"affiliation":"IFNMG - Instituto Federal do Norte de Minas Gerais",
"name":"Petr\u00f4nio C\u00e2ndido de Lima e Silva"
},
{
"orcid":"0000-0002-9100-9013",
"affiliation":"IFMG - Instituto Federal de Minas Gerais",
"name":"Carlos Alberto Severiano J\u00fanior"
},
{
"affiliation":"MINDS - Machine Learning and Data Science",
"name":"Marcos Ant\u00f4nio Alves"
},
{
"affiliation":"MINDS - Machine Learning and Data Science",
"name":"Gustavo Linhares Vieira"
},
{
"orcid":"0000-0003-2547-3835",
"affiliation":"UFOP - Universidade Federal de Ouro Preto",
"name":"Rodrigo C\u00e9sar Pedrosa Silva"
},
{
"affiliation":"MINDS - Machine Learning and Data Science",
"name":"Patr\u00edcia Oliveira e Lucas"
},
{
"orcid":"0000-0002-0848-9280",
"affiliation":"MINDS - Machine Learning and Data Science",
"name":"Hossein Javedani Sadaei"
},
{
"orcid":"0000-0001-9238-8839",
"affiliation":"UFMG - Universidade Federal de Minas Gerais",
"name":"Frederico Gadelha Guimar\u00e3es"
}
],
"access_right":"open",
"description":"<p><em><strong>A open source library for Fuzzy Time Series in Python</strong></em>.</p>\n\n<p>For more information:</p>\n\n<ul>\n\t<li>Official site and documentation:<a href=\"https://pyfts.github.io/pyFTS/\"> https://pyfts.github.io/pyFTS/</a></li>\n\t<li>Code repository and issue tracking: <a href=\"https://github.com/PYFTS/pyFTS\">https://github.com/PYFTS/pyFTS</a></li>\n\t<li>A short tutorial on Fuzzy Time Series:\n\t<ul>\n\t\t<li><a href=\"https://towardsdatascience.com/a-short-tutorial-on-fuzzy-time-series-dcc6d4eb1b15\">Part I</a>: Introduction to the Fuzzy Logic, Fuzzy Time Series and the pyFTS library</li>\n\t\t<li><a href=\"https://towardsdatascience.com/a-short-tutorial-on-fuzzy-time-series-part-ii-with-an-case-study-on-solar-energy-bda362ecca6d\">Part II</a>: High order, weighted and multivariate methods and an case study of solar energy forecasting.</li>\n\t\t<li><a href=\"https://towardsdatascience.com/a-short-tutorial-on-fuzzy-time-series-part-iii-69445dff83fb\">Part III</a>: Interval and probabilistic forecasting, non-stationary time series, concept drifts and time variant models.</li>\n\t</ul>\n\t</li>\n\t<li>More example codes: <a href=\"https://github.com/PYFTS/notebooks\">https://github.com/PYFTS/notebooks</a></li>\n</ul>"