<spanid="pyfts-hyperparam-util-module"></span><h2>pyFTS.hyperparam.Util module<aclass="headerlink"href="#module-pyFTS.hyperparam.Util"title="Permalink to this headline">¶</a></h2>
<codeclass="sig-prename descclassname">pyFTS.hyperparam.Util.</code><codeclass="sig-name descname">create_hyperparam_tables</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">conn</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/hyperparam/Util.html#create_hyperparam_tables"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.hyperparam.Util.create_hyperparam_tables"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-prename descclassname">pyFTS.hyperparam.Util.</code><codeclass="sig-name descname">insert_hyperparam</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">data</span></em>, <emclass="sig-param"><spanclass="n">conn</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/hyperparam/Util.html#insert_hyperparam"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.hyperparam.Util.insert_hyperparam"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-prename descclassname">pyFTS.hyperparam.Util.</code><codeclass="sig-name descname">open_hyperparam_db</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">name</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/hyperparam/Util.html#open_hyperparam_db"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.hyperparam.Util.open_hyperparam_db"title="Permalink to this definition">¶</a></dt>
<spanid="pyfts-hyperparam-gridsearch-module"></span><h2>pyFTS.hyperparam.GridSearch module<aclass="headerlink"href="#module-pyFTS.hyperparam.GridSearch"title="Permalink to this headline">¶</a></h2>
<codeclass="sig-prename descclassname">pyFTS.hyperparam.GridSearch.</code><codeclass="sig-name descname">cluster_method</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">individual</span></em>, <emclass="sig-param"><spanclass="n">dataset</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/hyperparam/GridSearch.html#cluster_method"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.hyperparam.GridSearch.cluster_method"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-prename descclassname">pyFTS.hyperparam.GridSearch.</code><codeclass="sig-name descname">dict_individual</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">mf</span></em>, <emclass="sig-param"><spanclass="n">partitioner</span></em>, <emclass="sig-param"><spanclass="n">partitions</span></em>, <emclass="sig-param"><spanclass="n">order</span></em>, <emclass="sig-param"><spanclass="n">lags</span></em>, <emclass="sig-param"><spanclass="n">alpha_cut</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/hyperparam/GridSearch.html#dict_individual"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.hyperparam.GridSearch.dict_individual"title="Permalink to this definition">¶</a></dt>
<dd></dd></dl>
<dlclass="py function">
<dtid="pyFTS.hyperparam.GridSearch.execute">
<codeclass="sig-prename descclassname">pyFTS.hyperparam.GridSearch.</code><codeclass="sig-name descname">execute</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">hyperparams</span></em>, <emclass="sig-param"><spanclass="n">datasetname</span></em>, <emclass="sig-param"><spanclass="n">dataset</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/hyperparam/GridSearch.html#execute"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.hyperparam.GridSearch.execute"title="Permalink to this definition">¶</a></dt>
<dd></dd></dl>
<dlclass="py function">
<dtid="pyFTS.hyperparam.GridSearch.process_jobs">
<codeclass="sig-prename descclassname">pyFTS.hyperparam.GridSearch.</code><codeclass="sig-name descname">process_jobs</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">jobs</span></em>, <emclass="sig-param"><spanclass="n">datasetname</span></em>, <emclass="sig-param"><spanclass="n">conn</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/hyperparam/GridSearch.html#process_jobs"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.hyperparam.GridSearch.process_jobs"title="Permalink to this definition">¶</a></dt>
<spanid="pyfts-hyperparam-evolutionary-module"></span><h2>pyFTS.hyperparam.Evolutionary module<aclass="headerlink"href="#module-pyFTS.hyperparam.Evolutionary"title="Permalink to this headline">¶</a></h2>
<p>Distributed Evolutionary Hyperparameter Optimization (DEHO) for MVFTS</p>
<codeclass="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><codeclass="sig-name descname">GeneticAlgorithm</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">dataset</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/hyperparam/Evolutionary.html#GeneticAlgorithm"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.hyperparam.Evolutionary.GeneticAlgorithm"title="Permalink to this definition">¶</a></dt>
<dd><p>Genetic algoritm for Distributed Evolutionary Hyperparameter Optimization (DEHO)</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>dataset</strong>– The time series to optimize the FTS</p></li>
<li><p><strong>ngen</strong>– An integer value with the maximum number of generations, default value: 30</p></li>
<li><p><strong>mgen</strong>– An integer value with the maximum number of generations without improvement to stop, default value 7</p></li>
<li><p><strong>npop</strong>– An integer value with the population size, default value: 20</p></li>
<li><p><strong>pcross</strong>– A float value between 0 and 1 with the probability of crossover, default: .5</p></li>
