2017-02-16 00:16:13 +04:00
|
|
|
import numpy as np
|
|
|
|
import pandas as pd
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
from pyFTS.common import FuzzySet,SortedCollection
|
|
|
|
|
|
|
|
|
|
|
|
class ProbabilityDistribution(object):
|
|
|
|
def __init__(self,name,nbins,uod,bins=None,labels=None, data=None):
|
|
|
|
self.name = name
|
|
|
|
self.nbins = nbins
|
|
|
|
self.uod = uod
|
|
|
|
if bins is None:
|
|
|
|
#range = (uod[1] - uod[0])/nbins
|
|
|
|
#self.bins = np.arange(uod[0],uod[1],range).tolist()
|
|
|
|
self.bins = np.linspace(uod[0], uod[1], nbins).tolist()
|
|
|
|
self.labels = [str(k) for k in self.bins]
|
|
|
|
else:
|
|
|
|
self.bins = bins
|
|
|
|
self.labels = labels
|
|
|
|
|
|
|
|
self.index = SortedCollection.SortedCollection(iterable=sorted(self.bins))
|
|
|
|
self.distribution = {}
|
|
|
|
self.count = 0
|
|
|
|
for k in self.bins: self.distribution[k] = 0
|
|
|
|
|
|
|
|
if data is not None: self.append(data)
|
|
|
|
|
|
|
|
def append(self, values):
|
|
|
|
for k in values:
|
|
|
|
v = self.index.find_ge(k)
|
|
|
|
self.distribution[v] += 1
|
|
|
|
self.count += 1
|
|
|
|
|
|
|
|
def density(self, values):
|
|
|
|
ret = []
|
|
|
|
for k in values:
|
|
|
|
v = self.index.find_ge(k)
|
|
|
|
ret.append(self.distribution[v] / self.count)
|
|
|
|
return ret
|
|
|
|
|
2017-03-03 15:53:55 +04:00
|
|
|
def cummulative(self, values):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def quantile(self, qt):
|
|
|
|
pass
|
|
|
|
|
2017-02-16 00:16:13 +04:00
|
|
|
def entropy(self):
|
|
|
|
h = -sum([self.distribution[k] * np.log(self.distribution[k]) if self.distribution[k] > 0 else 0
|
|
|
|
for k in self.bins])
|
|
|
|
return h
|
|
|
|
|
2017-02-19 08:02:59 +04:00
|
|
|
def crossentropy(self,q):
|
|
|
|
h = -sum([self.distribution[k] * np.log(q.distribution[k]) if self.distribution[k] > 0 else 0
|
|
|
|
for k in self.bins])
|
|
|
|
return h
|
|
|
|
|
|
|
|
def kullbackleiblerdivergence(self,q):
|
|
|
|
h = sum([self.distribution[k] * np.log(self.distribution[k]/q.distribution[k]) if self.distribution[k] > 0 else 0
|
|
|
|
for k in self.bins])
|
|
|
|
return h
|
|
|
|
|
2017-02-16 00:16:13 +04:00
|
|
|
def empiricalloglikelihood(self):
|
|
|
|
_s = 0
|
|
|
|
for k in self.bins:
|
|
|
|
if self.distribution[k] > 0:
|
|
|
|
_s += np.log(self.distribution[k])
|
|
|
|
return _s
|
|
|
|
|
|
|
|
def pseudologlikelihood(self, data):
|
|
|
|
|
|
|
|
densities = self.density(data)
|
|
|
|
|
|
|
|
_s = 0
|
|
|
|
for k in densities:
|
|
|
|
if k > 0:
|
|
|
|
_s += np.log(k)
|
|
|
|
return _s
|
|
|
|
|
2017-02-19 08:02:59 +04:00
|
|
|
def averageloglikelihood(self, data):
|
|
|
|
|
|
|
|
densities = self.density(data)
|
|
|
|
|
|
|
|
_s = 0
|
|
|
|
for k in densities:
|
|
|
|
if k > 0:
|
|
|
|
_s += np.log(k)
|
|
|
|
return _s / len(data)
|
|
|
|
|
2017-02-16 00:16:13 +04:00
|
|
|
def plot(self,axis=None,color="black",tam=[10, 6]):
|
|
|
|
if axis is None:
|
|
|
|
fig = plt.figure(figsize=tam)
|
|
|
|
axis = fig.add_subplot(111)
|
|
|
|
|
|
|
|
ys = [self.distribution[k]/self.count for k in self.bins]
|
|
|
|
|
|
|
|
axis.plot(self.bins, ys,c=color, label=self.name)
|
|
|
|
|
|
|
|
axis.set_xlabel('Universe of Discourse')
|
|
|
|
axis.set_ylabel('Probability')
|
2017-02-16 17:54:37 +04:00
|
|
|
|
|
|
|
|
|
|
|
def __str__(self):
|
|
|
|
head = '|'
|
|
|
|
body = '|'
|
|
|
|
for k in sorted(self.distribution.keys()):
|
|
|
|
head += str(round(k,2)) + '\t|'
|
|
|
|
body += str(round(self.distribution[k] / self.count,3)) + '\t|'
|
|
|
|
return head + '\n' + body
|