pyFTS/pifts.py

225 lines
6.5 KiB
Python
Raw Normal View History

2016-10-25 20:04:37 +04:00
import numpy as np
2016-11-06 03:24:36 +04:00
import pandas as pd
2016-10-25 20:04:37 +04:00
from pyFTS import *
2016-10-26 19:01:30 +04:00
class ProbabilisticFLRG(hofts.HighOrderFLRG):
2016-10-25 20:04:37 +04:00
def __init__(self,order):
2016-10-26 19:01:30 +04:00
super(ProbabilisticFLRG, self).__init__(order)
2016-10-25 21:52:44 +04:00
self.RHS = {}
2016-10-25 20:04:37 +04:00
self.frequencyCount = 0
2016-10-25 21:52:44 +04:00
2016-10-25 20:04:37 +04:00
def appendRHS(self,c):
self.frequencyCount = self.frequencyCount + 1
2016-10-25 21:52:44 +04:00
if c.name in self.RHS:
self.RHS[c.name] = self.RHS[c.name] + 1
2016-10-25 20:04:37 +04:00
else:
2016-10-25 21:52:44 +04:00
self.RHS[c.name] = 1
def getProbability(self,c):
return self.RHS[c] / self.frequencyCount
2016-10-25 20:04:37 +04:00
def __str__(self):
2016-10-25 21:52:44 +04:00
tmp2 = ""
for c in sorted(self.RHS):
if len(tmp2) > 0:
2016-10-26 19:01:30 +04:00
tmp2 = tmp2 + ", "
2016-10-25 21:52:44 +04:00
tmp2 = tmp2 + c + "(" + str(round(self.RHS[c]/self.frequencyCount,3)) + ")"
return self.strLHS() + " -> " + tmp2
2016-10-25 20:04:37 +04:00
class ProbabilisticIntervalFTS(ifts.IntervalFTS):
def __init__(self,name):
super(ProbabilisticIntervalFTS, self).__init__("PIFTS")
self.shortname = "PIFTS " + name
self.name = "Probabilistic Interval FTS"
self.detail = "Silva, P.; Guimarães, F.; Sadaei, H."
2016-10-25 20:04:37 +04:00
self.flrgs = {}
self.globalFrequency = 0
self.isInterval = True
2016-10-25 20:04:37 +04:00
def generateFLRG(self, flrs):
flrgs = {}
l = len(flrs)
for k in np.arange(self.order +1, l):
2016-10-26 19:01:30 +04:00
flrg = ProbabilisticFLRG(self.order)
2016-10-25 20:04:37 +04:00
for kk in np.arange(k - self.order, k):
flrg.appendLHS( flrs[kk].LHS )
if flrg.strLHS() in flrgs:
flrgs[flrg.strLHS()].appendRHS(flrs[k].RHS)
else:
flrgs[flrg.strLHS()] = flrg;
flrgs[flrg.strLHS()].appendRHS(flrs[k].RHS)
self.globalFrequency = self.globalFrequency + 1
return (flrgs)
2016-10-25 21:52:44 +04:00
def getProbability(self, flrg):
2016-10-26 19:01:30 +04:00
if flrg.strLHS() in self.flrgs:
return self.flrgs[ flrg.strLHS() ].frequencyCount / self.globalFrequency
else:
2016-10-26 19:52:15 +04:00
return 1/ self.globalFrequency
2016-10-25 21:52:44 +04:00
def getUpper(self,flrg):
if flrg.strLHS() in self.flrgs:
tmp = self.flrgs[ flrg.strLHS() ]
ret = sum(np.array([ tmp.getProbability(s) * self.setsDict[s].upper for s in tmp.RHS]))
else:
ret = flrg.LHS[-1].upper
return ret
def getLower(self,flrg):
if flrg.strLHS() in self.flrgs:
tmp = self.flrgs[ flrg.strLHS() ]
ret = sum(np.array([ tmp.getProbability(s) * self.setsDict[s].lower for s in tmp.RHS]))
else:
ret = flrg.LHS[-1].lower
return ret
2016-10-25 20:04:37 +04:00
def forecast(self,data):
ndata = np.array(data)
2016-11-06 03:24:36 +04:00
#print(ndata)
2016-10-25 20:04:37 +04:00
l = len(ndata)
ret = []
2016-11-01 22:03:10 +04:00
for k in np.arange(self.order-1,l):
2016-10-25 20:04:37 +04:00
affected_flrgs = []
affected_flrgs_memberships = []
2016-10-26 19:01:30 +04:00
norms = []
2016-10-25 20:04:37 +04:00
up = []
lo = []
2016-11-01 23:39:13 +04:00
# Find the sets which membership > 0 for each lag
2016-10-25 20:04:37 +04:00
count = 0
lags = {}
if self.order > 1:
2016-11-01 22:03:10 +04:00
subset = ndata[k-(self.order-1) : k+1 ]
2016-11-01 23:39:13 +04:00
2016-10-25 20:04:37 +04:00
for instance in subset:
mb = common.fuzzyInstance(instance, self.sets)
tmp = np.argwhere( mb )
2016-11-01 23:39:13 +04:00
idx = np.ravel(tmp) #flatten the array
if idx.size == 0: # the element is out of the bounds of the Universe of Discourse
if instance <= self.sets[0].lower:
idx = [0]
if instance >= self.sets[-1].upper:
idx = [len(self.sets)-1]
2016-10-25 20:04:37 +04:00
lags[count] = idx
2016-11-01 23:39:13 +04:00
count = count + 1
2016-10-25 20:04:37 +04:00
2016-11-01 23:39:13 +04:00