<li><p><strong>psel</strong>– A float value between 0 and 1 with the probability of selection, default: .5</p></li>
<li><p><strong>pmut</strong>– A float value between 0 and 1 with the probability of mutation, default: .3</p></li>
<li><p><strong>fts_method</strong>– The FTS method to optimize</p></li>
<li><p><strong>parameters</strong>– dict with model specific arguments for fts_method</p></li>
<li><p><strong>elitism</strong>– A boolean value indicating if the best individual must always survive to next population</p></li>
<li><p><strong>initial_operator</strong>– a function that receives npop and return a random population with size npop</p></li>
<li><p><strong>evalutation_operator</strong>– a function that receives a dataset and an individual and return its fitness</p></li>
<li><p><strong>selection_operator</strong>– a function that receives the whole population and return a selected individual</p></li>
<li><p><strong>crossover_operator</strong>– a function that receives the whole population and return a descendent individual</p></li>
<li><p><strong>mutation_operator</strong>– a function that receives one individual and return a changed individual</p></li>
<li><p><strong>window_size</strong>– An integer value with the the length of scrolling window for train/test on dataset</p></li>
<li><p><strong>train_rate</strong>– A float value between 0 and 1 with the train/test split ([0,1])</p></li>
<li><p><strong>increment_rate</strong>– A float value between 0 and 1 with the the increment of the scrolling window,
relative to the window_size ([0,1])</p></li>
<li><p><strong>collect_statistics</strong>– A boolean value indicating to collect statistics for each generation</p></li>
<li><p><strong>distributed</strong>– A value indicating it the execution will be local and sequential (distributed=False),
or parallel and distributed (distributed=’dispy’ or distributed=’spark’)</p></li>
<li><p><strong>cluster</strong>– If distributed=’dispy’ the list of cluster nodes, else if distributed=’spark’ it is the master node</p></li>
</ul>
</dd>
<dtclass="field-even">Returns</dt>
<ddclass="field-even"><p>the best genotype</p>
</dd>
</dl>
</dd></dl>
<dlclass="py function">
<dtid="pyFTS.hyperparam.Evolutionary.crossover">
<codeclass="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><codeclass="sig-name descname">crossover</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">population</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/hyperparam/Evolutionary.html#crossover"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.hyperparam.Evolutionary.crossover"title="Permalink to this definition">¶</a></dt>
<dd><p>Crossover operation between two parents</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><p><strong>population</strong>– the original population</p>
<codeclass="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><codeclass="sig-name descname">double_tournament</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">population</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/hyperparam/Evolutionary.html#double_tournament"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.hyperparam.Evolutionary.double_tournament"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><codeclass="sig-name descname">elitism</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">population</span></em>, <emclass="sig-param"><spanclass="n">new_population</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/hyperparam/Evolutionary.html#elitism"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.hyperparam.Evolutionary.elitism"title="Permalink to this definition">¶</a></dt>
<dd><p>Elitism operation, always select the best individual of the population and discard the worst</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>population</strong>–</p></li>
<li><p><strong>new_population</strong>–</p></li>
</ul>
</dd>
<dtclass="field-even">Returns</dt>
<ddclass="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dlclass="py function">
<dtid="pyFTS.hyperparam.Evolutionary.evaluate">
<codeclass="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><codeclass="sig-name descname">evaluate</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">dataset</span></em>, <emclass="sig-param"><spanclass="n">individual</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/hyperparam/Evolutionary.html#evaluate"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.hyperparam.Evolutionary.evaluate"title="Permalink to this definition">¶</a></dt>
<dd><p>Evaluate an individual using a sliding window cross validation over the dataset.</p>
<li><p><strong>individual</strong>– genotype to be tested</p></li>
<li><p><strong>window_size</strong>– The length of scrolling window for train/test on dataset</p></li>
<li><p><strong>train_rate</strong>– The train/test split ([0,1])</p></li>
<li><p><strong>increment_rate</strong>– The increment of the scrolling window, relative to the window_size ([0,1])</p></li>
<li><p><strong>parameters</strong>– dict with model specific arguments for fit method.</p></li>
</ul>
</dd>
<dtclass="field-even">Returns</dt>
<ddclass="field-even"><p>a tuple (len_lags, rmse) with the parsimony fitness value and the accuracy fitness value</p>
</dd>
</dl>
</dd></dl>
<dlclass="py function">
<dtid="pyFTS.hyperparam.Evolutionary.execute">
