<spanid="pyfts-models-song-module"></span><h2>pyFTS.models.song module<aclass="headerlink"href="#module-pyFTS.models.song"title="Permalink to this headline">¶</a></h2>
<p>First Order Traditional Fuzzy Time Series method by Song & Chissom (1993)</p>
<olclass="upperalpha simple"start="17">
<li><p>Song and B. S. Chissom, “Fuzzy time series and its models,” Fuzzy Sets Syst., vol. 54, no. 3, pp. 269–277, 1993.</p></li>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.song.</span></span><spanclass="sig-name descname"><spanclass="pre">ConventionalFTS</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/song.html#ConventionalFTS"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">alpha_cut</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.alpha_cut"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the minimal membership to be considered on fuzzyfication process</p>
<spanclass="sig-name descname"><spanclass="pre">auto_update</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.auto_update"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating that model is incremental</p>
<spanclass="sig-name descname"><spanclass="pre">benchmark_only</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.benchmark_only"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.</p>
<spanclass="sig-name descname"><spanclass="pre">detail</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.detail"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with the model detailed information</p>
<spanclass="sig-name descname"><spanclass="pre">dump</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.dump"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">flr_membership_matrix</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">flr</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/song.html#ConventionalFTS.flr_membership_matrix"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.flr_membership_matrix"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">flrgs</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#dict"title="(in Python v3.10)"><spanclass="pre">dict</span></a></em><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.flrgs"title="Permalink to this definition">¶</a></dt>
<dd><p>The list of Fuzzy Logical Relationship Groups - FLRG</p>
<spanclass="sig-name descname"><spanclass="pre">forecast</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">ndata</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/song.html#ConventionalFTS.forecast"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.forecast"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">has_interval_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.has_interval_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports interval forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_point_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.has_point_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports point forecasting, default: True</p>
<spanclass="sig-name descname"><spanclass="pre">has_probability_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.has_probability_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support probabilistic forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_seasonality</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.has_seasonality"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports seasonal indexers, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_clustered</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.is_clustered"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like
<spanclass="sig-name descname"><spanclass="pre">is_high_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.is_high_order"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support orders greater than 1, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_multivariate</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.is_multivariate"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_time_variant</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.is_time_variant"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if this model is time variant</p>
<spanclass="sig-name descname"><spanclass="pre">is_wrapper</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.is_wrapper"title="Permalink to this definition">¶</a></dt>
<dd><p>Indicates that this model is a wrapper for other(s) method(s)</p>
<spanclass="sig-name descname"><spanclass="pre">log</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="pre">pd.DataFrame</span></em><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.log"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">max_lag</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.max_lag"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags
<spanclass="sig-name descname"><spanclass="pre">min_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.min_order"title="Permalink to this definition">¶</a></dt>
<dd><p>In high order models, this integer value indicates the minimal order supported for the model, default: 1</p>
<spanclass="sig-name descname"><spanclass="pre">name</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.name"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">operation_matrix</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">flrs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/song.html#ConventionalFTS.operation_matrix"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.operation_matrix"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.order"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer with the model order (number of past lags are used on forecasting)</p>
<spanclass="sig-name descname"><spanclass="pre">original_max</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.original_max"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the upper limit of the Universe of Discourse, the maximal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">original_min</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.original_min"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the lower limit of the Universe of Discourse, the minimal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">partitioner</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference internal"href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner"title="pyFTS.partitioners.partitioner.Partitioner"><spanclass="pre">partitioner.Partitioner</span></a></em><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.partitioner"title="Permalink to this definition">¶</a></dt>
<dd><p>A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy.</p>
<spanclass="sig-name descname"><spanclass="pre">shortname</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.shortname"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with a short name or alias for the model</p>
<spanclass="sig-name descname"><spanclass="pre">standard_horizon</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.standard_horizon"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">train</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/song.html#ConventionalFTS.train"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.train"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">transformations</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a><spanclass="p"><spanclass="pre">[</span></span><aclass="reference internal"href="pyFTS.common.transformations.html#pyFTS.common.transformations.transformation.Transformation"title="pyFTS.common.transformations.transformation.Transformation"><spanclass="pre">transformation.Transformation</span></a><spanclass="p"><spanclass="pre">]</span></span></em><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.transformations"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []</p>
<spanclass="sig-name descname"><spanclass="pre">transformations_param</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a></em><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.transformations_param"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the specific parameters for each data transformation</p>
<spanclass="sig-name descname"><spanclass="pre">uod_clip</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.uod_clip"title="Permalink to this definition">¶</a></dt>
<dd><p>Flag indicating if the test data will be clipped inside the training Universe of Discourse</p>
<spanid="pyfts-models-chen-module"></span><h2>pyFTS.models.chen module<aclass="headerlink"href="#module-pyFTS.models.chen"title="Permalink to this headline">¶</a></h2>
<p>First Order Conventional Fuzzy Time Series by Chen (1996)</p>
<p>S.-M. Chen, “Forecasting enrollments based on fuzzy time series,” Fuzzy Sets Syst., vol. 81, no. 3, pp. 311–319, 1996.</p>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.chen.</span></span><spanclass="sig-name descname"><spanclass="pre">ConventionalFLRG</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">LHS</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/chen.html#ConventionalFLRG"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFLRG"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">append_rhs</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">c</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/chen.html#ConventionalFLRG.append_rhs"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFLRG.append_rhs"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">get_key</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">sets</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/chen.html#ConventionalFLRG.get_key"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFLRG.get_key"title="Permalink to this definition">¶</a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.chen.</span></span><spanclass="sig-name descname"><spanclass="pre">ConventionalFTS</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/chen.html#ConventionalFTS"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">alpha_cut</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.alpha_cut"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the minimal membership to be considered on fuzzyfication process</p>
<spanclass="sig-name descname"><spanclass="pre">auto_update</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.auto_update"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating that model is incremental</p>
<spanclass="sig-name descname"><spanclass="pre">benchmark_only</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.benchmark_only"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.</p>
<spanclass="sig-name descname"><spanclass="pre">detail</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.detail"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with the model detailed information</p>
<spanclass="sig-name descname"><spanclass="pre">dump</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.dump"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">flrgs</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#dict"title="(in Python v3.10)"><spanclass="pre">dict</span></a></em><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.flrgs"title="Permalink to this definition">¶</a></dt>
<dd><p>The list of Fuzzy Logical Relationship Groups - FLRG</p>
<spanclass="sig-name descname"><spanclass="pre">forecast</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">ndata</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/chen.html#ConventionalFTS.forecast"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.forecast"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">generate_flrg</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">flrs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/chen.html#ConventionalFTS.generate_flrg"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.generate_flrg"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">has_interval_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.has_interval_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports interval forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_point_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.has_point_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports point forecasting, default: True</p>
<spanclass="sig-name descname"><spanclass="pre">has_probability_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.has_probability_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support probabilistic forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_seasonality</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.has_seasonality"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports seasonal indexers, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_clustered</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.is_clustered"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like
<spanclass="sig-name descname"><spanclass="pre">is_high_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.is_high_order"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support orders greater than 1, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_multivariate</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.is_multivariate"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_time_variant</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.is_time_variant"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if this model is time variant</p>
<spanclass="sig-name descname"><spanclass="pre">is_wrapper</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.is_wrapper"title="Permalink to this definition">¶</a></dt>
<dd><p>Indicates that this model is a wrapper for other(s) method(s)</p>
<spanclass="sig-name descname"><spanclass="pre">log</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="pre">pd.DataFrame</span></em><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.log"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">max_lag</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.max_lag"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags
<spanclass="sig-name descname"><spanclass="pre">min_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.min_order"title="Permalink to this definition">¶</a></dt>
<dd><p>In high order models, this integer value indicates the minimal order supported for the model, default: 1</p>
<spanclass="sig-name descname"><spanclass="pre">name</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.name"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.order"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer with the model order (number of past lags are used on forecasting)</p>
