<spanid="pyfts-models-nonstationary-common-module"></span><h2>pyFTS.models.nonstationary.common module<aclass="headerlink"href="#module-pyFTS.models.nonstationary.common"title="Permalink to this headline">¶</a></h2>
<p>Non Stationary Fuzzy Sets</p>
<p>GARIBALDI, Jonathan M.; JAROSZEWSKI, Marcin; MUSIKASUWAN, Salang. Nonstationary fuzzy sets.
IEEE Transactions on Fuzzy Systems, v. 16, n. 4, p. 1072-1086, 2008.</p>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.nonstationary.common.</span></span><spanclass="sig-name descname"><spanclass="pre">FuzzySet</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">name</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">mf</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">parameters</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/common.html#FuzzySet"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.common.FuzzySet"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">alpha</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.common.FuzzySet.alpha"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">centroid</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.common.FuzzySet.centroid"title="Permalink to this definition">¶</a></dt>
<dd><p>The fuzzy set center of mass (or midpoint)</p>
<spanclass="sig-name descname"><spanclass="pre">get_lower</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">t</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/common.html#FuzzySet.get_lower"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.common.FuzzySet.get_lower"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">get_midpoint</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">t</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/common.html#FuzzySet.get_midpoint"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.common.FuzzySet.get_midpoint"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">get_upper</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">t</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/common.html#FuzzySet.get_upper"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.common.FuzzySet.get_upper"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">location</span></span><aclass="headerlink"href="#pyFTS.models.nonstationary.common.FuzzySet.location"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">location_params</span></span><aclass="headerlink"href="#pyFTS.models.nonstationary.common.FuzzySet.location_params"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">membership</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">x</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">t</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/common.html#FuzzySet.membership"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.common.FuzzySet.membership"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">name</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.common.FuzzySet.name"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">noise</span></span><aclass="headerlink"href="#pyFTS.models.nonstationary.common.FuzzySet.noise"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">noise_params</span></span><aclass="headerlink"href="#pyFTS.models.nonstationary.common.FuzzySet.noise_params"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">parameters</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.common.FuzzySet.parameters"title="Permalink to this definition">¶</a></dt>
<dd><p>The parameters of the membership function</p>
<spanclass="sig-name descname"><spanclass="pre">perform_location</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">t</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">param</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/common.html#FuzzySet.perform_location"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.common.FuzzySet.perform_location"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">perform_width</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">t</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">param</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/common.html#FuzzySet.perform_width"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.common.FuzzySet.perform_width"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">perturbate_parameters</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">t</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/common.html#FuzzySet.perturbate_parameters"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.common.FuzzySet.perturbate_parameters"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">type</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.common.FuzzySet.type"title="Permalink to this definition">¶</a></dt>
<dd><p>The fuzzy set type (common, composite, nonstationary, etc)</p>
<spanclass="sig-name descname"><spanclass="pre">width</span></span><aclass="headerlink"href="#pyFTS.models.nonstationary.common.FuzzySet.width"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">width_params</span></span><aclass="headerlink"href="#pyFTS.models.nonstationary.common.FuzzySet.width_params"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.nonstationary.common.</span></span><spanclass="sig-name descname"><spanclass="pre">check_bounds</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">partitioner</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">t</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/common.html#check_bounds"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.common.check_bounds"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.nonstationary.common.</span></span><spanclass="sig-name descname"><spanclass="pre">check_bounds_index</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">partitioner</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">t</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/common.html#check_bounds_index"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.common.check_bounds_index"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.nonstationary.common.</span></span><spanclass="sig-name descname"><spanclass="pre">fuzzify</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">inst</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">t</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">fuzzySets</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/common.html#fuzzify"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.common.fuzzify"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.nonstationary.common.</span></span><spanclass="sig-name descname"><spanclass="pre">window_index</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">t</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">window_size</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/common.html#window_index"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.common.window_index"title="Permalink to this definition">¶</a></dt>
<spanid="pyfts-models-nonstationary-cvfts-module"></span><h2>pyFTS.models.nonstationary.cvfts module<aclass="headerlink"href="#module-pyFTS.models.nonstationary.cvfts"title="Permalink to this headline">¶</a></h2>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.nonstationary.cvfts.</span></span><spanclass="sig-name descname"><spanclass="pre">ConditionalVarianceFTS</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/cvfts.html#ConditionalVarianceFTS"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">alpha_cut</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.alpha_cut"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the minimal membership to be considered on fuzzyfication process</p>
<spanclass="sig-name descname"><spanclass="pre">auto_update</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.auto_update"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating that model is incremental</p>