<codeclass="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><codeclass="sig-name descname">execute</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">datasetname</span></em>, <emclass="sig-param"><spanclass="n">dataset</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/hyperparam/Evolutionary.html#execute"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.hyperparam.Evolutionary.execute"title="Permalink to this definition">¶</a></dt>
<dd><p>Batch execution of Distributed Evolutionary Hyperparameter Optimization (DEHO) for monovariate methods</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>datasetname</strong>–</p></li>
<li><p><strong>dataset</strong>– The time series to optimize the FTS</p></li>
<li><p><strong>file</strong>–</p></li>
<li><p><strong>experiments</strong>–</p></li>
<li><p><strong>distributed</strong>–</p></li>
<li><p><strong>ngen</strong>– An integer value with the maximum number of generations, default value: 30</p></li>
<li><p><strong>mgen</strong>– An integer value with the maximum number of generations without improvement to stop, default value 7</p></li>
<li><p><strong>npop</strong>– An integer value with the population size, default value: 20</p></li>
<li><p><strong>pcross</strong>– A float value between 0 and 1 with the probability of crossover, default: .5</p></li>
<li><p><strong>psel</strong>– A float value between 0 and 1 with the probability of selection, default: .5</p></li>
<li><p><strong>pmut</strong>– A float value between 0 and 1 with the probability of mutation, default: .3</p></li>
<li><p><strong>fts_method</strong>– The FTS method to optimize</p></li>
<li><p><strong>parameters</strong>– dict with model specific arguments for fts_method</p></li>
<li><p><strong>elitism</strong>– A boolean value indicating if the best individual must always survive to next population</p></li>
<li><p><strong>initial_operator</strong>– a function that receives npop and return a random population with size npop</p></li>
<li><p><strong>random_individual</strong>– create an random genotype</p></li>
<li><p><strong>evalutation_operator</strong>– a function that receives a dataset and an individual and return its fitness</p></li>
<li><p><strong>selection_operator</strong>– a function that receives the whole population and return a selected individual</p></li>
<li><p><strong>crossover_operator</strong>– a function that receives the whole population and return a descendent individual</p></li>
<li><p><strong>mutation_operator</strong>– a function that receives one individual and return a changed individual</p></li>
<li><p><strong>window_size</strong>– An integer value with the the length of scrolling window for train/test on dataset</p></li>
<li><p><strong>train_rate</strong>– A float value between 0 and 1 with the train/test split ([0,1])</p></li>
<li><p><strong>increment_rate</strong>– A float value between 0 and 1 with the the increment of the scrolling window,
relative to the window_size ([0,1])</p></li>
<li><p><strong>collect_statistics</strong>– A boolean value indicating to collect statistics for each generation</p></li>
<li><p><strong>distributed</strong>– A value indicating it the execution will be local and sequential (distributed=False),
or parallel and distributed (distributed=’dispy’ or distributed=’spark’)</p></li>
<li><p><strong>cluster</strong>– If distributed=’dispy’ the list of cluster nodes, else if distributed=’spark’ it is the master node</p></li>
</ul>
</dd>
<dtclass="field-even">Returns</dt>
<ddclass="field-even"><p>the best genotype</p>
</dd>
</dl>
</dd></dl>
<dlclass="py function">
<dtid="pyFTS.hyperparam.Evolutionary.genotype">
<codeclass="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><codeclass="sig-name descname">genotype</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">mf</span></em>, <emclass="sig-param"><spanclass="n">npart</span></em>, <emclass="sig-param"><spanclass="n">partitioner</span></em>, <emclass="sig-param"><spanclass="n">order</span></em>, <emclass="sig-param"><spanclass="n">alpha</span></em>, <emclass="sig-param"><spanclass="n">lags</span></em>, <emclass="sig-param"><spanclass="n">f1</span></em>, <emclass="sig-param"><spanclass="n">f2</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/hyperparam/Evolutionary.html#genotype"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.hyperparam.Evolutionary.genotype"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><codeclass="sig-name descname">initial_population</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">n</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/hyperparam/Evolutionary.html#initial_population"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.hyperparam.Evolutionary.initial_population"title="Permalink to this definition">¶</a></dt>
<dd><p>Create a random population of size n</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><p><strong>n</strong>– the size of the population</p>
</dd>
<dtclass="field-even">Returns</dt>
<ddclass="field-even"><p>a list with n random individuals</p>
<codeclass="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><codeclass="sig-name descname">lag_crossover2</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">best</span></em>, <emclass="sig-param"><spanclass="n">worst</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/hyperparam/Evolutionary.html#lag_crossover2"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.hyperparam.Evolutionary.lag_crossover2"title="Permalink to this definition">¶</a></dt>
