pyFTS/docs/build/html/pyFTS.probabilistic.html

443 lines
24 KiB
HTML
Raw Normal View History

2018-08-30 23:04:52 +04:00
<!doctype html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="X-UA-Compatible" content="IE=Edge" />
2018-09-25 18:19:37 +04:00
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" /><script type="text/javascript">
var _gaq = _gaq || [];
_gaq.push(['_setAccount', 'UA-55120145-3']);
_gaq.push(['_trackPageview']);
(function() {
var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true;
ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s);
})();
</script>
<title>pyFTS.probabilistic package &#8212; pyFTS 1.6 documentation</title>
2018-08-30 23:04:52 +04:00
<link rel="stylesheet" href="_static/bizstyle.css" type="text/css" />
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<script type="text/javascript" src="_static/documentation_options.js"></script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
2018-08-30 23:04:52 +04:00
<script type="text/javascript" src="_static/bizstyle.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
2018-08-30 23:04:52 +04:00
<link rel="prev" title="pyFTS.partitioners package" href="pyFTS.partitioners.html" />
<meta name="viewport" content="width=device-width,initial-scale=1.0">
<!--[if lt IE 9]>
<script type="text/javascript" src="_static/css3-mediaqueries.js"></script>
<![endif]-->
</head><body>
2018-08-30 23:04:52 +04:00
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="pyFTS.partitioners.html" title="pyFTS.partitioners package"
accesskey="P">previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">pyFTS 1.6 documentation</a> &#187;</li>
2018-08-30 23:04:52 +04:00
<li class="nav-item nav-item-1"><a href="modules.html" >pyFTS</a> &#187;</li>
<li class="nav-item nav-item-2"><a href="pyFTS.html" accesskey="U">pyFTS package</a> &#187;</li>
</ul>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<p class="logo"><a href="index.html">
<img class="logo" src="_static/logo_heading2.png" alt="Logo"/>
</a></p>
<h3><a href="index.html">Table Of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">pyFTS.probabilistic package</a><ul>
<li><a class="reference internal" href="#module-pyFTS.probabilistic">Module contents</a></li>
<li><a class="reference internal" href="#submodules">Submodules</a></li>
<li><a class="reference internal" href="#module-pyFTS.probabilistic.ProbabilityDistribution">pyFTS.probabilistic.ProbabilityDistribution module</a></li>
<li><a class="reference internal" href="#module-pyFTS.probabilistic.kde">pyFTS.probabilistic.kde module</a></li>
</ul>
</li>
</ul>
<h4>Previous topic</h4>
<p class="topless"><a href="pyFTS.partitioners.html"
title="previous chapter">pyFTS.partitioners package</a></p>
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="_sources/pyFTS.probabilistic.rst.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3>Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="search.html" method="get">
<input type="text" name="q" />
<input type="submit" value="Go" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
</div>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<div class="section" id="pyfts-probabilistic-package">
<h1>pyFTS.probabilistic package<a class="headerlink" href="#pyfts-probabilistic-package" title="Permalink to this headline"></a></h1>
2018-08-30 23:04:52 +04:00
<div class="section" id="module-pyFTS.probabilistic">
<span id="module-contents"></span><h2>Module contents<a class="headerlink" href="#module-pyFTS.probabilistic" title="Permalink to this headline"></a></h2>
<p>Probability Distribution objects</p>
</div>
<div class="section" id="submodules">
<h2>Submodules<a class="headerlink" href="#submodules" title="Permalink to this headline"></a></h2>
</div>
<div class="section" id="module-pyFTS.probabilistic.ProbabilityDistribution">
<span id="pyfts-probabilistic-probabilitydistribution-module"></span><h2>pyFTS.probabilistic.ProbabilityDistribution module<a class="headerlink" href="#module-pyFTS.probabilistic.ProbabilityDistribution" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution">
<em class="property">class </em><code class="descclassname">pyFTS.probabilistic.ProbabilityDistribution.</code><code class="descname">ProbabilityDistribution</code><span class="sig-paren">(</span><em>type='KDE'</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.7)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
<p>Represents a discrete or continous probability distribution
If type is histogram, the PDF is discrete
If type is KDE the PDF is continuous</p>
<dl class="method">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.append">
<code class="descname">append</code><span class="sig-paren">(</span><em>values</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.append" title="Permalink to this definition"></a></dt>
<dd><p>Increment the frequency count for the values</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>values</strong> A list of values to account the frequency</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.append_interval">
