pyFTS/benchmarks/Measures.py

112 lines
2.7 KiB
Python
Raw Normal View History

# -*- coding: utf8 -*-
2016-12-22 17:04:33 +04:00
import numpy as np
import pandas as pd
# Autocorrelation function estimative
def acf(data, k):
mu = np.mean(data)
sigma = np.var(data)
n = len(data)
s = 0
for t in np.arange(0,n-k):
s += (data[t]-mu) * (data[t+k] - mu)
return 1/((n-k)*sigma)*s
2016-12-22 17:04:33 +04:00
# Erro quadrático médio
def rmse(targets, forecasts):
return np.sqrt(np.nanmean((targets - forecasts) ** 2))
2016-12-22 17:04:33 +04:00
def rmse_interval(targets, forecasts):
fmean = [np.mean(i) for i in forecasts]
return np.sqrt(np.nanmean((fmean - targets) ** 2))
# Erro Percentual médio
def mape(targets, forecasts):
return np.mean(np.abs(targets - forecasts) / targets) * 100
def smape(targets, forecasts, type=2):
if type == 1:
return np.mean(np.abs(forecasts - targets) / ((forecasts + targets)/2))
elif type == 2:
return np.mean(np.abs(forecasts - targets) / (abs(forecasts) + abs(targets)) )*100
else:
return sum(np.abs(forecasts - targets)) / sum(forecasts + targets)
2016-12-22 17:04:33 +04:00
def mape_interval(targets, forecasts):
fmean = [np.mean(i) for i in forecasts]
return np.mean(abs(fmean - targets) / fmean) * 100
# Theil's U Statistic
def UStatistic(targets, forecasts):
l = len(targets)
naive = []
y = []
for k in np.arange(0,l-1):
y.append((forecasts[k ] - targets[k ]) ** 2)
naive.append((targets[k + 1] - targets[k]) ** 2)
return np.sqrt(sum(y) / sum(naive))
# Theils Inequality Coefficient
def TheilsInequality(targets, forecasts):
res = targets - forecasts
t = len(res)
us = np.sqrt(sum([u**2 for u in res]))
ys = np.sqrt(sum([y**2 for y in targets]))
fs = np.sqrt(sum([f**2 for f in forecasts]))
return us / (ys + fs)
# Q Statistic for Box-Pierce test
def BoxPierceStatistic(data, h):
n = len(data)
s = 0
for k in np.arange(1,h+1):
r = acf(data, k)
s += r**2
return n*s
# Q Statistic for LjungBox test
def BoxLjungStatistic(data, h):
n = len(data)
s = 0
for k in np.arange(1,h+1):
r = acf(data, k)
s += r**2 / (n -k)
return n*(n-2)*s
2016-12-22 17:04:33 +04:00
# Sharpness - Mean size of the intervals
def sharpness(forecasts):
tmp = [i[1] - i[0] for i in forecasts]
return np.mean(tmp)
# Resolution - Standard deviation of the intervals
def resolution(forecasts):
shp = sharpness(forecasts)
tmp = [abs((i[1] - i[0]) - shp) for i in forecasts]
return np.mean(tmp)
# Percent of
def coverage(targets, forecasts):
preds = []
for i in np.arange(0, len(forecasts)):
if targets[i] >= forecasts[i][0] and targets[i] <= forecasts[i][1]:
preds.append(1)
else:
preds.append(0)
return np.mean(preds)