<spanclass="sig-name descname"><spanclass="pre">original_max</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.original_max"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the upper limit of the Universe of Discourse, the maximal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">original_min</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.original_min"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the lower limit of the Universe of Discourse, the minimal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">partitioner</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference internal"href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner"title="pyFTS.partitioners.partitioner.Partitioner"><spanclass="pre">partitioner.Partitioner</span></a></em><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.partitioner"title="Permalink to this definition">¶</a></dt>
<dd><p>A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy.</p>
<spanclass="sig-name descname"><spanclass="pre">shortname</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.shortname"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with a short name or alias for the model</p>
<spanclass="sig-name descname"><spanclass="pre">standard_horizon</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.standard_horizon"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">train</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/chen.html#ConventionalFTS.train"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.train"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">transformations</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a><spanclass="p"><spanclass="pre">[</span></span><aclass="reference internal"href="pyFTS.common.transformations.html#pyFTS.common.transformations.transformation.Transformation"title="pyFTS.common.transformations.transformation.Transformation"><spanclass="pre">transformation.Transformation</span></a><spanclass="p"><spanclass="pre">]</span></span></em><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.transformations"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []</p>
<spanclass="sig-name descname"><spanclass="pre">transformations_param</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a></em><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.transformations_param"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the specific parameters for each data transformation</p>
<spanclass="sig-name descname"><spanclass="pre">uod_clip</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.uod_clip"title="Permalink to this definition">¶</a></dt>
<dd><p>Flag indicating if the test data will be clipped inside the training Universe of Discourse</p>
<spanid="pyfts-models-yu-module"></span><h2>pyFTS.models.yu module<aclass="headerlink"href="#module-pyFTS.models.yu"title="Permalink to this headline">¶</a></h2>
<p>First Order Weighted Fuzzy Time Series by Yu(2005)</p>
<p>H.-K. Yu, “Weighted fuzzy time series models for TAIEX forecasting,”
Phys. A Stat. Mech. its Appl., vol. 349, no. 3, pp. 609–624, 2005.</p>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.yu.</span></span><spanclass="sig-name descname"><spanclass="pre">WeightedFLRG</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">LHS</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/yu.html#WeightedFLRG"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.yu.WeightedFLRG"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">append_rhs</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">c</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/yu.html#WeightedFLRG.append_rhs"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.yu.WeightedFLRG.append_rhs"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">weights</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">sets</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/yu.html#WeightedFLRG.weights"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.yu.WeightedFLRG.weights"title="Permalink to this definition">¶</a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.yu.</span></span><spanclass="sig-name descname"><spanclass="pre">WeightedFTS</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/yu.html#WeightedFTS"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">alpha_cut</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.alpha_cut"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the minimal membership to be considered on fuzzyfication process</p>
<spanclass="sig-name descname"><spanclass="pre">auto_update</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.auto_update"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating that model is incremental</p>
<spanclass="sig-name descname"><spanclass="pre">benchmark_only</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.benchmark_only"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.</p>
<spanclass="sig-name descname"><spanclass="pre">detail</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.detail"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with the model detailed information</p>
<spanclass="sig-name descname"><spanclass="pre">dump</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.dump"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">flrgs</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#dict"title="(in Python v3.10)"><spanclass="pre">dict</span></a></em><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.flrgs"title="Permalink to this definition">¶</a></dt>
<dd><p>The list of Fuzzy Logical Relationship Groups - FLRG</p>
<spanclass="sig-name descname"><spanclass="pre">forecast</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">ndata</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/yu.html#WeightedFTS.forecast"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.forecast"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">generate_FLRG</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">flrs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/yu.html#WeightedFTS.generate_FLRG"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.generate_FLRG"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">has_interval_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.has_interval_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports interval forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_point_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.has_point_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports point forecasting, default: True</p>
<spanclass="sig-name descname"><spanclass="pre">has_probability_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.has_probability_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support probabilistic forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_seasonality</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.has_seasonality"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports seasonal indexers, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_clustered</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.is_clustered"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like
<spanclass="sig-name descname"><spanclass="pre">is_high_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.is_high_order"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support orders greater than 1, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_multivariate</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.is_multivariate"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_time_variant</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.is_time_variant"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if this model is time variant</p>
<spanclass="sig-name descname"><spanclass="pre">is_wrapper</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.is_wrapper"title="Permalink to this definition">¶</a></dt>
<dd><p>Indicates that this model is a wrapper for other(s) method(s)</p>
<spanclass="sig-name descname"><spanclass="pre">log</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="pre">pd.DataFrame</span></em><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.log"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">max_lag</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.max_lag"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags
<spanclass="sig-name descname"><spanclass="pre">min_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.min_order"title="Permalink to this definition">¶</a></dt>
<dd><p>In high order models, this integer value indicates the minimal order supported for the model, default: 1</p>
<spanclass="sig-name descname"><spanclass="pre">name</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.name"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.order"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer with the model order (number of past lags are used on forecasting)</p>
<spanclass="sig-name descname"><spanclass="pre">original_max</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.original_max"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the upper limit of the Universe of Discourse, the maximal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">original_min</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.original_min"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the lower limit of the Universe of Discourse, the minimal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">partitioner</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference internal"href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner"title="pyFTS.partitioners.partitioner.Partitioner"><spanclass="pre">partitioner.Partitioner</span></a></em><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.partitioner"title="Permalink to this definition">¶</a></dt>
<dd><p>A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy.</p>
<spanclass="sig-name descname"><spanclass="pre">shortname</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.shortname"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with a short name or alias for the model</p>
<spanclass="sig-name descname"><spanclass="pre">standard_horizon</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.standard_horizon"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">train</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">ndata</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/yu.html#WeightedFTS.train"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.train"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">transformations</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a><spanclass="p"><spanclass="pre">[</span></span><aclass="reference internal"href="pyFTS.common.transformations.html#pyFTS.common.transformations.transformation.Transformation"title="pyFTS.common.transformations.transformation.Transformation"><spanclass="pre">transformation.Transformation</span></a><spanclass="p"><spanclass="pre">]</span></span></em><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.transformations"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []</p>
<spanclass="sig-name descname"><spanclass="pre">transformations_param</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a></em><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.transformations_param"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the specific parameters for each data transformation</p>
<spanclass="sig-name descname"><spanclass="pre">uod_clip</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.uod_clip"title="Permalink to this definition">¶</a></dt>
<dd><p>Flag indicating if the test data will be clipped inside the training Universe of Discourse</p>
<spanid="pyfts-models-cheng-module"></span><h2>pyFTS.models.cheng module<aclass="headerlink"href="#module-pyFTS.models.cheng"title="Permalink to this headline">¶</a></h2>
<p>Trend Weighted Fuzzy Time Series by Cheng, Chen and Wu (2009)</p>
<p>C.-H. Cheng, Y.-S. Chen, and Y.-L. Wu, “Forecasting innovation diffusion of products using trend-weighted fuzzy time-series model,”
Expert Syst. Appl., vol. 36, no. 2, pp. 1826–1832, 2009.</p>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.cheng.</span></span><spanclass="sig-name descname"><spanclass="pre">TrendWeightedFLRG</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">LHS</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/cheng.html#TrendWeightedFLRG"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFLRG"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">weights</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">sets</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/cheng.html#TrendWeightedFLRG.weights"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFLRG.weights"title="Permalink to this definition">¶</a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.cheng.</span></span><spanclass="sig-name descname"><spanclass="pre">TrendWeightedFTS</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/cheng.html#TrendWeightedFTS"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFTS"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">alpha_cut</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFTS.alpha_cut"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the minimal membership to be considered on fuzzyfication process</p>
<spanclass="sig-name descname"><spanclass="pre">auto_update</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFTS.auto_update"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating that model is incremental</p>
<spanclass="sig-name descname"><spanclass="pre">benchmark_only</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFTS.benchmark_only"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.</p>
<spanclass="sig-name descname"><spanclass="pre">detail</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFTS.detail"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with the model detailed information</p>
<spanclass="sig-name descname"><spanclass="pre">dump</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFTS.dump"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">flrgs</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#dict"title="(in Python v3.10)"><spanclass="pre">dict</span></a></em><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFTS.flrgs"title="Permalink to this definition">¶</a></dt>
<dd><p>The list of Fuzzy Logical Relationship Groups - FLRG</p>
<spanclass="sig-name descname"><spanclass="pre">generate_FLRG</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">flrs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/cheng.html#TrendWeightedFTS.generate_FLRG"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFTS.generate_FLRG"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">has_interval_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFTS.has_interval_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports interval forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_point_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFTS.has_point_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports point forecasting, default: True</p>
