pyFTS/benchmarks/arima.py

190 lines
5.4 KiB
Python
Raw Normal View History

#!/usr/bin/python
# -*- coding: utf8 -*-
import numpy as np
import pandas as pd
from statsmodels.tsa.arima_model import ARIMA as stats_arima
import scipy.stats as st
from pyFTS import fts
from pyFTS.common import SortedCollection
class ARIMA(fts.FTS):
"""
Façade for statsmodels.tsa.arima_model
"""
def __init__(self, name, **kwargs):
super(ARIMA, self).__init__(1, "ARIMA"+name)
self.name = "ARIMA"
self.detail = "Auto Regressive Integrated Moving Average"
self.is_high_order = True
self.has_point_forecasting = True
self.has_interval_forecasting = True
self.has_probability_forecasting = True
self.model = None
self.model_fit = None
self.trained_data = None
self.p = 1
self.d = 0
self.q = 0
self.benchmark_only = True
self.min_order = 1
2017-05-14 15:54:41 +04:00
self.alpha = kwargs.get("alpha", 0.05)
self.shortname += str(self.alpha)
def train(self, data, sets, order, parameters=None):
self.p = order[0]
self.d = order[1]
self.q = order[2]
self.order = self.p + self.q
self.shortname = "ARIMA(" + str(self.p) + "," + str(self.d) + "," + str(self.q) + ") - " + str(self.alpha)
2017-05-14 15:54:41 +04:00
data = self.doTransformations(data, updateUoD=True)
old_fit = self.model_fit
try:
self.model = stats_arima(data, order=(self.p, self.d, self.q))
self.model_fit = self.model.fit(disp=0)
except Exception as ex:
print(ex)
self.model_fit = None
def ar(self, data):
return data.dot(self.model_fit.arparams)
def ma(self, data):
return data.dot(self.model_fit.maparams)
def forecast(self, data, **kwargs):
if self.model_fit is None:
return np.nan
ndata = np.array(self.doTransformations(data))
l = len(ndata)
ret = []
if self.d == 0:
ar = np.array([self.ar(ndata[k - self.p: k]) for k in np.arange(self.p, l+1)]) #+1 to forecast one step ahead given all available lags
else:
ar = np.array([ndata[k] + self.ar(ndata[k - self.p: k]) for k in np.arange(self.p, l+1)])
if self.q > 0:
residuals = np.array([ndata[k] - ar[k - self.p] for k in np.arange(self.p, l)])
ma = np.array([self.ma(residuals[k - self.q: k]) for k in np.arange(self.q, len(residuals)+1)])
ret = ar[self.q:] + ma
else:
ret = ar
ret = self.doInverseTransformations(ret, params=[data[self.order - 1:]])
return ret
def forecastInterval(self, data, **kwargs):
if self.model_fit is None:
return np.nan
sigma = np.sqrt(self.model_fit.sigma2)
2017-05-14 15:54:41 +04:00
#ndata = np.array(self.doTransformations(data))
2017-05-14 15:54:41 +04:00
l = len(data)
ret = []
for k in np.arange(self.order, l+1):
tmp = []
2017-05-14 15:54:41 +04:00
sample = [data[i] for i in np.arange(k - self.order, k)]
2017-05-14 15:54:41 +04:00
mean = self.forecast(sample)
if isinstance(mean,(list, np.ndarray)):
mean = mean[0]
tmp.append(mean + st.norm.ppf(self.alpha) * sigma)
tmp.append(mean + st.norm.ppf(1 - self.alpha) * sigma)
ret.append(tmp)
#ret = self.doInverseTransformations(ret, params=[data[self.order - 1:]], point_to_interval=True)
return ret
def forecastAheadInterval(self, data, steps, **kwargs):
if self.model_fit is None:
return np.nan
smoothing = kwargs.get("smoothing",0.5)
sigma = np.sqrt(self.model_fit.sigma2)
ndata = np.array(self.doTransformations(data))
l = len(ndata)
nmeans = self.forecastAhead(ndata, steps, **kwargs)
ret = []
for k in np.arange(0, steps):
tmp = []
hsigma = (1 + k*smoothing)*sigma
tmp.append(nmeans[k] + st.norm.ppf(self.alpha) * hsigma)
tmp.append(nmeans[k] + st.norm.ppf(1 - self.alpha) * hsigma)
ret.append(tmp)
ret = self.doInverseTransformations(ret, params=[[data[-1] for a in np.arange(0,steps)]], interval=True)
return ret
def empty_grid(self, resolution):
return self.get_empty_grid(-(self.original_max*2), self.original_max*2, resolution)
def forecastAheadDistribution(self, data, steps, **kwargs):
smoothing = kwargs.get("smoothing", 0.5)
sigma = np.sqrt(self.model_fit.sigma2)
ndata = np.array(self.doTransformations(data))
l = len(ndata)
percentile_size = (self.original_max - self.original_min)/100
resolution = kwargs.get('resolution', percentile_size)
grid = self.empty_grid(resolution)
index = SortedCollection.SortedCollection(iterable=grid.keys())
ret = []
nmeans = self.forecastAhead(ndata, steps, **kwargs)
for k in np.arange(0, steps):
grid = self.empty_grid(resolution)
for alpha in np.arange(0.05, 0.5, 0.05):
tmp = []
hsigma = (1 + k * smoothing) * sigma
tmp.append(nmeans[k] + st.norm.ppf(alpha) * hsigma)
tmp.append(nmeans[k] + st.norm.ppf(1 - alpha) * hsigma)
grid = self.gridCount(grid, resolution, index, tmp)
tmp = np.array([grid[i] for i in sorted(grid)])
ret.append(tmp / sum(tmp))
grid = self.empty_grid(resolution)
df = pd.DataFrame(ret, columns=sorted(grid))
return df