<spanclass="sig-name descname"><spanclass="pre">benchmark_only</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.benchmark_only"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.</p>
<spanclass="sig-name descname"><spanclass="pre">detail</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.detail"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with the model detailed information</p>
<spanclass="sig-name descname"><spanclass="pre">dump</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.dump"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">flrgs</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#dict"title="(in Python v3.10)"><spanclass="pre">dict</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.flrgs"title="Permalink to this definition">¶</a></dt>
<dd><p>The list of Fuzzy Logical Relationship Groups - FLRG</p>
<spanclass="sig-name descname"><spanclass="pre">forecast</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">ndata</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/cvfts.html#ConditionalVarianceFTS.forecast"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.forecast"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">forecast_interval</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">ndata</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/cvfts.html#ConditionalVarianceFTS.forecast_interval"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.forecast_interval"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">generate_flrg</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">flrs</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/cvfts.html#ConditionalVarianceFTS.generate_flrg"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.generate_flrg"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">has_interval_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.has_interval_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports interval forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_point_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.has_point_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports point forecasting, default: True</p>
<spanclass="sig-name descname"><spanclass="pre">has_probability_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.has_probability_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support probabilistic forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_seasonality</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.has_seasonality"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports seasonal indexers, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_clustered</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.is_clustered"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like
<spanclass="sig-name descname"><spanclass="pre">is_high_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.is_high_order"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support orders greater than 1, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_multivariate</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.is_multivariate"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_time_variant</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.is_time_variant"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if this model is time variant</p>
<spanclass="sig-name descname"><spanclass="pre">is_wrapper</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.is_wrapper"title="Permalink to this definition">¶</a></dt>
<dd><p>Indicates that this model is a wrapper for other(s) method(s)</p>
<spanclass="sig-name descname"><spanclass="pre">log</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="pre">pd.DataFrame</span></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.log"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">max_lag</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.max_lag"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags
<spanclass="sig-name descname"><spanclass="pre">min_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.min_order"title="Permalink to this definition">¶</a></dt>
<dd><p>In high order models, this integer value indicates the minimal order supported for the model, default: 1</p>
<spanclass="sig-name descname"><spanclass="pre">name</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.name"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.order"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer with the model order (number of past lags are used on forecasting)</p>
<spanclass="sig-name descname"><spanclass="pre">original_max</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.original_max"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the upper limit of the Universe of Discourse, the maximal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">original_min</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.original_min"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the lower limit of the Universe of Discourse, the minimal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">partitioner</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference internal"href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner"title="pyFTS.partitioners.partitioner.Partitioner"><spanclass="pre">partitioner.Partitioner</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.partitioner"title="Permalink to this definition">¶</a></dt>
<dd><p>A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy.</p>
<spanclass="sig-name descname"><spanclass="pre">perturbation_factors</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/cvfts.html#ConditionalVarianceFTS.perturbation_factors"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.perturbation_factors"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">perturbation_factors__old</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/cvfts.html#ConditionalVarianceFTS.perturbation_factors__old"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.perturbation_factors__old"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">shortname</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.shortname"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with a short name or alias for the model</p>
<spanclass="sig-name descname"><spanclass="pre">standard_horizon</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.standard_horizon"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">train</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">ndata</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/cvfts.html#ConditionalVarianceFTS.train"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.train"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">transformations</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a><spanclass="p"><spanclass="pre">[</span></span><aclass="reference internal"href="pyFTS.common.transformations.html#pyFTS.common.transformations.transformation.Transformation"title="pyFTS.common.transformations.transformation.Transformation"><spanclass="pre">transformation.Transformation</span></a><spanclass="p"><spanclass="pre">]</span></span></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.transformations"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []</p>
<spanclass="sig-name descname"><spanclass="pre">transformations_param</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.transformations_param"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the specific parameters for each data transformation</p>
<spanclass="sig-name descname"><spanclass="pre">uod_clip</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.uod_clip"title="Permalink to this definition">¶</a></dt>