<spanclass="sig-name descname"><spanclass="pre">has_probability_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFTS.has_probability_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support probabilistic forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_seasonality</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFTS.has_seasonality"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports seasonal indexers, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_clustered</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFTS.is_clustered"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like
<spanclass="sig-name descname"><spanclass="pre">is_high_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFTS.is_high_order"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support orders greater than 1, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_multivariate</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFTS.is_multivariate"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_time_variant</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFTS.is_time_variant"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if this model is time variant</p>
<spanclass="sig-name descname"><spanclass="pre">is_wrapper</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFTS.is_wrapper"title="Permalink to this definition">¶</a></dt>
<dd><p>Indicates that this model is a wrapper for other(s) method(s)</p>
<spanclass="sig-name descname"><spanclass="pre">log</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="pre">pd.DataFrame</span></em><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFTS.log"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">max_lag</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFTS.max_lag"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags
<spanclass="sig-name descname"><spanclass="pre">min_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFTS.min_order"title="Permalink to this definition">¶</a></dt>
<dd><p>In high order models, this integer value indicates the minimal order supported for the model, default: 1</p>
<spanclass="sig-name descname"><spanclass="pre">name</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFTS.name"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFTS.order"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer with the model order (number of past lags are used on forecasting)</p>
<spanclass="sig-name descname"><spanclass="pre">original_max</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFTS.original_max"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the upper limit of the Universe of Discourse, the maximal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">original_min</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFTS.original_min"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the lower limit of the Universe of Discourse, the minimal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">partitioner</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference internal"href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner"title="pyFTS.partitioners.partitioner.Partitioner"><spanclass="pre">partitioner.Partitioner</span></a></em><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFTS.partitioner"title="Permalink to this definition">¶</a></dt>
<dd><p>A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy.</p>
<spanclass="sig-name descname"><spanclass="pre">shortname</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFTS.shortname"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with a short name or alias for the model</p>
<spanclass="sig-name descname"><spanclass="pre">standard_horizon</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFTS.standard_horizon"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">transformations</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a><spanclass="p"><spanclass="pre">[</span></span><aclass="reference internal"href="pyFTS.common.transformations.html#pyFTS.common.transformations.transformation.Transformation"title="pyFTS.common.transformations.transformation.Transformation"><spanclass="pre">transformation.Transformation</span></a><spanclass="p"><spanclass="pre">]</span></span></em><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFTS.transformations"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []</p>
<spanclass="sig-name descname"><spanclass="pre">transformations_param</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a></em><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFTS.transformations_param"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the specific parameters for each data transformation</p>
<spanclass="sig-name descname"><spanclass="pre">uod_clip</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFTS.uod_clip"title="Permalink to this definition">¶</a></dt>
<dd><p>Flag indicating if the test data will be clipped inside the training Universe of Discourse</p>
<spanid="pyfts-models-hofts-module"></span><h2>pyFTS.models.hofts module<aclass="headerlink"href="#module-pyFTS.models.hofts"title="Permalink to this headline">¶</a></h2>
<p>High Order FTS</p>
<p>Severiano, S. A. Jr; Silva, P. C. L.; Sadaei, H. J.; Guimarães, F. G. Very Short-term Solar Forecasting
using Fuzzy Time Series. 2017 IEEE International Conference on Fuzzy Systems. DOI10.1109/FUZZ-IEEE.2017.8015732</p>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.hofts.</span></span><spanclass="sig-name descname"><spanclass="pre">HighOrderFLRG</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">order</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#HighOrderFLRG"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFLRG"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">append_lhs</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">c</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#HighOrderFLRG.append_lhs"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFLRG.append_lhs"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">append_rhs</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">c</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#HighOrderFLRG.append_rhs"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFLRG.append_rhs"title="Permalink to this definition">¶</a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.hofts.</span></span><spanclass="sig-name descname"><spanclass="pre">HighOrderFTS</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#HighOrderFTS"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">alpha_cut</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.alpha_cut"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the minimal membership to be considered on fuzzyfication process</p>
<spanclass="sig-name descname"><spanclass="pre">auto_update</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.auto_update"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating that model is incremental</p>
<spanclass="sig-name descname"><spanclass="pre">benchmark_only</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.benchmark_only"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.</p>
<spanclass="sig-name descname"><spanclass="pre">configure_lags</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#HighOrderFTS.configure_lags"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.configure_lags"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">detail</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.detail"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with the model detailed information</p>
<spanclass="sig-name descname"><spanclass="pre">dump</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.dump"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">flrgs</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#dict"title="(in Python v3.10)"><spanclass="pre">dict</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.flrgs"title="Permalink to this definition">¶</a></dt>
<dd><p>The list of Fuzzy Logical Relationship Groups - FLRG</p>
<spanclass="sig-name descname"><spanclass="pre">forecast</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">ndata</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#HighOrderFTS.forecast"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.forecast"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">generate_flrg</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#HighOrderFTS.generate_flrg"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.generate_flrg"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">generate_flrg_fuzzyfied</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#HighOrderFTS.generate_flrg_fuzzyfied"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.generate_flrg_fuzzyfied"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">generate_lhs_flrg</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">sample</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">explain</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">False</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#HighOrderFTS.generate_lhs_flrg"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.generate_lhs_flrg"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">generate_lhs_flrg_fuzzyfied</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">sample</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">explain</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">False</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#HighOrderFTS.generate_lhs_flrg_fuzzyfied"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.generate_lhs_flrg_fuzzyfied"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">has_interval_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.has_interval_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports interval forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_point_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.has_point_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports point forecasting, default: True</p>
<spanclass="sig-name descname"><spanclass="pre">has_probability_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.has_probability_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support probabilistic forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_seasonality</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.has_seasonality"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports seasonal indexers, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_clustered</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.is_clustered"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like
<spanclass="sig-name descname"><spanclass="pre">is_high_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.is_high_order"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support orders greater than 1, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_multivariate</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.is_multivariate"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_time_variant</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.is_time_variant"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if this model is time variant</p>
<spanclass="sig-name descname"><spanclass="pre">is_wrapper</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.is_wrapper"title="Permalink to this definition">¶</a></dt>
<dd><p>Indicates that this model is a wrapper for other(s) method(s)</p>
<spanclass="sig-name descname"><spanclass="pre">log</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="pre">pd.DataFrame</span></em><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.log"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">max_lag</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.max_lag"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags
<spanclass="sig-name descname"><spanclass="pre">min_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.min_order"title="Permalink to this definition">¶</a></dt>
<dd><p>In high order models, this integer value indicates the minimal order supported for the model, default: 1</p>
<spanclass="sig-name descname"><spanclass="pre">name</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.name"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.order"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer with the model order (number of past lags are used on forecasting)</p>
<spanclass="sig-name descname"><spanclass="pre">original_max</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.original_max"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the upper limit of the Universe of Discourse, the maximal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">original_min</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.original_min"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the lower limit of the Universe of Discourse, the minimal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">partitioner</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference internal"href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner"title="pyFTS.partitioners.partitioner.Partitioner"><spanclass="pre">partitioner.Partitioner</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.partitioner"title="Permalink to this definition">¶</a></dt>
<dd><p>A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy.</p>
<spanclass="sig-name descname"><spanclass="pre">shortname</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.shortname"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with a short name or alias for the model</p>
<spanclass="sig-name descname"><spanclass="pre">standard_horizon</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.standard_horizon"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">train</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#HighOrderFTS.train"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.train"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">transformations</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a><spanclass="p"><spanclass="pre">[</span></span><aclass="reference internal"href="pyFTS.common.transformations.html#pyFTS.common.transformations.transformation.Transformation"title="pyFTS.common.transformations.transformation.Transformation"><spanclass="pre">transformation.Transformation</span></a><spanclass="p"><spanclass="pre">]</span></span></em><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.transformations"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []</p>
