:9,pyft:[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17],python:0,quantreg:3,quick:17,refer:0,residualanalysi:3,roi:5,rossler:6,s:6,sadaei:9,scale:5,season:14,seasonalindex:14,seri:[0,6,17],sft:14,simpl:15,singleton:15,smooth:5,som:5,sonda:6,song:9,sortedcollect:4,spark:7,start:17,subclust:15,submodul:[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],subpackag:[2,9],sunspot:6,synthet:6,taiex:6,test:3,time:[0,6,17],timevari:11,transform:5,tree:4,trend:5,tutori:17,usag:17,usd:6,util:[3,4,8,13,15],variabl:12,what:[0,17],wmvft:12,yu:9}})
\ No newline at end of file
diff --git a/docs/pyFTS.partitioners.rst b/docs/pyFTS.partitioners.rst
index f6f4969..29de726 100644
--- a/docs/pyFTS.partitioners.rst
+++ b/docs/pyFTS.partitioners.rst
@@ -20,10 +20,10 @@ pyFTS.partitioners.partitioner module
:undoc-members:
:show-inheritance:
-pyFTS.partitioners.ClassPartitioner module
------------------------------------
+pyFTS.partitioners.Class module
+-------------------------------
-.. automodule:: pyFTS.partitioners.ClassPartitioner
+.. automodule:: pyFTS.partitioners.Class
:members:
:undoc-members:
:show-inheritance:
diff --git a/pyFTS/partitioners/ClassPartitioner.py b/pyFTS/partitioners/Class.py
similarity index 100%
rename from pyFTS/partitioners/ClassPartitioner.py
rename to pyFTS/partitioners/Class.py
diff --git a/setup.py b/setup.py
index 77bc5b5..f368b71 100644
--- a/setup.py
+++ b/setup.py
@@ -25,6 +25,7 @@ setuptools.setup(
'Programming Language :: Python :: 3.5',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.8',
+ 'Programming Language :: Python :: 3.10',
'Intended Audience :: Science/Research',
'Intended Audience :: Developers',
'Intended Audience :: Education',
|