<dd><p>Flag indicating if the test data will be clipped inside the training Universe of Discourse</p>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.nonstationary.cvfts.</span></span><spanclass="sig-name descname"><spanclass="pre">HighOrderNonstationaryFLRG</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">order</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/cvfts.html#HighOrderNonstationaryFLRG"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">alpha_cut</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.alpha_cut"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the minimal membership to be considered on fuzzyfication process</p>
<spanclass="sig-name descname"><spanclass="pre">append_lhs</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">c</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/cvfts.html#HighOrderNonstationaryFLRG.append_lhs"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.append_lhs"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">append_rhs</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">c</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/cvfts.html#HighOrderNonstationaryFLRG.append_rhs"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.append_rhs"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">auto_update</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.auto_update"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating that model is incremental</p>
<spanclass="sig-name descname"><spanclass="pre">benchmark_only</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.benchmark_only"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.</p>
<spanclass="sig-name descname"><spanclass="pre">detail</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.detail"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with the model detailed information</p>
<spanclass="sig-name descname"><spanclass="pre">dump</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.dump"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">flrgs</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#dict"title="(in Python v3.10)"><spanclass="pre">dict</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.flrgs"title="Permalink to this definition">¶</a></dt>
<dd><p>The list of Fuzzy Logical Relationship Groups - FLRG</p>
<spanclass="sig-name descname"><spanclass="pre">has_interval_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.has_interval_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports interval forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_point_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.has_point_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports point forecasting, default: True</p>
<spanclass="sig-name descname"><spanclass="pre">has_probability_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.has_probability_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support probabilistic forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_seasonality</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.has_seasonality"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports seasonal indexers, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_clustered</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.is_clustered"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like
<spanclass="sig-name descname"><spanclass="pre">is_high_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.is_high_order"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support orders greater than 1, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_multivariate</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.is_multivariate"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_time_variant</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.is_time_variant"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if this model is time variant</p>
<spanclass="sig-name descname"><spanclass="pre">is_wrapper</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.is_wrapper"title="Permalink to this definition">¶</a></dt>
<dd><p>Indicates that this model is a wrapper for other(s) method(s)</p>
<spanclass="sig-name descname"><spanclass="pre">log</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="pre">pd.DataFrame</span></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.log"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">max_lag</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.max_lag"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags
<spanclass="sig-name descname"><spanclass="pre">min_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.min_order"title="Permalink to this definition">¶</a></dt>
<dd><p>In high order models, this integer value indicates the minimal order supported for the model, default: 1</p>
<spanclass="sig-name descname"><spanclass="pre">name</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.name"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.order"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer with the model order (number of past lags are used on forecasting)</p>
<spanclass="sig-name descname"><spanclass="pre">original_max</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.original_max"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the upper limit of the Universe of Discourse, the maximal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">original_min</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.original_min"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the lower limit of the Universe of Discourse, the minimal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">partitioner</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference internal"href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner"title="pyFTS.partitioners.partitioner.Partitioner"><spanclass="pre">partitioner.Partitioner</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.partitioner"title="Permalink to this definition">¶</a></dt>
<dd><p>A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy.</p>
<spanclass="sig-name descname"><spanclass="pre">shortname</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.shortname"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with a short name or alias for the model</p>
<spanclass="sig-name descname"><spanclass="pre">standard_horizon</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.standard_horizon"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">transformations</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a><spanclass="p"><spanclass="pre">[</span></span><aclass="reference internal"href="pyFTS.common.transformations.html#pyFTS.common.transformations.transformation.Transformation"title="pyFTS.common.transformations.transformation.Transformation"><spanclass="pre">transformation.Transformation</span></a><spanclass="p"><spanclass="pre">]</span></span></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.transformations"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []</p>
<spanclass="sig-name descname"><spanclass="pre">transformations_param</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.transformations_param"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the specific parameters for each data transformation</p>
<spanclass="sig-name descname"><spanclass="pre">uod_clip</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.uod_clip"title="Permalink to this definition">¶</a></dt>
<dd><p>Flag indicating if the test data will be clipped inside the training Universe of Discourse</p>
