pyFTS/sadaei.py

66 lines
1.6 KiB
Python
Raw Normal View History

class ExponentialyWeightedFLRG:
def __init__(self,premiss,c):
self.premiss = premiss
self.consequent = []
self.count = 0.0
self.c = c
def append(self,c):
self.consequent.append(c)
self.count = self.count + 1.0
def weights(self):
wei = [ self.c**k for k in np.arange(0.0,self.count,1.0)]
tot = sum( wei )
return np.array([ k/tot for k in wei ])
def __str__(self):
tmp = self.premiss + " -> "
tmp2 = ""
cc = 0
wei = [ self.c**k for k in np.arange(0.0,self.count,1.0)]
tot = sum( wei )
for c in self.consequent:
if len(tmp2) > 0:
tmp2 = tmp2 + ","
tmp2 = tmp2 + c + "(" + str(wei[cc]/tot) + ")"
cc = cc + 1
return tmp + tmp2
class ExponentialyWeightedFTS(FTS):
def __init__(self,name):
super(ExponentialyWeightedFTS, self).__init__(1,name)
def defuzzy(self,data):
actual = self.fuzzy(data)
if actual["fuzzyset"] not in self.flrgs:
return self.sets[actual["fuzzyset"]].centroid
flrg = self.flrgs[actual["fuzzyset"]]
mi = np.array([self.sets[s].centroid for s in flrg.consequent])
return mi.dot( flrg.weights() )
def learn(self, data, sets):
last = {"fuzzyset":"", "membership":0.0}
actual = {"fuzzyset":"", "membership":0.0}
for s in sets:
self.sets[s.name] = s
self.flrgs = {}
count = 1
for inst in data:
actual = self.fuzzy(inst)
if count > self.order:
if last["fuzzyset"] not in self.flrgs:
self.flrgs[last["fuzzyset"]] = ExponentialyWeightedFLRG(last["fuzzyset"],2)
self.flrgs[last["fuzzyset"]].append(actual["fuzzyset"])
count = count + 1
last = actual