pyFTS/ifts.py

119 lines
3.8 KiB
Python
Raw Normal View History

#!/usr/bin/python
# -*- coding: utf8 -*-
import numpy as np
from pyFTS.common import FuzzySet,FLR
from pyFTS import hofts, fts, tree
class IntervalFTS(hofts.HighOrderFTS):
def __init__(self, name):
super(IntervalFTS, self).__init__("IFTS " + name)
self.shortname = "IFTS " + name
self.name = "Interval FTS"
self.detail = "Silva, P.; Guimarães, F.; Sadaei, H. (2016)"
self.flrgs = {}
self.hasPointForecasting = False
self.hasIntervalForecasting = True
self.isHighOrder = True
def getUpper(self, flrg):
if flrg.strLHS() in self.flrgs:
tmp = self.flrgs[flrg.strLHS()]
ret = max(np.array([self.setsDict[s].upper for s in tmp.RHS]))
else:
ret = flrg.LHS[-1].upper
return ret
def getLower(self, flrg):
if flrg.strLHS() in self.flrgs:
tmp = self.flrgs[flrg.strLHS()]
ret = min(np.array([self.setsDict[s].lower for s in tmp.RHS]))
else:
ret = flrg.LHS[-1].lower
return ret
def getSequenceMembership(self, data, fuzzySets):
mb = [fuzzySets[k].membership(data[k]) for k in np.arange(0, len(data))]
return mb
def buildTree(self, node, lags, level):
if level >= self.order:
return
for s in lags[level]:
node.appendChild(tree.FLRGTreeNode(s))
for child in node.getChildren():
self.buildTree(child, lags, level + 1)
def forecastInterval(self, data):
ndata = np.array(data)
l = len(ndata)
ret = []
for k in np.arange(self.order - 1, l):
affected_flrgs = []
affected_flrgs_memberships = []
up = []
lo = []
# Achar os conjuntos que tem pert > 0 para cada lag
count = 0
lags = {}
if self.order > 1:
subset = ndata[k - (self.order - 1): k + 1]
for instance in subset:
mb = FuzzySet.fuzzyInstance(instance, self.sets)
tmp = np.argwhere(mb)
idx = np.ravel(tmp) # flat the array
lags[count] = idx
count = count + 1
# Constrói uma árvore com todos os caminhos possíveis
root = tree.FLRGTreeNode(None)
self.buildTree(root, lags, 0)
# Traça os possíveis caminhos e costrói as HOFLRG's
for p in root.paths():
path = list(reversed(list(filter(None.__ne__, p))))
flrg = hofts.HighOrderFLRG(self.order)
for kk in path: flrg.appendLHS(self.sets[kk])
affected_flrgs.append(flrg)
# Acha a pertinência geral de cada FLRG
affected_flrgs_memberships.append(min(self.getSequenceMembership(subset, flrg.LHS)))
else:
mv = FuzzySet.fuzzyInstance(ndata[k], self.sets)
tmp = np.argwhere(mv)
idx = np.ravel(tmp)
for kk in idx:
flrg = hofts.HighOrderFLRG(self.order)
flrg.appendLHS(self.sets[kk])
affected_flrgs.append(flrg)
affected_flrgs_memberships.append(mv[kk])
count = 0
for flrg in affected_flrgs:
# achar o os bounds de cada FLRG, ponderados pela pertinência
up.append(affected_flrgs_memberships[count] * self.getUpper(flrg))
lo.append(affected_flrgs_memberships[count] * self.getLower(flrg))
count = count + 1
# gerar o intervalo
norm = sum(affected_flrgs_memberships)
ret.append([sum(lo) / norm, sum(up) / norm])
return ret