pyFTS/partitioners/Entropy.py

105 lines
3.2 KiB
Python
Raw Normal View History

import numpy as np
import math
import random as rnd
import functools, operator
from pyFTS.common import FuzzySet, Membership
from pyFTS.partitioners import partitioner
# C. H. Cheng, R. J. Chang, and C. A. Yeh, “Entropy-based and trapezoidal fuzzification-based fuzzy time series approach for forecasting IT project cost,”
# Technol. Forecast. Social Change, vol. 73, no. 5, pp. 524542, Jun. 2006.
2016-12-27 00:25:59 +04:00
def splitBelow(data,threshold):
return [k for k in data if k <= threshold]
2016-12-27 00:25:59 +04:00
def splitAbove(data,threshold):
return [k for k in data if k > threshold]
2016-12-27 00:25:59 +04:00
def PMF(data, threshold):
a = sum([1.0 for k in splitBelow(data,threshold)])
b = sum([1.0 for k in splitAbove(data, threshold)])
l = len(data)
return [a / l, b / l]
def entropy(data, threshold):
pmf = PMF(data, threshold)
2016-12-27 00:25:59 +04:00
if pmf[0] == 0 or pmf[1] == 0:
return 1
else:
return - sum([pmf[0] * math.log(pmf[0]), pmf[1] * math.log(pmf[1])])
def informationGain(data, thres1, thres2):
return entropy(data, thres1) - entropy(data, thres2)
def bestSplit(data, npart):
if len(data) < 2:
return None
2016-12-27 00:25:59 +04:00
count = 1
ndata = list(set(data))
ndata.sort()
2016-12-27 00:25:59 +04:00
l = len(ndata)
threshold = 0
2016-12-27 00:25:59 +04:00
try:
while count < l and informationGain(data, ndata[count - 1], ndata[count]) <= 0:
threshold = ndata[count]
count += 1
except IndexError:
print(threshold)
print (ndata)
print (count)
rem = npart % 2
if (npart - rem)/2 > 1:
p1 = splitBelow(data,threshold)
p2 = splitAbove(data,threshold)
if len(p1) > len(p2):
np1 = (npart - rem)/2 + rem
np2 = (npart - rem)/2
else:
np1 = (npart - rem) / 2
np2 = (npart - rem) / 2 + rem
2016-12-27 00:25:59 +04:00
tmp = [threshold]
for k in bestSplit(p1, np1 ): tmp.append(k)
for k in bestSplit(p2, np2 ): tmp.append(k)
return tmp
else:
2016-12-27 00:25:59 +04:00
return [threshold]
class EntropyPartitioner(partitioner.Partitioner):
2017-02-27 22:53:29 +04:00
def __init__(self, data, npart, func = Membership.trimf, transformation=None):
super(EntropyPartitioner, self).__init__("Entropy", data, npart, func=func, transformation=transformation)
def build(self, data):
sets = []
partitions = bestSplit(data, self.partitions)
2017-02-27 22:53:29 +04:00
partitions.append(self.min)
partitions.append(self.max)
partitions = list(set(partitions))
partitions.sort()
for c in np.arange(1, len(partitions) - 1):
if self.membership_function == Membership.trimf:
sets.append(FuzzySet.FuzzySet(self.prefix + str(c), Membership.trimf,
[partitions[c - 1], partitions[c], partitions[c + 1]],partitions[c]))
elif self.membership_function == Membership.trapmf:
b1 = (partitions[c] - partitions[c - 1])/2
b2 = (partitions[c + 1] - partitions[c]) / 2
sets.append(FuzzySet.FuzzySet(self.prefix + str(c), Membership.trapmf,
[partitions[c - 1], partitions[c] - b1,
partitions[c] - b2, partitions[c + 1]],
partitions[c]))
return sets