<spanid="pyfts-models-nonstationary-flrg-module"></span><h2>pyFTS.models.nonstationary.flrg module<aclass="headerlink"href="#module-pyFTS.models.nonstationary.flrg"title="Permalink to this headline">¶</a></h2>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.nonstationary.flrg.</span></span><spanclass="sig-name descname"><spanclass="pre">NonStationaryFLRG</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">LHS</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/flrg.html#NonStationaryFLRG"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.flrg.NonStationaryFLRG"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">get_key</span></span><spanclass="sig-paren">(</span><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/flrg.html#NonStationaryFLRG.get_key"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.flrg.NonStationaryFLRG.get_key"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">get_lower</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o"><spanclass="pre">*</span></span><spanclass="n"><spanclass="pre">args</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/flrg.html#NonStationaryFLRG.get_lower"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.flrg.NonStationaryFLRG.get_lower"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">get_membership</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">*</span></span><spanclass="n"><spanclass="pre">args</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/flrg.html#NonStationaryFLRG.get_membership"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.flrg.NonStationaryFLRG.get_membership"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">get_midpoint</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o"><spanclass="pre">*</span></span><spanclass="n"><spanclass="pre">args</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/flrg.html#NonStationaryFLRG.get_midpoint"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.flrg.NonStationaryFLRG.get_midpoint"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">get_upper</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o"><spanclass="pre">*</span></span><spanclass="n"><spanclass="pre">args</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/flrg.html#NonStationaryFLRG.get_upper"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.flrg.NonStationaryFLRG.get_upper"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">unpack_args</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o"><spanclass="pre">*</span></span><spanclass="n"><spanclass="pre">args</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/flrg.html#NonStationaryFLRG.unpack_args"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.flrg.NonStationaryFLRG.unpack_args"title="Permalink to this definition">¶</a></dt>
<spanid="pyfts-models-nonstationary-honsfts-module"></span><h2>pyFTS.models.nonstationary.honsfts module<aclass="headerlink"href="#module-pyFTS.models.nonstationary.honsfts"title="Permalink to this headline">¶</a></h2>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.nonstationary.honsfts.</span></span><spanclass="sig-name descname"><spanclass="pre">HighOrderNonStationaryFLRG</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">order</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/honsfts.html#HighOrderNonStationaryFLRG"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">append_lhs</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">c</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/honsfts.html#HighOrderNonStationaryFLRG.append_lhs"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.append_lhs"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">append_rhs</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">fset</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/honsfts.html#HighOrderNonStationaryFLRG.append_rhs"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.append_rhs"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">get_lower</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">sets</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">perturb</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/honsfts.html#HighOrderNonStationaryFLRG.get_lower"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.get_lower"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">get_midpoint</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">sets</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">perturb</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/honsfts.html#HighOrderNonStationaryFLRG.get_midpoint"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.get_midpoint"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">get_upper</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">sets</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">perturb</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/honsfts.html#HighOrderNonStationaryFLRG.get_upper"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.get_upper"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">weights</span></span><spanclass="sig-paren">(</span><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/honsfts.html#HighOrderNonStationaryFLRG.weights"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.weights"title="Permalink to this definition">¶</a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.nonstationary.honsfts.</span></span><spanclass="sig-name descname"><spanclass="pre">HighOrderNonStationaryFTS</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/honsfts.html#HighOrderNonStationaryFTS"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">alpha_cut</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.alpha_cut"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the minimal membership to be considered on fuzzyfication process</p>
<spanclass="sig-name descname"><spanclass="pre">auto_update</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.auto_update"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating that model is incremental</p>
<spanclass="sig-name descname"><spanclass="pre">benchmark_only</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.benchmark_only"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.</p>
<spanclass="sig-name descname"><spanclass="pre">configure_lags</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/honsfts.html#HighOrderNonStationaryFTS.configure_lags"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.configure_lags"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">detail</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.detail"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with the model detailed information</p>
<spanclass="sig-name descname"><spanclass="pre">dump</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.dump"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">flrgs</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#dict"title="(in Python v3.10)"><spanclass="pre">dict</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.flrgs"title="Permalink to this definition">¶</a></dt>
<dd><p>The list of Fuzzy Logical Relationship Groups - FLRG</p>
<spanclass="sig-name descname"><spanclass="pre">forecast</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">ndata</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/honsfts.html#HighOrderNonStationaryFTS.forecast"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.forecast"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">generate_flrg</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/honsfts.html#HighOrderNonStationaryFTS.generate_flrg"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.generate_flrg"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">has_interval_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.has_interval_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports interval forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_point_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.has_point_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports point forecasting, default: True</p>