<spanclass="sig-name descname"><spanclass="pre">transformations_param</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.transformations_param"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the specific parameters for each data transformation</p>
<spanclass="sig-name descname"><spanclass="pre">uod_clip</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.uod_clip"title="Permalink to this definition">¶</a></dt>
<dd><p>Flag indicating if the test data will be clipped inside the training Universe of Discourse</p>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.hofts.</span></span><spanclass="sig-name descname"><spanclass="pre">WeightedHighOrderFLRG</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">order</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#WeightedHighOrderFLRG"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFLRG"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">append_lhs</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">c</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#WeightedHighOrderFLRG.append_lhs"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFLRG.append_lhs"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">append_rhs</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">fset</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#WeightedHighOrderFLRG.append_rhs"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFLRG.append_rhs"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">get_lower</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">sets</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#WeightedHighOrderFLRG.get_lower"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFLRG.get_lower"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">get_midpoint</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">sets</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#WeightedHighOrderFLRG.get_midpoint"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFLRG.get_midpoint"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">get_upper</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">sets</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#WeightedHighOrderFLRG.get_upper"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFLRG.get_upper"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">weights</span></span><spanclass="sig-paren">(</span><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#WeightedHighOrderFLRG.weights"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFLRG.weights"title="Permalink to this definition">¶</a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.hofts.</span></span><spanclass="sig-name descname"><spanclass="pre">WeightedHighOrderFTS</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#WeightedHighOrderFTS"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFTS"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">alpha_cut</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFTS.alpha_cut"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the minimal membership to be considered on fuzzyfication process</p>
<spanclass="sig-name descname"><spanclass="pre">auto_update</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFTS.auto_update"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating that model is incremental</p>
<spanclass="sig-name descname"><spanclass="pre">benchmark_only</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFTS.benchmark_only"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.</p>
<spanclass="sig-name descname"><spanclass="pre">detail</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFTS.detail"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with the model detailed information</p>
<spanclass="sig-name descname"><spanclass="pre">dump</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFTS.dump"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">flrgs</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#dict"title="(in Python v3.10)"><spanclass="pre">dict</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFTS.flrgs"title="Permalink to this definition">¶</a></dt>
<dd><p>The list of Fuzzy Logical Relationship Groups - FLRG</p>
<spanclass="sig-name descname"><spanclass="pre">generate_lhs_flrg_fuzzyfied</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">sample</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">explain</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">False</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#WeightedHighOrderFTS.generate_lhs_flrg_fuzzyfied"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFTS.generate_lhs_flrg_fuzzyfied"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">has_interval_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFTS.has_interval_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports interval forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_point_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFTS.has_point_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports point forecasting, default: True</p>
<spanclass="sig-name descname"><spanclass="pre">has_probability_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFTS.has_probability_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support probabilistic forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_seasonality</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFTS.has_seasonality"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports seasonal indexers, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_clustered</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFTS.is_clustered"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like
<spanclass="sig-name descname"><spanclass="pre">is_high_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFTS.is_high_order"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support orders greater than 1, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_multivariate</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFTS.is_multivariate"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_time_variant</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFTS.is_time_variant"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if this model is time variant</p>
<spanclass="sig-name descname"><spanclass="pre">is_wrapper</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFTS.is_wrapper"title="Permalink to this definition">¶</a></dt>
<dd><p>Indicates that this model is a wrapper for other(s) method(s)</p>
<spanclass="sig-name descname"><spanclass="pre">log</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="pre">pd.DataFrame</span></em><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFTS.log"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">max_lag</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFTS.max_lag"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags
<spanclass="sig-name descname"><spanclass="pre">min_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFTS.min_order"title="Permalink to this definition">¶</a></dt>
<dd><p>In high order models, this integer value indicates the minimal order supported for the model, default: 1</p>
<spanclass="sig-name descname"><spanclass="pre">name</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFTS.name"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFTS.order"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer with the model order (number of past lags are used on forecasting)</p>
<spanclass="sig-name descname"><spanclass="pre">original_max</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFTS.original_max"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the upper limit of the Universe of Discourse, the maximal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">original_min</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFTS.original_min"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the lower limit of the Universe of Discourse, the minimal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">partitioner</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference internal"href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner"title="pyFTS.partitioners.partitioner.Partitioner"><spanclass="pre">partitioner.Partitioner</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFTS.partitioner"title="Permalink to this definition">¶</a></dt>
<dd><p>A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy.</p>
<spanclass="sig-name descname"><spanclass="pre">shortname</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFTS.shortname"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with a short name or alias for the model</p>
<spanclass="sig-name descname"><spanclass="pre">standard_horizon</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFTS.standard_horizon"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">transformations</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a><spanclass="p"><spanclass="pre">[</span></span><aclass="reference internal"href="pyFTS.common.transformations.html#pyFTS.common.transformations.transformation.Transformation"title="pyFTS.common.transformations.transformation.Transformation"><spanclass="pre">transformation.Transformation</span></a><spanclass="p"><spanclass="pre">]</span></span></em><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFTS.transformations"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []</p>
<spanclass="sig-name descname"><spanclass="pre">transformations_param</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFTS.transformations_param"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the specific parameters for each data transformation</p>
<spanclass="sig-name descname"><spanclass="pre">uod_clip</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFTS.uod_clip"title="Permalink to this definition">¶</a></dt>
<dd><p>Flag indicating if the test data will be clipped inside the training Universe of Discourse</p>
<spanid="pyfts-models-hwang-module"></span><h2>pyFTS.models.hwang module<aclass="headerlink"href="#module-pyFTS.models.hwang"title="Permalink to this headline">¶</a></h2>
<p>High Order Fuzzy Time Series by Hwang, Chen and Lee (1998)</p>
<p>Jeng-Ren Hwang, Shyi-Ming Chen, and Chia-Hoang Lee, “Handling forecasting problems using fuzzy time series,”
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.hwang.</span></span><spanclass="sig-name descname"><spanclass="pre">HighOrderFTS</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hwang.html#HighOrderFTS"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">alpha_cut</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.alpha_cut"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the minimal membership to be considered on fuzzyfication process</p>
<spanclass="sig-name descname"><spanclass="pre">auto_update</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.auto_update"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating that model is incremental</p>
<spanclass="sig-name descname"><spanclass="pre">benchmark_only</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.benchmark_only"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.</p>
<spanclass="sig-name descname"><spanclass="pre">configure_lags</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hwang.html#HighOrderFTS.configure_lags"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.configure_lags"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">detail</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.detail"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with the model detailed information</p>
<spanclass="sig-name descname"><spanclass="pre">dump</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.dump"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">flrgs</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#dict"title="(in Python v3.10)"><spanclass="pre">dict</span></a></em><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.flrgs"title="Permalink to this definition">¶</a></dt>
<dd><p>The list of Fuzzy Logical Relationship Groups - FLRG</p>
<spanclass="sig-name descname"><spanclass="pre">forecast</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">ndata</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hwang.html#HighOrderFTS.forecast"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.forecast"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">has_interval_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.has_interval_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports interval forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_point_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.has_point_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports point forecasting, default: True</p>
<spanclass="sig-name descname"><spanclass="pre">has_probability_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.has_probability_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support probabilistic forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_seasonality</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.has_seasonality"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports seasonal indexers, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_clustered</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.is_clustered"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like
<spanclass="sig-name descname"><spanclass="pre">is_high_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.is_high_order"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support orders greater than 1, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_multivariate</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.is_multivariate"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_time_variant</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.is_time_variant"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if this model is time variant</p>
<spanclass="sig-name descname"><spanclass="pre">is_wrapper</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.is_wrapper"title="Permalink to this definition">¶</a></dt>
<dd><p>Indicates that this model is a wrapper for other(s) method(s)</p>
<spanclass="sig-name descname"><spanclass="pre">log</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="pre">pd.DataFrame</span></em><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.log"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">max_lag</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.max_lag"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags
<spanclass="sig-name descname"><spanclass="pre">min_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.min_order"title="Permalink to this definition">¶</a></dt>