# Build the tree with all possible paths
2016-10-25 20:04:37 +04:00
root = tree.FLRGTreeNode(None)
self.buildTree(root,lags,0)
2016-11-01 23:39:13 +04:00
# Trace the possible paths and build the PFLRG's
2016-10-25 20:04:37 +04:00
for p in root.paths():
path = list(reversed(list(filter(None.__ne__, p))))
flrg = hofts.HighOrderFLRG(self.order)
for kk in path: flrg.appendLHS(self.sets[ kk ])
2016-10-25 21:52:44 +04:00
##
affected_flrgs.append( flrg )
2016-10-25 20:04:37 +04:00
2016-11-01 23:39:13 +04:00
# Find the general membership of FLRG
affected_flrgs_memberships.append(min(self.getSequenceMembership(subset, flrg.LHS)))
2016-10-25 20:04:37 +04:00
else:
2016-10-25 21:52:44 +04:00
mv = common.fuzzyInstance(ndata[k],self.sets) # get all membership values
tmp = np.argwhere( mv ) # get the indices of values > 0
idx = np.ravel(tmp) # flatten the array
2016-10-25 20:04:37 +04:00
for kk in idx:
flrg = hofts.HighOrderFLRG(self.order)
flrg.appendLHS(self.sets[ kk ])
affected_flrgs.append( flrg )
affected_flrgs_memberships.append(mv[kk])
2016-10-25 20:04:37 +04:00
count = 0
for flrg in affected_flrgs:
# achar o os bounds de cada FLRG, ponderados pela probabilidade e pertinência
norm = self.getProbability(flrg) * affected_flrgs_memberships[count]
2016-10-26 19:01:30 +04:00
up.append( norm * self.getUpper(flrg) )
lo.append( norm * self.getLower(flrg) )
norms.append(norm)
2016-10-25 20:04:37 +04:00
count = count + 1
# gerar o intervalo
2016-10-26 19:01:30 +04:00
norm = sum(norms)
2016-11-01 23:39:13 +04:00
if norm == 0:
ret.append( [ 0, 0 ] )
else:
ret.append( [ sum(lo)/norm, sum(up)/norm ] )
2016-10-25 20:04:37 +04:00
return ret
2016-11-01 23:39:13 +04:00
2016-11-01 22:03:10 +04:00
def forecastAhead(self,data,steps):
ret = [[data[k],data[k]] for k in np.arange(len(data)-self.order,len(data))]
for k in np.arange(self.order,steps):
2016-11-07 15:18:24 +04:00
if ret[-1][0] <= self.sets[0].lower and ret[-1][1] >= self.sets[-1].upper:
2016-11-01 23:39:13 +04:00
ret.append(ret[-1])
else:
lower = self.forecast( [ret[x][0] for x in np.arange(k-self.order,k)] )
upper = self.forecast( [ret[x][1] for x in np.arange(k-self.order,k)] )
ret.append([np.min(lower),np.max(upper)])
2016-11-01 22:03:10 +04:00
return ret
2016-11-06 03:24:36 +04:00
def getGridClean(self,resolution):
grid = {}
for sbin in np.arange(self.sets[0].lower,self.sets[-1].upper,resolution):
grid[sbin] = 0
2016-11-01 22:03:10 +04:00
2016-11-06 03:24:36 +04:00
return grid
def gridCount(self, grid, resolution, interval):
for sbin in sorted(grid):
if sbin >= interval[0] and (sbin + resolution) <= interval[1]:
grid[sbin] = grid[sbin] + 1
return grid
def forecastDistributionAhead(self,data,steps,resolution):
ret = []
intervals = self.forecastAhead(data,steps)
for k in np.arange(self.order,steps):
grid = self.getGridClean(resolution)
grid = self.gridCount(grid,resolution, intervals[k])
2016-11-07 15:18:24 +04:00
for qt in np.arange(1,50,2):
#print(qt)
qtle_lower = self.forecast([intervals[x][0] + qt*(intervals[x][1]-intervals[x][0])/100 for x in np.arange(k-self.order,k)] )
grid = self.gridCount(grid,resolution, np.ravel(qtle_lower))
qtle_upper = self.forecast([intervals[x][1] - qt*(intervals[x][1]-intervals[x][0])/100 for x in np.arange(k-self.order,k)] )
grid = self.gridCount(grid,resolution, np.ravel(qtle_upper))
qtle_mid = self.forecast([intervals[x][0] + (intervals[x][1]-intervals[x][0])/2 for x in np.arange(k-self.order,k)] )
grid = self.gridCount(grid,resolution, np.ravel(qtle_mid))
2016-11-06 03:24:36 +04:00
tmp = np.array([ grid[k] for k in sorted(grid) ])
ret.append( tmp/sum(tmp) )
grid = self.getGridClean(resolution)
df = pd.DataFrame(ret, columns=sorted(grid))
return df
2016-10-26 19:01:30 +04:00
def __str__(self):
tmp = self.name + ":\n"
for r in sorted(self.flrgs):
p = round(self.flrgs[r].frequencyCount / self.globalFrequency,3)
tmp = tmp + "(" + str(p) + ") " + str(self.flrgs[r]) + "\n"
return tmp