<spanid="module-contents"></span><h2>Module contents<aclass="headerlink"href="#module-pyFTS.probabilistic"title="Permalink to this headline">¶</a></h2>
<spanid="pyfts-probabilistic-probabilitydistribution-module"></span><h2>pyFTS.probabilistic.ProbabilityDistribution module<aclass="headerlink"href="#module-pyFTS.probabilistic.ProbabilityDistribution"title="Permalink to this headline">¶</a></h2>
<emclass="property">class </em><codeclass="sig-prename descclassname">pyFTS.probabilistic.ProbabilityDistribution.</code><codeclass="sig-name descname">ProbabilityDistribution</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">type</span><spanclass="o">=</span><spanclass="default_value">'KDE'</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">append</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">values</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.append"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.append"title="Permalink to this definition">¶</a></dt>
<dd><p>Increment the frequency count for the values</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><p><strong>values</strong>– A list of values to account the frequency</p>
<codeclass="sig-name descname">append_interval</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">intervals</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.append_interval"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.append_interval"title="Permalink to this definition">¶</a></dt>
<dd><p>Increment the frequency count for all values inside an interval</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><p><strong>intervals</strong>– A list of intervals do increment the frequency</p>
<codeclass="sig-name descname">averageloglikelihood</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">data</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.averageloglikelihood"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.averageloglikelihood"title="Permalink to this definition">¶</a></dt>
<dd><p>Average log likelihood of the probability distribution with respect to data</p>
<codeclass="sig-name descname">bins</code><aclass="headerlink"href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.bins"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">build_cdf_qtl</code><spanclass="sig-paren">(</span><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.build_cdf_qtl"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.build_cdf_qtl"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">crossentropy</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">q</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.crossentropy"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.crossentropy"title="Permalink to this definition">¶</a></dt>
<dd><p>Cross entropy between the actual probability distribution and the informed one,
H(P,Q) = - ∑ P(x) log ( Q(x) )</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><p><strong>q</strong>– a probabilistic.ProbabilityDistribution object</p>
</dd>
<dtclass="field-even">Returns</dt>
<ddclass="field-even"><p>Cross entropy between this probability distribution and the given distribution</p>
<codeclass="sig-name descname">cumulative</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">values</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.cumulative"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.cumulative"title="Permalink to this definition">¶</a></dt>
<dd><p>Return the cumulative probability densities for the input values,
such that F(x) = P(X <= x)</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><p><strong>values</strong>– A list of input values</p>
</dd>
<dtclass="field-even">Returns</dt>
<ddclass="field-even"><p>The cumulative probability densities for the input values</p>
<codeclass="sig-name descname">density</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">values</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.density"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.density"title="Permalink to this definition">¶</a></dt>
<dd><p>Return the probability densities for the input values</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><p><strong>values</strong>– List of values to return the densities</p>
</dd>
<dtclass="field-even">Returns</dt>
<ddclass="field-even"><p>List of probability densities for the input values</p>
<codeclass="sig-name descname">differential_offset</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">value</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.differential_offset"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.differential_offset"title="Permalink to this definition">¶</a></dt>
<dd><p>Auxiliary function for probability distributions of differentiated data</p>
<codeclass="sig-name descname">empiricalloglikelihood</code><spanclass="sig-paren">(</span><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.empiricalloglikelihood"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.empiricalloglikelihood"title="Permalink to this definition">¶</a></dt>
<dd><p>Empirical Log Likelihood of the probability distribution, L(P) = ∑ log( P(x) )</p>
<codeclass="sig-name descname">entropy</code><spanclass="sig-paren">(</span><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.entropy"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.entropy"title="Permalink to this definition">¶</a></dt>
<dd><p>Return the entropy of the probability distribution, H(P) = E[ -ln P(X) ] = - ∑ P(x) log ( P(x) )</p>
<p>:return:the entropy of the probability distribution</p>
<codeclass="sig-name descname">expected_value</code><spanclass="sig-paren">(</span><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.expected_value"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.expected_value"title="Permalink to this definition">¶</a></dt>
<dd><p>Return the expected value of the distribution, as E[X] = ∑ x * P(x)</p>
<dlclass="field-list simple">
<dtclass="field-odd">Returns</dt>
<ddclass="field-odd"><p>The expected value of the distribution</p>
<codeclass="sig-name descname">kullbackleiblerdivergence</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">q</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.kullbackleiblerdivergence"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.kullbackleiblerdivergence"title="Permalink to this definition">¶</a></dt>
<dd><p>Kullback-Leibler divergence between the actual probability distribution and the informed one.