<dd><p>Cross over two lag genes</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>best</strong>– best genotype</p></li>
<codeclass="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><codeclass="sig-name descname">log_result</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">conn</span></em>, <emclass="sig-param"><spanclass="n">datasetname</span></em>, <emclass="sig-param"><spanclass="n">fts_method</span></em>, <emclass="sig-param"><spanclass="n">result</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/hyperparam/Evolutionary.html#log_result"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.hyperparam.Evolutionary.log_result"title="Permalink to this definition">¶</a></dt>
<dd></dd></dl>
<dlclass="py function">
<dtid="pyFTS.hyperparam.Evolutionary.mutation">
<codeclass="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><codeclass="sig-name descname">mutation</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">individual</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/hyperparam/Evolutionary.html#mutation"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.hyperparam.Evolutionary.mutation"title="Permalink to this definition">¶</a></dt>
<dd><p>Mutation operator</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>individual</strong>– an individual genotype</p></li>
<li><p><strong>pmut</strong>– individual probability o</p></li>
<codeclass="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><codeclass="sig-name descname">mutation_lags</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">lags</span></em>, <emclass="sig-param"><spanclass="n">order</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/hyperparam/Evolutionary.html#mutation_lags"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.hyperparam.Evolutionary.mutation_lags"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><codeclass="sig-name descname">persist_statistics</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">datasetname</span></em>, <emclass="sig-param"><spanclass="n">statistics</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/hyperparam/Evolutionary.html#persist_statistics"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.hyperparam.Evolutionary.persist_statistics"title="Permalink to this definition">¶</a></dt>
<dd></dd></dl>
<dlclass="py function">
<dtid="pyFTS.hyperparam.Evolutionary.phenotype">
<codeclass="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><codeclass="sig-name descname">phenotype</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">individual</span></em>, <emclass="sig-param"><spanclass="n">train</span></em>, <emclass="sig-param"><spanclass="n">fts_method</span></em>, <emclass="sig-param"><spanclass="n">parameters</span><spanclass="o">=</span><spanclass="default_value">{}</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/hyperparam/Evolutionary.html#phenotype"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.hyperparam.Evolutionary.phenotype"title="Permalink to this definition">¶</a></dt>
<dd><p>Instantiate the genotype, creating a fitted model with the genotype hyperparameters</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>individual</strong>– a genotype</p></li>
<li><p><strong>train</strong>– the training dataset</p></li>
<li><p><strong>fts_method</strong>– the FTS method</p></li>
<li><p><strong>parameters</strong>– dict with model specific arguments for fit method.</p></li>
<codeclass="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><codeclass="sig-name descname">process_experiment</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">fts_method</span></em>, <emclass="sig-param"><spanclass="n">result</span></em>, <emclass="sig-param"><spanclass="n">datasetname</span></em>, <emclass="sig-param"><spanclass="n">conn</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/hyperparam/Evolutionary.html#process_experiment"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.hyperparam.Evolutionary.process_experiment"title="Permalink to this definition">¶</a></dt>
<dd><p>Persist the results of an DEHO execution in sqlite database (best hyperparameters) and json file (generation statistics)</p>
<codeclass="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><codeclass="sig-name descname">random_genotype</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/hyperparam/Evolutionary.html#random_genotype"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.hyperparam.Evolutionary.random_genotype"title="Permalink to this definition">¶</a></dt>
<dd><p>Create random genotype</p>
<dlclass="field-list simple">
<dtclass="field-odd">Returns</dt>
<ddclass="field-odd"><p>the genotype, a dictionary with all hyperparameters</p>
</dd>
</dl>
</dd></dl>
<dlclass="py function">
<dtid="pyFTS.hyperparam.Evolutionary.tournament">
<codeclass="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><codeclass="sig-name descname">tournament</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">population</span></em>, <emclass="sig-param"><spanclass="n">objective</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/hyperparam/Evolutionary.html#tournament"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.hyperparam.Evolutionary.tournament"title="Permalink to this definition">¶</a></dt>
<dd><p>Simple tournament selection strategy.</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>population</strong>– the population</p></li>
<li><p><strong>objective</strong>– the objective to be considered on tournament</p></li>