<code class="descname">append_interval</code><span class="sig-paren">(</span><em>intervals</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.append_interval" title="Permalink to this definition"></a></dt>
<dd><p>Increment the frequency count for all values inside an interval</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>intervals</strong> A list of intervals do increment the frequency</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.averageloglikelihood">
<code class="descname">averageloglikelihood</code><span class="sig-paren">(</span><em>data</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.averageloglikelihood" title="Permalink to this definition"></a></dt>
<dd><p>Average log likelihood of the probability distribution with respect to data</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>data</strong> </td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"></td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.build_cdf_qtl">
<code class="descname">build_cdf_qtl</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.build_cdf_qtl" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.crossentropy">
<code class="descname">crossentropy</code><span class="sig-paren">(</span><em>q</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.crossentropy" title="Permalink to this definition"></a></dt>
2018-11-01 18:11:20 +04:00
<dd><p>Cross entropy between the actual probability distribution and the informed one,
H(P,Q) = - ∑ P(x) log ( Q(x) )</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>q</strong> a probabilistic.ProbabilityDistribution object</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">Cross entropy between this probability distribution and the given distribution</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.cumulative">
<code class="descname">cumulative</code><span class="sig-paren">(</span><em>values</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.cumulative" title="Permalink to this definition"></a></dt>
<dd><p>Return the cumulative probability densities for the input values,
2018-11-01 18:11:20 +04:00
such that F(x) = P(X &lt;= x)</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>values</strong> A list of input values</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">The cumulative probability densities for the input values</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.density">
<code class="descname">density</code><span class="sig-paren">(</span><em>values</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.density" title="Permalink to this definition"></a></dt>
<dd><p>Return the probability densities for the input values</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>values</strong> List of values to return the densities</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">List of probability densities for the input values</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.differential_offset">
<code class="descname">differential_offset</code><span class="sig-paren">(</span><em>value</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.differential_offset" title="Permalink to this definition"></a></dt>
<dd><p>Auxiliary function for probability distributions of differentiated data</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>value</strong> </td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"></td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.empiricalloglikelihood">
<code class="descname">empiricalloglikelihood</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.empiricalloglikelihood" title="Permalink to this definition"></a></dt>
2018-11-01 18:11:20 +04:00
<dd><p>Empirical Log Likelihood of the probability distribution, L(P) = ∑ log( P(x) )</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body"></td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.entropy">
<code class="descname">entropy</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.entropy" title="Permalink to this definition"></a></dt>
2018-11-01 18:11:20 +04:00
<dd><p>Return the entropy of the probability distribution, H(P) = E[ -ln P(X) ] = - ∑ P(x) log ( P(x) )</p>
<p>:return:the entropy of the probability distribution</p>
</dd></dl>
<dl class="method">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.expected_value">
<code class="descname">expected_value</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.expected_value" title="Permalink to this definition"></a></dt>
<dd><p>Return the expected value of the distribution, as E[X] = ∑ x * P(x)</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">The expected value of the distribution</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.kullbackleiblerdivergence">
<code class="descname">kullbackleiblerdivergence</code><span class="sig-paren">(</span><em>q</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.kullbackleiblerdivergence" title="Permalink to this definition"></a></dt>
2018-11-01 18:11:20 +04:00
<dd><p>Kullback-Leibler divergence between the actual probability distribution and the informed one.