<spanclass="sig-name descname"><spanclass="pre">has_probability_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.has_probability_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support probabilistic forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_seasonality</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.has_seasonality"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports seasonal indexers, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_clustered</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.is_clustered"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like
<spanclass="sig-name descname"><spanclass="pre">is_high_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.is_high_order"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support orders greater than 1, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_multivariate</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.is_multivariate"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_time_variant</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.is_time_variant"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if this model is time variant</p>
<spanclass="sig-name descname"><spanclass="pre">is_wrapper</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.is_wrapper"title="Permalink to this definition">¶</a></dt>
<dd><p>Indicates that this model is a wrapper for other(s) method(s)</p>
<spanclass="sig-name descname"><spanclass="pre">log</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="pre">pd.DataFrame</span></em><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.log"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">max_lag</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.max_lag"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags
<spanclass="sig-name descname"><spanclass="pre">min_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.min_order"title="Permalink to this definition">¶</a></dt>
<dd><p>In high order models, this integer value indicates the minimal order supported for the model, default: 1</p>
<spanclass="sig-name descname"><spanclass="pre">name</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.name"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.order"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer with the model order (number of past lags are used on forecasting)</p>
<spanclass="sig-name descname"><spanclass="pre">original_max</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.original_max"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the upper limit of the Universe of Discourse, the maximal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">original_min</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.original_min"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the lower limit of the Universe of Discourse, the minimal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">partitioner</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference internal"href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner"title="pyFTS.partitioners.partitioner.Partitioner"><spanclass="pre">partitioner.Partitioner</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.partitioner"title="Permalink to this definition">¶</a></dt>
<dd><p>A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy.</p>
<spanclass="sig-name descname"><spanclass="pre">shortname</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.shortname"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with a short name or alias for the model</p>
<spanclass="sig-name descname"><spanclass="pre">standard_horizon</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.standard_horizon"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">train</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/honsfts.html#HighOrderNonStationaryFTS.train"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.train"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">transformations</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a><spanclass="p"><spanclass="pre">[</span></span><aclass="reference internal"href="pyFTS.common.transformations.html#pyFTS.common.transformations.transformation.Transformation"title="pyFTS.common.transformations.transformation.Transformation"><spanclass="pre">transformation.Transformation</span></a><spanclass="p"><spanclass="pre">]</span></span></em><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.transformations"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []</p>
<spanclass="sig-name descname"><spanclass="pre">transformations_param</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.transformations_param"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the specific parameters for each data transformation</p>
<spanclass="sig-name descname"><spanclass="pre">uod_clip</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.uod_clip"title="Permalink to this definition">¶</a></dt>
<dd><p>Flag indicating if the test data will be clipped inside the training Universe of Discourse</p>
<spanid="pyfts-models-nonstationary-nsfts-module"></span><h2>pyFTS.models.nonstationary.nsfts module<aclass="headerlink"href="#module-pyFTS.models.nonstationary.nsfts"title="Permalink to this headline">¶</a></h2>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.nonstationary.nsfts.</span></span><spanclass="sig-name descname"><spanclass="pre">ConventionalNonStationaryFLRG</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">LHS</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/nsfts.html#ConventionalNonStationaryFLRG"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.ConventionalNonStationaryFLRG"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">append_rhs</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">c</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/nsfts.html#ConventionalNonStationaryFLRG.append_rhs"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.ConventionalNonStationaryFLRG.append_rhs"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">get_key</span></span><spanclass="sig-paren">(</span><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/nsfts.html#ConventionalNonStationaryFLRG.get_key"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.ConventionalNonStationaryFLRG.get_key"title="Permalink to this definition">¶</a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.nonstationary.nsfts.</span></span><spanclass="sig-name descname"><spanclass="pre">NonStationaryFTS</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/nsfts.html#NonStationaryFTS"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">alpha_cut</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.alpha_cut"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the minimal membership to be considered on fuzzyfication process</p>
<spanclass="sig-name descname"><spanclass="pre">auto_update</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.auto_update"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating that model is incremental</p>
<spanclass="sig-name descname"><spanclass="pre">benchmark_only</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.benchmark_only"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.</p>
<spanclass="sig-name descname"><spanclass="pre">conditional_perturbation_factors</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/nsfts.html#NonStationaryFTS.conditional_perturbation_factors"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.conditional_perturbation_factors"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">detail</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.detail"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with the model detailed information</p>