<dd><p>In high order models, this integer value indicates the minimal order supported for the model, default: 1</p>
<spanclass="sig-name descname"><spanclass="pre">name</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.name"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.order"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer with the model order (number of past lags are used on forecasting)</p>
<spanclass="sig-name descname"><spanclass="pre">original_max</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.original_max"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the upper limit of the Universe of Discourse, the maximal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">original_min</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.original_min"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the lower limit of the Universe of Discourse, the minimal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">partitioner</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference internal"href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner"title="pyFTS.partitioners.partitioner.Partitioner"><spanclass="pre">partitioner.Partitioner</span></a></em><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.partitioner"title="Permalink to this definition">¶</a></dt>
<dd><p>A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy.</p>
<spanclass="sig-name descname"><spanclass="pre">shortname</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.shortname"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with a short name or alias for the model</p>
<spanclass="sig-name descname"><spanclass="pre">standard_horizon</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.standard_horizon"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">train</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hwang.html#HighOrderFTS.train"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.train"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">transformations</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a><spanclass="p"><spanclass="pre">[</span></span><aclass="reference internal"href="pyFTS.common.transformations.html#pyFTS.common.transformations.transformation.Transformation"title="pyFTS.common.transformations.transformation.Transformation"><spanclass="pre">transformation.Transformation</span></a><spanclass="p"><spanclass="pre">]</span></span></em><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.transformations"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []</p>
<spanclass="sig-name descname"><spanclass="pre">transformations_param</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a></em><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.transformations_param"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the specific parameters for each data transformation</p>
<spanclass="sig-name descname"><spanclass="pre">uod_clip</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.uod_clip"title="Permalink to this definition">¶</a></dt>
<dd><p>Flag indicating if the test data will be clipped inside the training Universe of Discourse</p>
<spanid="pyfts-models-ifts-module"></span><h2>pyFTS.models.ifts module<aclass="headerlink"href="#module-pyFTS.models.ifts"title="Permalink to this headline">¶</a></h2>
<p>High Order Interval Fuzzy Time Series</p>
<p>SILVA, Petrônio CL; SADAEI, Hossein Javedani; GUIMARÃES, Frederico Gadelha. Interval Forecasting with Fuzzy Time Series.
In: Computational Intelligence (SSCI), 2016 IEEE Symposium Series on. IEEE, 2016. p. 1-8.</p>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.ifts.</span></span><spanclass="sig-name descname"><spanclass="pre">IntervalFTS</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ifts.html#IntervalFTS"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">alpha_cut</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.alpha_cut"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the minimal membership to be considered on fuzzyfication process</p>
<spanclass="sig-name descname"><spanclass="pre">auto_update</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.auto_update"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating that model is incremental</p>
<spanclass="sig-name descname"><spanclass="pre">benchmark_only</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.benchmark_only"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.</p>
<spanclass="sig-name descname"><spanclass="pre">detail</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.detail"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with the model detailed information</p>
<spanclass="sig-name descname"><spanclass="pre">dump</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.dump"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">flrgs</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#dict"title="(in Python v3.10)"><spanclass="pre">dict</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.flrgs"title="Permalink to this definition">¶</a></dt>
<dd><p>The list of Fuzzy Logical Relationship Groups - FLRG</p>
<spanclass="sig-name descname"><spanclass="pre">forecast_ahead_interval</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">steps</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ifts.html#IntervalFTS.forecast_ahead_interval"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.forecast_ahead_interval"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">forecast_interval</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">ndata</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ifts.html#IntervalFTS.forecast_interval"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.forecast_interval"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">get_lower</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">flrg</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ifts.html#IntervalFTS.get_lower"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.get_lower"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">get_sequence_membership</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">fuzzySets</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ifts.html#IntervalFTS.get_sequence_membership"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.get_sequence_membership"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">get_upper</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">flrg</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ifts.html#IntervalFTS.get_upper"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.get_upper"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">has_interval_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.has_interval_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports interval forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_point_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.has_point_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports point forecasting, default: True</p>
<spanclass="sig-name descname"><spanclass="pre">has_probability_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.has_probability_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support probabilistic forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_seasonality</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.has_seasonality"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports seasonal indexers, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_clustered</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.is_clustered"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like
<spanclass="sig-name descname"><spanclass="pre">is_high_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.is_high_order"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support orders greater than 1, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_multivariate</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.is_multivariate"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_time_variant</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.is_time_variant"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if this model is time variant</p>
<spanclass="sig-name descname"><spanclass="pre">is_wrapper</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.is_wrapper"title="Permalink to this definition">¶</a></dt>
<dd><p>Indicates that this model is a wrapper for other(s) method(s)</p>
<spanclass="sig-name descname"><spanclass="pre">log</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="pre">pd.DataFrame</span></em><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.log"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">max_lag</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.max_lag"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags
<spanclass="sig-name descname"><spanclass="pre">min_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.min_order"title="Permalink to this definition">¶</a></dt>
<dd><p>In high order models, this integer value indicates the minimal order supported for the model, default: 1</p>
<spanclass="sig-name descname"><spanclass="pre">name</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.name"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.order"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer with the model order (number of past lags are used on forecasting)</p>
<spanclass="sig-name descname"><spanclass="pre">original_max</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.original_max"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the upper limit of the Universe of Discourse, the maximal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">original_min</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.original_min"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the lower limit of the Universe of Discourse, the minimal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">partitioner</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference internal"href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner"title="pyFTS.partitioners.partitioner.Partitioner"><spanclass="pre">partitioner.Partitioner</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.partitioner"title="Permalink to this definition">¶</a></dt>
<dd><p>A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy.</p>
<spanclass="sig-name descname"><spanclass="pre">shortname</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.shortname"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with a short name or alias for the model</p>
<spanclass="sig-name descname"><spanclass="pre">standard_horizon</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.standard_horizon"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">transformations</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a><spanclass="p"><spanclass="pre">[</span></span><aclass="reference internal"href="pyFTS.common.transformations.html#pyFTS.common.transformations.transformation.Transformation"title="pyFTS.common.transformations.transformation.Transformation"><spanclass="pre">transformation.Transformation</span></a><spanclass="p"><spanclass="pre">]</span></span></em><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.transformations"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []</p>
<spanclass="sig-name descname"><spanclass="pre">transformations_param</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.transformations_param"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the specific parameters for each data transformation</p>
<spanclass="sig-name descname"><spanclass="pre">uod_clip</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.uod_clip"title="Permalink to this definition">¶</a></dt>
<dd><p>Flag indicating if the test data will be clipped inside the training Universe of Discourse</p>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.ifts.</span></span><spanclass="sig-name descname"><spanclass="pre">WeightedIntervalFTS</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ifts.html#WeightedIntervalFTS"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">alpha_cut</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.alpha_cut"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the minimal membership to be considered on fuzzyfication process</p>
<spanclass="sig-name descname"><spanclass="pre">auto_update</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.auto_update"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating that model is incremental</p>
<spanclass="sig-name descname"><spanclass="pre">benchmark_only</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.benchmark_only"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.</p>
<spanclass="sig-name descname"><spanclass="pre">detail</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.detail"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with the model detailed information</p>
<spanclass="sig-name descname"><spanclass="pre">dump</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.dump"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">flrgs</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#dict"title="(in Python v3.10)"><spanclass="pre">dict</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.flrgs"title="Permalink to this definition">¶</a></dt>
<dd><p>The list of Fuzzy Logical Relationship Groups - FLRG</p>
<spanclass="sig-name descname"><spanclass="pre">forecast_ahead_interval</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">steps</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ifts.html#WeightedIntervalFTS.forecast_ahead_interval"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.forecast_ahead_interval"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">forecast_interval</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">ndata</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ifts.html#WeightedIntervalFTS.forecast_interval"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.forecast_interval"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">get_lower</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">flrg</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ifts.html#WeightedIntervalFTS.get_lower"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.get_lower"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">get_sequence_membership</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">fuzzySets</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ifts.html#WeightedIntervalFTS.get_sequence_membership"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.get_sequence_membership"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">get_upper</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">flrg</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ifts.html#WeightedIntervalFTS.get_upper"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.get_upper"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">has_interval_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.has_interval_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports interval forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_point_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.has_point_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports point forecasting, default: True</p>