DKL(P || Q) = - ∑ P(x) log( P(X) / Q(x) )</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><p><strong>q</strong>– a probabilistic.ProbabilityDistribution object</p>
<codeclass="sig-name descname">labels</code><aclass="headerlink"href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.labels"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">plot</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">axis</span><spanclass="o">=</span><spanclass="default_value">None</span></em>, <emclass="sig-param"><spanclass="n">color</span><spanclass="o">=</span><spanclass="default_value">'black'</span></em>, <emclass="sig-param"><spanclass="n">tam</span><spanclass="o">=</span><spanclass="default_value">[10, 6]</span></em>, <emclass="sig-param"><spanclass="n">title</span><spanclass="o">=</span><spanclass="default_value">None</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.plot"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.plot"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">pseudologlikelihood</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">data</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.pseudologlikelihood"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.pseudologlikelihood"title="Permalink to this definition">¶</a></dt>
<dd><p>Pseudo log likelihood of the probability distribution with respect to data</p>
<codeclass="sig-name descname">quantile</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">values</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.quantile"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.quantile"title="Permalink to this definition">¶</a></dt>
<dd><p>Return the Universe of Discourse values in relation to the quantile input values,
such that Q(tau) = min( {x | F(x) >= tau })</p>
<codeclass="sig-name descname">set</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">value</span></em>, <emclass="sig-param"><spanclass="n">density</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.set"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.set"title="Permalink to this definition">¶</a></dt>
<dd><p>Assert a probability ‘density’ for a certain value ‘value’, such that P(value) = density</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>value</strong>– A value in the universe of discourse from the distribution</p></li>
<li><p><strong>density</strong>– The probability density to assign to the value</p></li>
<codeclass="sig-name descname">type</code><aclass="headerlink"href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.type"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">uod</code><aclass="headerlink"href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.uod"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-prename descclassname">pyFTS.probabilistic.ProbabilityDistribution.</code><codeclass="sig-name descname">from_point</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">x</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#from_point"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.probabilistic.ProbabilityDistribution.from_point"title="Permalink to this definition">¶</a></dt>
<dd><p>Create a probability distribution from a scalar value</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>x</strong>– scalar value</p></li>
<li><p><strong>kwargs</strong>– common parameters of the distribution</p></li>
<spanid="pyfts-probabilistic-kde-module"></span><h2>pyFTS.probabilistic.kde module<aclass="headerlink"href="#module-pyFTS.probabilistic.kde"title="Permalink to this headline">¶</a></h2>
<p>Kernel Density Estimation</p>
<dlclass="py class">
<dtid="pyFTS.probabilistic.kde.KernelSmoothing">
<emclass="property">class </em><codeclass="sig-prename descclassname">pyFTS.probabilistic.kde.</code><codeclass="sig-name descname">KernelSmoothing</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/probabilistic/kde.html#KernelSmoothing"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.probabilistic.kde.KernelSmoothing"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">h</code><aclass="headerlink"href="#pyFTS.probabilistic.kde.KernelSmoothing.h"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">kernel</code><aclass="headerlink"href="#pyFTS.probabilistic.kde.KernelSmoothing.kernel"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">kernel_function</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">u</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/probabilistic/kde.html#KernelSmoothing.kernel_function"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.probabilistic.kde.KernelSmoothing.kernel_function"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">probability</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">x</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/probabilistic/kde.html#KernelSmoothing.probability"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.probabilistic.kde.KernelSmoothing.probability"title="Permalink to this definition">¶</a></dt>