<spanclass="sig-name descname"><spanclass="pre">dump</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.dump"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">flrgs</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#dict"title="(in Python v3.10)"><spanclass="pre">dict</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.flrgs"title="Permalink to this definition">¶</a></dt>
<dd><p>The list of Fuzzy Logical Relationship Groups - FLRG</p>
<spanclass="sig-name descname"><spanclass="pre">forecast</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">ndata</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/nsfts.html#NonStationaryFTS.forecast"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.forecast"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">forecast_interval</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">ndata</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/nsfts.html#NonStationaryFTS.forecast_interval"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.forecast_interval"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">generate_flrg</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">flrs</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/nsfts.html#NonStationaryFTS.generate_flrg"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.generate_flrg"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">has_interval_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.has_interval_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports interval forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_point_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.has_point_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports point forecasting, default: True</p>
<spanclass="sig-name descname"><spanclass="pre">has_probability_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.has_probability_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support probabilistic forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_seasonality</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.has_seasonality"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports seasonal indexers, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_clustered</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.is_clustered"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like
<spanclass="sig-name descname"><spanclass="pre">is_high_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.is_high_order"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support orders greater than 1, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_multivariate</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.is_multivariate"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_time_variant</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.is_time_variant"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if this model is time variant</p>
<spanclass="sig-name descname"><spanclass="pre">is_wrapper</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.is_wrapper"title="Permalink to this definition">¶</a></dt>
<dd><p>Indicates that this model is a wrapper for other(s) method(s)</p>
<spanclass="sig-name descname"><spanclass="pre">log</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="pre">pd.DataFrame</span></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.log"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">max_lag</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.max_lag"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags
<spanclass="sig-name descname"><spanclass="pre">min_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.min_order"title="Permalink to this definition">¶</a></dt>
<dd><p>In high order models, this integer value indicates the minimal order supported for the model, default: 1</p>
<spanclass="sig-name descname"><spanclass="pre">name</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.name"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.order"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer with the model order (number of past lags are used on forecasting)</p>
<spanclass="sig-name descname"><spanclass="pre">original_max</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.original_max"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the upper limit of the Universe of Discourse, the maximal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">original_min</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.original_min"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the lower limit of the Universe of Discourse, the minimal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">partitioner</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference internal"href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner"title="pyFTS.partitioners.partitioner.Partitioner"><spanclass="pre">partitioner.Partitioner</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.partitioner"title="Permalink to this definition">¶</a></dt>
<dd><p>A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy.</p>
<spanclass="sig-name descname"><spanclass="pre">shortname</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.shortname"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with a short name or alias for the model</p>
<spanclass="sig-name descname"><spanclass="pre">standard_horizon</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.standard_horizon"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">train</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/nsfts.html#NonStationaryFTS.train"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.train"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">transformations</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a><spanclass="p"><spanclass="pre">[</span></span><aclass="reference internal"href="pyFTS.common.transformations.html#pyFTS.common.transformations.transformation.Transformation"title="pyFTS.common.transformations.transformation.Transformation"><spanclass="pre">transformation.Transformation</span></a><spanclass="p"><spanclass="pre">]</span></span></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.transformations"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []</p>
<spanclass="sig-name descname"><spanclass="pre">transformations_param</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.transformations_param"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the specific parameters for each data transformation</p>
<spanclass="sig-name descname"><spanclass="pre">uod_clip</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.uod_clip"title="Permalink to this definition">¶</a></dt>
<dd><p>Flag indicating if the test data will be clipped inside the training Universe of Discourse</p>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.nonstationary.nsfts.</span></span><spanclass="sig-name descname"><spanclass="pre">WeightedNonStationaryFLRG</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">LHS</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/nsfts.html#WeightedNonStationaryFLRG"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">append_rhs</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">c</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/nsfts.html#WeightedNonStationaryFLRG.append_rhs"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG.append_rhs"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">get_key</span></span><spanclass="sig-paren">(</span><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/nsfts.html#WeightedNonStationaryFLRG.get_key"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG.get_key"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">get_midpoint</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">sets</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">perturb</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/nsfts.html#WeightedNonStationaryFLRG.get_midpoint"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG.get_midpoint"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">weights</span></span><spanclass="sig-paren">(</span><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/nsfts.html#WeightedNonStationaryFLRG.weights"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG.weights"title="Permalink to this definition">¶</a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.nonstationary.nsfts.</span></span><spanclass="sig-name descname"><spanclass="pre">WeightedNonStationaryFTS</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/nsfts.html#WeightedNonStationaryFTS"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">alpha_cut</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.alpha_cut"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the minimal membership to be considered on fuzzyfication process</p>