<spanclass="sig-name descname"><spanclass="pre">has_probability_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.has_probability_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support probabilistic forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_seasonality</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.has_seasonality"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports seasonal indexers, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_clustered</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.is_clustered"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like
<spanclass="sig-name descname"><spanclass="pre">is_high_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.is_high_order"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support orders greater than 1, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_multivariate</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.is_multivariate"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_time_variant</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.is_time_variant"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if this model is time variant</p>
<spanclass="sig-name descname"><spanclass="pre">is_wrapper</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.is_wrapper"title="Permalink to this definition">¶</a></dt>
<dd><p>Indicates that this model is a wrapper for other(s) method(s)</p>
<spanclass="sig-name descname"><spanclass="pre">log</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="pre">pd.DataFrame</span></em><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.log"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">max_lag</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.max_lag"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags
<spanclass="sig-name descname"><spanclass="pre">min_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.min_order"title="Permalink to this definition">¶</a></dt>
<dd><p>In high order models, this integer value indicates the minimal order supported for the model, default: 1</p>
<spanclass="sig-name descname"><spanclass="pre">name</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.name"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.order"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer with the model order (number of past lags are used on forecasting)</p>
<spanclass="sig-name descname"><spanclass="pre">original_max</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.original_max"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the upper limit of the Universe of Discourse, the maximal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">original_min</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.original_min"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the lower limit of the Universe of Discourse, the minimal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">partitioner</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference internal"href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner"title="pyFTS.partitioners.partitioner.Partitioner"><spanclass="pre">partitioner.Partitioner</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.partitioner"title="Permalink to this definition">¶</a></dt>
<dd><p>A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy.</p>
<spanclass="sig-name descname"><spanclass="pre">shortname</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.shortname"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with a short name or alias for the model</p>
<spanclass="sig-name descname"><spanclass="pre">standard_horizon</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.standard_horizon"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">transformations</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a><spanclass="p"><spanclass="pre">[</span></span><aclass="reference internal"href="pyFTS.common.transformations.html#pyFTS.common.transformations.transformation.Transformation"title="pyFTS.common.transformations.transformation.Transformation"><spanclass="pre">transformation.Transformation</span></a><spanclass="p"><spanclass="pre">]</span></span></em><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.transformations"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []</p>
<spanclass="sig-name descname"><spanclass="pre">transformations_param</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.transformations_param"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the specific parameters for each data transformation</p>
<spanclass="sig-name descname"><spanclass="pre">uod_clip</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.uod_clip"title="Permalink to this definition">¶</a></dt>
<dd><p>Flag indicating if the test data will be clipped inside the training Universe of Discourse</p>
<spanid="pyfts-models-ismailefendi-module"></span><h2>pyFTS.models.ismailefendi module<aclass="headerlink"href="#module-pyFTS.models.ismailefendi"title="Permalink to this headline">¶</a></h2>
<p>First Order Improved Weighted Fuzzy Time Series by Efendi, Ismail and Deris (2013)</p>
<p>R. Efendi, Z. Ismail, and M. M. Deris, “Improved weight Fuzzy Time Series as used in the exchange rates forecasting of
US Dollar to Ringgit Malaysia,” Int. J. Comput. Intell. Appl., vol. 12, no. 1, p. 1350005, 2013.</p>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.ismailefendi.</span></span><spanclass="sig-name descname"><spanclass="pre">ImprovedWeightedFLRG</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">LHS</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ismailefendi.html#ImprovedWeightedFLRG"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFLRG"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">append_rhs</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">c</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ismailefendi.html#ImprovedWeightedFLRG.append_rhs"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFLRG.append_rhs"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">weights</span></span><spanclass="sig-paren">(</span><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ismailefendi.html#ImprovedWeightedFLRG.weights"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFLRG.weights"title="Permalink to this definition">¶</a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.ismailefendi.</span></span><spanclass="sig-name descname"><spanclass="pre">ImprovedWeightedFTS</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ismailefendi.html#ImprovedWeightedFTS"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">alpha_cut</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.alpha_cut"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the minimal membership to be considered on fuzzyfication process</p>
<spanclass="sig-name descname"><spanclass="pre">auto_update</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.auto_update"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating that model is incremental</p>
<spanclass="sig-name descname"><spanclass="pre">benchmark_only</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.benchmark_only"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.</p>
<spanclass="sig-name descname"><spanclass="pre">detail</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.detail"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with the model detailed information</p>
<spanclass="sig-name descname"><spanclass="pre">dump</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.dump"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">flrgs</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#dict"title="(in Python v3.10)"><spanclass="pre">dict</span></a></em><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.flrgs"title="Permalink to this definition">¶</a></dt>
<dd><p>The list of Fuzzy Logical Relationship Groups - FLRG</p>
<spanclass="sig-name descname"><spanclass="pre">forecast</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">ndata</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ismailefendi.html#ImprovedWeightedFTS.forecast"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.forecast"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">generate_flrg</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">flrs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ismailefendi.html#ImprovedWeightedFTS.generate_flrg"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.generate_flrg"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">has_interval_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.has_interval_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports interval forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_point_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.has_point_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports point forecasting, default: True</p>
<spanclass="sig-name descname"><spanclass="pre">has_probability_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.has_probability_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support probabilistic forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_seasonality</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.has_seasonality"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports seasonal indexers, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_clustered</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.is_clustered"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like
<spanclass="sig-name descname"><spanclass="pre">is_high_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.is_high_order"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support orders greater than 1, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_multivariate</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.is_multivariate"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_time_variant</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.is_time_variant"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if this model is time variant</p>
<spanclass="sig-name descname"><spanclass="pre">is_wrapper</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.is_wrapper"title="Permalink to this definition">¶</a></dt>
<dd><p>Indicates that this model is a wrapper for other(s) method(s)</p>
<spanclass="sig-name descname"><spanclass="pre">log</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="pre">pd.DataFrame</span></em><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.log"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">max_lag</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.max_lag"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags
<spanclass="sig-name descname"><spanclass="pre">min_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.min_order"title="Permalink to this definition">¶</a></dt>
<dd><p>In high order models, this integer value indicates the minimal order supported for the model, default: 1</p>
<spanclass="sig-name descname"><spanclass="pre">name</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.name"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.order"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer with the model order (number of past lags are used on forecasting)</p>
<spanclass="sig-name descname"><spanclass="pre">original_max</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.original_max"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the upper limit of the Universe of Discourse, the maximal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">original_min</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.original_min"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the lower limit of the Universe of Discourse, the minimal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">partitioner</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference internal"href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner"title="pyFTS.partitioners.partitioner.Partitioner"><spanclass="pre">partitioner.Partitioner</span></a></em><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.partitioner"title="Permalink to this definition">¶</a></dt>
<dd><p>A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy.</p>
<spanclass="sig-name descname"><spanclass="pre">shortname</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.shortname"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with a short name or alias for the model</p>
<spanclass="sig-name descname"><spanclass="pre">standard_horizon</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.standard_horizon"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">train</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">ndata</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ismailefendi.html#ImprovedWeightedFTS.train"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.train"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">transformations</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a><spanclass="p"><spanclass="pre">[</span></span><aclass="reference internal"href="pyFTS.common.transformations.html#pyFTS.common.transformations.transformation.Transformation"title="pyFTS.common.transformations.transformation.Transformation"><spanclass="pre">transformation.Transformation</span></a><spanclass="p"><spanclass="pre">]</span></span></em><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.transformations"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []</p>
<spanclass="sig-name descname"><spanclass="pre">transformations_param</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a></em><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.transformations_param"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the specific parameters for each data transformation</p>
<spanclass="sig-name descname"><spanclass="pre">uod_clip</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.uod_clip"title="Permalink to this definition">¶</a></dt>
<dd><p>Flag indicating if the test data will be clipped inside the training Universe of Discourse</p>
