pyFTS/setup.py

34 lines
1.4 KiB
Python
Raw Normal View History

import setuptools
2018-02-26 20:11:29 +04:00
#with open("README.md", "r") as fh:
# long_description = fh.read()
setuptools.setup(
2018-02-26 20:11:29 +04:00
name='pyFTS',
2021-01-13 00:40:21 +04:00
packages=['pyFTS', 'pyFTS.benchmarks', 'pyFTS.common', 'pyFTS.common.transformations', 'pyFTS.data',
'pyFTS.models.ensemble', 'pyFTS.models', 'pyFTS.models.seasonal', 'pyFTS.partitioners',
'pyFTS.probabilistic', 'pyFTS.tests', 'pyFTS.models.nonstationary', 'pyFTS.models.multivariate',
'pyFTS.models.incremental', 'pyFTS.hyperparam', 'pyFTS.distributed', 'pyFTS.fcm'],
version='1.6',
2018-02-26 20:11:29 +04:00
description='Fuzzy Time Series for Python',
long_description='Fuzzy Time Series for Python',
long_description_content_type="text/markdown",
2018-02-26 20:11:29 +04:00
author='Petronio Candido L. e Silva',
author_email='petronio.candido@gmail.com',
2018-10-29 23:48:05 +04:00
url='https://pyfts.github.io/pyFTS/',
download_url='https://github.com/PYFTS/pyFTS/archive/pkg1.6.tar.gz',
2018-02-26 20:11:29 +04:00
keywords=['forecasting', 'fuzzy time series', 'fuzzy', 'time series forecasting'],
classifiers=[
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.4',
'Programming Language :: Python :: 3.5',
'Programming Language :: Python :: 3.6',
'Intended Audience :: Science/Research',
'Intended Audience :: Developers',
'Intended Audience :: Education',
'Topic :: Scientific/Engineering',
'Development Status :: 5 - Production/Stable'
]
)