<spanclass="sig-name descname"><spanclass="pre">auto_update</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.auto_update"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating that model is incremental</p>
<spanclass="sig-name descname"><spanclass="pre">benchmark_only</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.benchmark_only"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.</p>
<spanclass="sig-name descname"><spanclass="pre">detail</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.detail"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with the model detailed information</p>
<spanclass="sig-name descname"><spanclass="pre">dump</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.dump"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">flrgs</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#dict"title="(in Python v3.10)"><spanclass="pre">dict</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.flrgs"title="Permalink to this definition">¶</a></dt>
<dd><p>The list of Fuzzy Logical Relationship Groups - FLRG</p>
<spanclass="sig-name descname"><spanclass="pre">generate_flrg</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">flrs</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/nsfts.html#WeightedNonStationaryFTS.generate_flrg"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.generate_flrg"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">has_interval_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.has_interval_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports interval forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_point_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.has_point_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports point forecasting, default: True</p>
<spanclass="sig-name descname"><spanclass="pre">has_probability_forecasting</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.has_probability_forecasting"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support probabilistic forecasting, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">has_seasonality</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.has_seasonality"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model supports seasonal indexers, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_clustered</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.is_clustered"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like
<spanclass="sig-name descname"><spanclass="pre">is_high_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.is_high_order"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support orders greater than 1, default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_multivariate</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.is_multivariate"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False</p>
<spanclass="sig-name descname"><spanclass="pre">is_time_variant</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.is_time_variant"title="Permalink to this definition">¶</a></dt>
<dd><p>A boolean value indicating if this model is time variant</p>
<spanclass="sig-name descname"><spanclass="pre">is_wrapper</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.is_wrapper"title="Permalink to this definition">¶</a></dt>
<dd><p>Indicates that this model is a wrapper for other(s) method(s)</p>
<spanclass="sig-name descname"><spanclass="pre">log</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="pre">pd.DataFrame</span></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.log"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">max_lag</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.max_lag"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags
<spanclass="sig-name descname"><spanclass="pre">min_order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.min_order"title="Permalink to this definition">¶</a></dt>
<dd><p>In high order models, this integer value indicates the minimal order supported for the model, default: 1</p>
<spanclass="sig-name descname"><spanclass="pre">name</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.name"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">order</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.order"title="Permalink to this definition">¶</a></dt>
<dd><p>A integer with the model order (number of past lags are used on forecasting)</p>
<spanclass="sig-name descname"><spanclass="pre">original_max</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.original_max"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the upper limit of the Universe of Discourse, the maximal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">original_min</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#float"title="(in Python v3.10)"><spanclass="pre">float</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.original_min"title="Permalink to this definition">¶</a></dt>
<dd><p>A float with the lower limit of the Universe of Discourse, the minimal value found on training data</p>
<spanclass="sig-name descname"><spanclass="pre">partitioner</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference internal"href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner"title="pyFTS.partitioners.partitioner.Partitioner"><spanclass="pre">partitioner.Partitioner</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.partitioner"title="Permalink to this definition">¶</a></dt>
<dd><p>A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy.</p>
<spanclass="sig-name descname"><spanclass="pre">shortname</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#str"title="(in Python v3.10)"><spanclass="pre">str</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.shortname"title="Permalink to this definition">¶</a></dt>
<dd><p>A string with a short name or alias for the model</p>
<spanclass="sig-name descname"><spanclass="pre">standard_horizon</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#int"title="(in Python v3.10)"><spanclass="pre">int</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.standard_horizon"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">train</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/nsfts.html#WeightedNonStationaryFTS.train"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.train"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">transformations</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a><spanclass="p"><spanclass="pre">[</span></span><aclass="reference internal"href="pyFTS.common.transformations.html#pyFTS.common.transformations.transformation.Transformation"title="pyFTS.common.transformations.transformation.Transformation"><spanclass="pre">transformation.Transformation</span></a><spanclass="p"><spanclass="pre">]</span></span></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.transformations"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []</p>