<spanid="pyfts-models-pwfts-module"></span><h2>pyFTS.models.pwfts module<aclass="headerlink"href="#module-pyFTS.models.pwfts"title="Permalink to this headline">¶</a></h2>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.pwfts.</span></span><spanclass="sig-name descname"><spanclass="pre">ProbabilisticWeightedFLRG</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">order</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFLRG"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFLRG"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">append_rhs</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">c</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFLRG.append_rhs"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFLRG.append_rhs"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">get_lower</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">sets</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFLRG.get_lower"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFLRG.get_lower"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">get_membership</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">sets</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFLRG.get_membership"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFLRG.get_membership"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">get_midpoint</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">sets</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFLRG.get_midpoint"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFLRG.get_midpoint"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">get_upper</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">sets</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFLRG.get_upper"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFLRG.get_upper"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">lhs_conditional_probability</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">x</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">sets</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">norm</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">uod</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">nbins</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFLRG.lhs_conditional_probability"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFLRG.lhs_conditional_probability"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">lhs_conditional_probability_fuzzyfied</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">lhs_mv</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">sets</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">norm</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">uod</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">nbins</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFLRG.lhs_conditional_probability_fuzzyfied"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFLRG.lhs_conditional_probability_fuzzyfied"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">partition_function</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">sets</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">uod</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">nbins</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">100</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFLRG.partition_function"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFLRG.partition_function"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">rhs_conditional_probability</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">x</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">sets</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">uod</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">nbins</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFLRG.rhs_conditional_probability"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFLRG.rhs_conditional_probability"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">rhs_unconditional_probability</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">c</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFLRG.rhs_unconditional_probability"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFLRG.rhs_unconditional_probability"title="Permalink to this definition">¶</a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.pwfts.</span></span><spanclass="sig-name descname"><spanclass="pre">ProbabilisticWeightedFTS</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">add_new_PWFLGR</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">flrg</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.add_new_PWFLGR"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.add_new_PWFLGR"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">alpha_cut</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.alpha_cut"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the minimal membership to be considered on fuzzyfication process</p>
<spanclass="sig-name descname"><spanclass="pre">auto_update</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.auto_update"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating that model is incremental</p>
<spanclass="sig-name descname"><spanclass="pre">benchmark_only</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.benchmark_only"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.</p>
<spanclass="sig-name descname"><spanclass="pre">detail</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.detail"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with the model detailed information</p>
<spanclass="sig-name descname"><spanclass="pre">dump</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.dump"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">flrg_lhs_conditional_probability</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">x</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">flrg</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.flrg_lhs_conditional_probability"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.flrg_lhs_conditional_probability"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">flrg_lhs_conditional_probability_fuzzyfied</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">x</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">flrg</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.flrg_lhs_conditional_probability_fuzzyfied"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.flrg_lhs_conditional_probability_fuzzyfied"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">flrg_lhs_unconditional_probability</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">flrg</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.flrg_lhs_unconditional_probability"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.flrg_lhs_unconditional_probability"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">flrg_rhs_conditional_probability</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">x</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">flrg</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.flrg_rhs_conditional_probability"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.flrg_rhs_conditional_probability"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">flrgs</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#dict"title="(in Python v3.10)"><spanclass="pre">dict</span></a></em><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.flrgs"title="Permalink to this definition">¶</a></dt>
<dd><p>The list of Fuzzy Logical Relationship Groups - FLRG</p>
<spanclass="sig-name descname"><spanclass="pre">forecast</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.forecast"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">forecast_ahead</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">steps</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.forecast_ahead"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">forecast_ahead_distribution</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">ndata</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">steps</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.forecast_ahead_distribution"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead_distribution"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">forecast_ahead_interval</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">steps</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.forecast_ahead_interval"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead_interval"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">forecast_distribution</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">ndata</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.forecast_distribution"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_distribution"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">forecast_distribution_from_distribution</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">previous_dist</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">smooth</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">uod</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">bins</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.forecast_distribution_from_distribution"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_distribution_from_distribution"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">forecast_interval</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">ndata</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.forecast_interval"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_interval"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">generate_flrg</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.generate_flrg"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.generate_flrg"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">generate_flrg2</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.generate_flrg2"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.generate_flrg2"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">generate_flrg_fuzzyfied</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.generate_flrg_fuzzyfied"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.generate_flrg_fuzzyfied"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">generate_lhs_flrg</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">sample</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">explain</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">False</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.generate_lhs_flrg"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.generate_lhs_flrg"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">generate_lhs_flrg_fuzzyfied</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">sample</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">explain</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">False</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.generate_lhs_flrg_fuzzyfied"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.generate_lhs_flrg_fuzzyfied"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">get_lower</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">flrg</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.get_lower"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.get_lower"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">get_midpoint</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">flrg</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.get_midpoint"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.get_midpoint"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">get_sets_from_both_fuzzyfication</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">sample</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.get_sets_from_both_fuzzyfication"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.get_sets_from_both_fuzzyfication"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">get_upper</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">flrg</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.get_upper"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.get_upper"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">has_interval_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.has_interval_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports interval forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_point_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.has_point_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports point forecasting, default: True</p>
<spanclass="sig-name descname"><spanclass="pre">has_probability_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.has_probability_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support probabilistic forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_seasonality</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.has_seasonality"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports seasonal indexers, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">interval_heuristic</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">sample</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.interval_heuristic"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.interval_heuristic"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">interval_quantile</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">ndata</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">alpha</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.interval_quantile"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.interval_quantile"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">is_clustered</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.is_clustered"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like
<spanclass="sig-name descname"><spanclass="pre">is_high_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.is_high_order"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support orders greater than 1, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_multivariate</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.is_multivariate"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_time_variant</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.is_time_variant"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if this model is time variant</p>
<spanclass="sig-name descname"><spanclass="pre">is_wrapper</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.is_wrapper"title="Permalink to this definition">¶</a></dt>
<dd><p>Indicates that this model is a wrapper for other(s) method(s)</p>