DKL(P || Q) = - ∑ P(x) log( P(X) / Q(x) )</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>q</strong> a probabilistic.ProbabilityDistribution object</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">Kullback-Leibler divergence</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.plot">
<code class="descname">plot</code><span class="sig-paren">(</span><em>axis=None, color='black', tam=[10, 6], title=None</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.plot" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.pseudologlikelihood">
<code class="descname">pseudologlikelihood</code><span class="sig-paren">(</span><em>data</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.pseudologlikelihood" title="Permalink to this definition"></a></dt>
<dd><p>Pseudo log likelihood of the probability distribution with respect to data</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>data</strong> </td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"></td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.quantile">
<code class="descname">quantile</code><span class="sig-paren">(</span><em>values</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.quantile" title="Permalink to this definition"></a></dt>
<dd><p>Return the Universe of Discourse values in relation to the quantile input values,
2018-11-01 18:11:20 +04:00
such that Q(tau) = min( {x | F(x) &gt;= tau })</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>values</strong> input values</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">The list of the quantile values for the input values</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.set">
<code class="descname">set</code><span class="sig-paren">(</span><em>value</em>, <em>density</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.set" title="Permalink to this definition"></a></dt>
<dd><p>Assert a probability density for a certain value value, such that P(value) = density</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>value</strong> A value in the universe of discourse from the distribution</li>
<li><strong>density</strong> The probability density to assign to the value</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</dd></dl>
2019-09-24 06:16:06 +04:00
<dl class="function">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.from_point">
<code class="descclassname">pyFTS.probabilistic.ProbabilityDistribution.</code><code class="descname">from_point</code><span class="sig-paren">(</span><em>x</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.from_point" title="Permalink to this definition"></a></dt>
<dd><p>Create a probability distribution from a scalar value</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> scalar value</li>
<li><strong>kwargs</strong> common parameters of the distribution</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">the ProbabilityDistribution object</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
<div class="section" id="module-pyFTS.probabilistic.kde">
<span id="pyfts-probabilistic-kde-module"></span><h2>pyFTS.probabilistic.kde module<a class="headerlink" href="#module-pyFTS.probabilistic.kde" title="Permalink to this headline"></a></h2>
<p>Kernel Density Estimation</p>
<dl class="class">
<dt id="pyFTS.probabilistic.kde.KernelSmoothing">
<em class="property">class </em><code class="descclassname">pyFTS.probabilistic.kde.</code><code class="descname">KernelSmoothing</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.kde.KernelSmoothing" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.7)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
<p>Kernel Density Estimation</p>
<dl class="method">
<dt id="pyFTS.probabilistic.kde.KernelSmoothing.kernel_function">
<code class="descname">kernel_function</code><span class="sig-paren">(</span><em>u</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.kde.KernelSmoothing.kernel_function" title="Permalink to this definition"></a></dt>
<dd><p>Apply the kernel</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>u</strong> </td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"></td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.probabilistic.kde.KernelSmoothing.probability">
<code class="descname">probability</code><span class="sig-paren">(</span><em>x</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.kde.KernelSmoothing.probability" title="Permalink to this definition"></a></dt>
<dd><p>Probability of the point x on data</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> </li>
<li><strong>data</strong> </li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last"></p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</dd></dl>
</div>
</div>
</div>
</div>
</div>
<div class="clearer"></div>
</div>
2018-08-30 23:04:52 +04:00
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="pyFTS.partitioners.html" title="pyFTS.partitioners package"
>previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">pyFTS 1.6 documentation</a> &#187;</li>
2018-08-30 23:04:52 +04:00
<li class="nav-item nav-item-1"><a href="modules.html" >pyFTS</a> &#187;</li>
<li class="nav-item nav-item-2"><a href="pyFTS.html" >pyFTS package</a> &#187;</li>
</ul>
</div>
<div class="footer" role="contentinfo">
&#169; Copyright 2018, Machine Intelligence and Data Science Laboratory - UFMG - Brazil.
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.7.2.
</div>
</body>
</html>