<spanclass="sig-name descname"><spanclass="pre">transformations_param</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/stdtypes.html#list"title="(in Python v3.10)"><spanclass="pre">list</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.transformations_param"title="Permalink to this definition">¶</a></dt>
<dd><p>A list with the specific parameters for each data transformation</p>
<spanclass="sig-name descname"><spanclass="pre">uod_clip</span></span><emclass="property"><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><aclass="reference external"href="https://docs.python.org/3/library/functions.html#bool"title="(in Python v3.10)"><spanclass="pre">bool</span></a></em><aclass="headerlink"href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.uod_clip"title="Permalink to this definition">¶</a></dt>
<dd><p>Flag indicating if the test data will be clipped inside the training Universe of Discourse</p>
<spanid="pyfts-models-nonstationary-partitioners-module"></span><h2>pyFTS.models.nonstationary.partitioners module<aclass="headerlink"href="#module-pyFTS.models.nonstationary.partitioners"title="Permalink to this headline">¶</a></h2>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.nonstationary.partitioners.</span></span><spanclass="sig-name descname"><spanclass="pre">PolynomialNonStationaryPartitioner</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">part</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/partitioners.html#PolynomialNonStationaryPartitioner"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.partitioners.PolynomialNonStationaryPartitioner"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">build</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/partitioners.html#PolynomialNonStationaryPartitioner.build"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.partitioners.PolynomialNonStationaryPartitioner.build"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">get_polynomial_perturbations</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/partitioners.html#PolynomialNonStationaryPartitioner.get_polynomial_perturbations"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.partitioners.PolynomialNonStationaryPartitioner.get_polynomial_perturbations"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">poly_width</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">par1</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">par2</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">rng</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">deg</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/partitioners.html#PolynomialNonStationaryPartitioner.poly_width"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.partitioners.PolynomialNonStationaryPartitioner.poly_width"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">scale_down</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">x</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">pct</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/partitioners.html#PolynomialNonStationaryPartitioner.scale_down"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.partitioners.PolynomialNonStationaryPartitioner.scale_down"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">scale_up</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">x</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">pct</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/partitioners.html#PolynomialNonStationaryPartitioner.scale_up"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.partitioners.PolynomialNonStationaryPartitioner.scale_up"title="Permalink to this definition">¶</a></dt>
<emclass="property"><spanclass="pre">class</span><spanclass="w"></span></em><spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.nonstationary.partitioners.</span></span><spanclass="sig-name descname"><spanclass="pre">SimpleNonStationaryPartitioner</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">part</span></span></em>, <emclass="sig-param"><spanclass="o"><spanclass="pre">**</span></span><spanclass="n"><spanclass="pre">kwargs</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/partitioners.html#SimpleNonStationaryPartitioner"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.partitioners.SimpleNonStationaryPartitioner"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-name descname"><spanclass="pre">build</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/partitioners.html#SimpleNonStationaryPartitioner.build"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.partitioners.SimpleNonStationaryPartitioner.build"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.nonstationary.partitioners.</span></span><spanclass="sig-name descname"><spanclass="pre">simplenonstationary_gridpartitioner_builder</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">data</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">npart</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">transformation</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/partitioners.html#simplenonstationary_gridpartitioner_builder"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.partitioners.simplenonstationary_gridpartitioner_builder"title="Permalink to this definition">¶</a></dt>
<spanid="pyfts-models-nonstationary-perturbation-module"></span><h2>pyFTS.models.nonstationary.perturbation module<aclass="headerlink"href="#module-pyFTS.models.nonstationary.perturbation"title="Permalink to this headline">¶</a></h2>
<p>Pertubation functions for Non Stationary Fuzzy Sets</p>
<spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.nonstationary.perturbation.</span></span><spanclass="sig-name descname"><spanclass="pre">exponential</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">x</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">parameters</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/perturbation.html#exponential"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.perturbation.exponential"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.nonstationary.perturbation.</span></span><spanclass="sig-name descname"><spanclass="pre">linear</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">x</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">parameters</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/perturbation.html#linear"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.perturbation.linear"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.nonstationary.perturbation.</span></span><spanclass="sig-name descname"><spanclass="pre">periodic</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">x</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">parameters</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/perturbation.html#periodic"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.perturbation.periodic"title="Permalink to this definition">¶</a></dt>
<spanclass="sig-prename descclassname"><spanclass="pre">pyFTS.models.nonstationary.perturbation.</span></span><spanclass="sig-name descname"><spanclass="pre">polynomial</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">x</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">parameters</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/nonstationary/perturbation.html#polynomial"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink"href="#pyFTS.models.nonstationary.perturbation.polynomial"title="Permalink to this definition">¶</a></dt>
<spanid="pyfts-models-nonstationary-util-module"></span><h2>pyFTS.models.nonstationary.util module<aclass="headerlink"href="#module-pyFTS.models.nonstationary.util"title="Permalink to this headline">¶</a></h2>
<spanid="module-contents"></span><h2>Module contents<aclass="headerlink"href="#module-pyFTS.models.nonstationary"title="Permalink to this headline">¶</a></h2>
<p>Fuzzy time series with nonstationary fuzzy sets, for heteroskedastic data</p>