<spanclass="sig-name descname"><spanclass="pre">log</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="pre">pd.DataFrame</span></em><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.log"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">max_lag</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.max_lag"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags
<spanclass="sig-name descname"><spanclass="pre">min_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.min_order"title="Permalink to this definition">¶</a></dt>
<dd><p>In high order models, this integer value indicates the minimal order supported for the model, default: 1</p>
<spanclass="sig-name descname"><spanclass="pre">name</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.name"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.order"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer with the model order (number of past lags are used on forecasting)</p>
<spanclass="sig-name descname"><spanclass="pre">original_max</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.original_max"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the upper limit of the Universe of Discourse, the maximal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">original_min</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.original_min"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the lower limit of the Universe of Discourse, the minimal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">partitioner</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference internal"href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner"title="pyFTS.partitioners.partitioner.Partitioner"><spanclass="pre">partitioner.Partitioner</span></a></em><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.partitioner"title="Permalink to this definition">¶</a></dt>
<dd><p>A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy.</p>
<spanclass="sig-name descname"><spanclass="pre">point_expected_value</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">sample</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.point_expected_value"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.point_expected_value"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">point_heuristic</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">sample</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.point_heuristic"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.point_heuristic"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">pwflrg_lhs_memberhip_fuzzyfied</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">flrg</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">sample</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.pwflrg_lhs_memberhip_fuzzyfied"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.pwflrg_lhs_memberhip_fuzzyfied"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">shortname</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.shortname"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with a short name or alias for the model</p>
<spanclass="sig-name descname"><spanclass="pre">standard_horizon</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.standard_horizon"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">train</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.train"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.train"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">transformations</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a><spanclass="p"><spanclass="pre">[</span></span><aclass="reference internal"href="pyFTS.common.transformations.html#pyFTS.common.transformations.transformation.Transformation"title="pyFTS.common.transformations.transformation.Transformation"><spanclass="pre">transformation.Transformation</span></a><spanclass="p"><spanclass="pre">]</span></span></em><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.transformations"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []</p>
<spanclass="sig-name descname"><spanclass="pre">transformations_param</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a></em><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.transformations_param"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the specific parameters for each data transformation</p>
<spanclass="sig-name descname"><spanclass="pre">uod_clip</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.uod_clip"title="Permalink to this definition">¶</a></dt>
<dd><p>Flag indicating if the test data will be clipped inside the training Universe of Discourse</p>
<spanclass="sig-name descname"><spanclass="pre">update_model</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.update_model"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.update_model"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.pwfts.</span></span><spanclass="sig-name descname"><spanclass="pre">highorder_fuzzy_markov_chain</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">model</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#highorder_fuzzy_markov_chain"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.highorder_fuzzy_markov_chain"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.pwfts.</span></span><spanclass="sig-name descname"><spanclass="pre">visualize_distributions</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">model</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#visualize_distributions"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.pwfts.visualize_distributions"title="Permalink to this definition">¶</a></dt>
<spanid="pyfts-models-sadaei-module"></span><h2>pyFTS.models.sadaei module<aclass="headerlink"href="#module-pyFTS.models.sadaei"title="Permalink to this headline">¶</a></h2>
<p>First Order Exponentialy Weighted Fuzzy Time Series by Sadaei et al. (2013)</p>
<p>H. J. Sadaei, R. Enayatifar, A. H. Abdullah, and A. Gani, “Short-term load forecasting using a hybrid model with a
refined exponentially weighted fuzzy time series and an improved harmony search,” Int. J. Electr. Power Energy Syst., vol. 62, no. from 2005, pp. 118–129, 2014.</p>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.sadaei.</span></span><spanclass="sig-name descname"><spanclass="pre">ExponentialyWeightedFLRG</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">LHS</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/sadaei.html#ExponentialyWeightedFLRG"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFLRG"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">append_rhs</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">c</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/sadaei.html#ExponentialyWeightedFLRG.append_rhs"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFLRG.append_rhs"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">weights</span></span><spanclass="sig-paren">(</span><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/sadaei.html#ExponentialyWeightedFLRG.weights"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFLRG.weights"title="Permalink to this definition">¶</a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.sadaei.</span></span><spanclass="sig-name descname"><spanclass="pre">ExponentialyWeightedFTS</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/sadaei.html#ExponentialyWeightedFTS"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">alpha_cut</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.alpha_cut"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the minimal membership to be considered on fuzzyfication process</p>
<spanclass="sig-name descname"><spanclass="pre">auto_update</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.auto_update"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating that model is incremental</p>
<spanclass="sig-name descname"><spanclass="pre">benchmark_only</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.benchmark_only"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.</p>
<spanclass="sig-name descname"><spanclass="pre">detail</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.detail"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with the model detailed information</p>
<spanclass="sig-name descname"><spanclass="pre">dump</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.dump"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">flrgs</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#dict"title="(in Python v3.10)"><spanclass="pre">dict</span></a></em><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.flrgs"title="Permalink to this definition">¶</a></dt>
<dd><p>The list of Fuzzy Logical Relationship Groups - FLRG</p>
<spanclass="sig-name descname"><spanclass="pre">forecast</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">ndata</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/sadaei.html#ExponentialyWeightedFTS.forecast"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.forecast"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">generate_flrg</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">flrs</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">c</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/sadaei.html#ExponentialyWeightedFTS.generate_flrg"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.generate_flrg"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">has_interval_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.has_interval_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports interval forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_point_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.has_point_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports point forecasting, default: True</p>
<spanclass="sig-name descname"><spanclass="pre">has_probability_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.has_probability_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support probabilistic forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_seasonality</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.has_seasonality"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports seasonal indexers, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_clustered</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.is_clustered"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like
<spanclass="sig-name descname"><spanclass="pre">is_high_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.is_high_order"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support orders greater than 1, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_multivariate</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.is_multivariate"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_time_variant</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.is_time_variant"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if this model is time variant</p>
<spanclass="sig-name descname"><spanclass="pre">is_wrapper</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.is_wrapper"title="Permalink to this definition">¶</a></dt>
<dd><p>Indicates that this model is a wrapper for other(s) method(s)</p>
<spanclass="sig-name descname"><spanclass="pre">log</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="pre">pd.DataFrame</span></em><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.log"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">max_lag</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.max_lag"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags
<spanclass="sig-name descname"><spanclass="pre">min_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.min_order"title="Permalink to this definition">¶</a></dt>
<dd><p>In high order models, this integer value indicates the minimal order supported for the model, default: 1</p>
<spanclass="sig-name descname"><spanclass="pre">name</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.name"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.order"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer with the model order (number of past lags are used on forecasting)</p>
<spanclass="sig-name descname"><spanclass="pre">original_max</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.original_max"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the upper limit of the Universe of Discourse, the maximal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">original_min</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.original_min"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the lower limit of the Universe of Discourse, the minimal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">partitioner</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference internal"href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner"title="pyFTS.partitioners.partitioner.Partitioner"><spanclass="pre">partitioner.Partitioner</span></a></em><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.partitioner"title="Permalink to this definition">¶</a></dt>
<dd><p>A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy.</p>
<spanclass="sig-name descname"><spanclass="pre">shortname</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.shortname"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with a short name or alias for the model</p>
<spanclass="sig-name descname"><spanclass="pre">standard_horizon</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.standard_horizon"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">train</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/sadaei.html#ExponentialyWeightedFTS.train"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.train"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">transformations</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a><spanclass="p"><spanclass="pre">[</span></span><aclass="reference internal"href="pyFTS.common.transformations.html#pyFTS.common.transformations.transformation.Transformation"title="pyFTS.common.transformations.transformation.Transformation"><spanclass="pre">transformation.Transformation</span></a><spanclass="p"><spanclass="pre">]</span></span></em><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.transformations"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []</p>
<spanclass="sig-name descname"><spanclass="pre">transformations_param</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a></em><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.transformations_param"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the specific parameters for each data transformation</p>
<spanclass="sig-name descname"><spanclass="pre">uod_clip</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.uod_clip"title="Permalink to this definition">¶</a></dt>
<dd><p>Flag indicating if the test data will be clipped inside the training Universe of Discourse</p>