pyFTS/docs/build/html/pyFTS.probabilistic.html

432 lines
31 KiB
HTML
Raw Normal View History

2018-08-30 23:04:52 +04:00
<!doctype html>
2020-08-19 00:06:41 +04:00
<html>
<head>
2020-08-19 00:06:41 +04:00
<meta charset="utf-8" />
2022-04-10 21:32:24 +04:00
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>pyFTS.probabilistic package &#8212; pyFTS 1.7 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="_static/bizstyle.css" />
2020-08-19 00:06:41 +04:00
2022-04-10 21:32:24 +04:00
<script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
2020-08-19 00:06:41 +04:00
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/doctools.js"></script>
<script src="_static/bizstyle.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
2018-08-30 23:04:52 +04:00
<link rel="prev" title="pyFTS.partitioners package" href="pyFTS.partitioners.html" />
2022-04-10 21:32:24 +04:00
<meta name="viewport" content="width=device-width,initial-scale=1.0" />
2018-08-30 23:04:52 +04:00
<!--[if lt IE 9]>
2020-08-19 00:06:41 +04:00
<script src="_static/css3-mediaqueries.js"></script>
2018-08-30 23:04:52 +04:00
<![endif]-->
</head><body>
2018-08-30 23:04:52 +04:00
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="pyFTS.partitioners.html" title="pyFTS.partitioners package"
accesskey="P">previous</a> |</li>
2022-04-10 21:32:24 +04:00
<li class="nav-item nav-item-0"><a href="index.html">pyFTS 1.7 documentation</a> &#187;</li>
2018-08-30 23:04:52 +04:00
<li class="nav-item nav-item-1"><a href="modules.html" >pyFTS</a> &#187;</li>
2020-08-19 00:06:41 +04:00
<li class="nav-item nav-item-2"><a href="pyFTS.html" accesskey="U">pyFTS package</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">pyFTS.probabilistic package</a></li>
2018-08-30 23:04:52 +04:00
</ul>
2020-08-19 00:06:41 +04:00
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<div class="section" id="pyfts-probabilistic-package">
<h1>pyFTS.probabilistic package<a class="headerlink" href="#pyfts-probabilistic-package" title="Permalink to this headline"></a></h1>
2018-08-30 23:04:52 +04:00
<div class="section" id="module-pyFTS.probabilistic">
<span id="module-contents"></span><h2>Module contents<a class="headerlink" href="#module-pyFTS.probabilistic" title="Permalink to this headline"></a></h2>
<p>Probability Distribution objects</p>
</div>
<div class="section" id="submodules">
<h2>Submodules<a class="headerlink" href="#submodules" title="Permalink to this headline"></a></h2>
</div>
2021-01-13 01:04:42 +04:00
<div class="section" id="module-pyFTS.probabilistic.ProbabilityDistribution">
<span id="pyfts-probabilistic-probabilitydistribution-module"></span><h2>pyFTS.probabilistic.ProbabilityDistribution module<a class="headerlink" href="#module-pyFTS.probabilistic.ProbabilityDistribution" title="Permalink to this headline"></a></h2>
<dl class="py class">
2022-04-10 21:32:24 +04:00
<dt class="sig sig-object py" id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">pyFTS.probabilistic.ProbabilityDistribution.</span></span><span class="sig-name descname"><span class="pre">ProbabilityDistribution</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">type</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'KDE'</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.10)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
2021-01-13 01:04:42 +04:00
<p>Represents a discrete or continous probability distribution
If type is histogram, the PDF is discrete
If type is KDE the PDF is continuous</p>
<dl class="py method">
2022-04-10 21:32:24 +04:00
<dt class="sig sig-object py" id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.append">
<span class="sig-name descname"><span class="pre">append</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">values</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.append"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.append" title="Permalink to this definition"></a></dt>
2021-01-13 01:04:42 +04:00
<dd><p>Increment the frequency count for the values</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>values</strong> A list of values to account the frequency</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
2022-04-10 21:32:24 +04:00
<dt class="sig sig-object py" id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.append_interval">
<span class="sig-name descname"><span class="pre">append_interval</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">intervals</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.append_interval"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.append_interval" title="Permalink to this definition"></a></dt>
2021-01-13 01:04:42 +04:00
<dd><p>Increment the frequency count for all values inside an interval</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>intervals</strong> A list of intervals do increment the frequency</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
2022-04-10 21:32:24 +04:00
<dt class="sig sig-object py" id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.averageloglikelihood">
<span class="sig-name descname"><span class="pre">averageloglikelihood</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.averageloglikelihood"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.averageloglikelihood" title="Permalink to this definition"></a></dt>
2021-01-13 01:04:42 +04:00
<dd><p>Average log likelihood of the probability distribution with respect to data</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>data</strong> </p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py attribute">
2022-04-10 21:32:24 +04:00
<dt class="sig sig-object py" id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.bins">
<span class="sig-name descname"><span class="pre">bins</span></span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.bins" title="Permalink to this definition"></a></dt>
2021-01-13 01:04:42 +04:00
<dd><p>Number of bins on a discrete PDF</p>
</dd></dl>
<dl class="py method">
2022-04-10 21:32:24 +04:00
<dt class="sig sig-object py" id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.build_cdf_qtl">
<span class="sig-name descname"><span class="pre">build_cdf_qtl</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.build_cdf_qtl"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.build_cdf_qtl" title="Permalink to this definition"></a></dt>
2021-01-13 01:04:42 +04:00
<dd></dd></dl>
<dl class="py method">
2022-04-10 21:32:24 +04:00
<dt class="sig sig-object py" id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.crossentropy">
<span class="sig-name descname"><span class="pre">crossentropy</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">q</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.crossentropy"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.crossentropy" title="Permalink to this definition"></a></dt>
2021-01-13 01:04:42 +04:00
<dd><p>Cross entropy between the actual probability distribution and the informed one,
H(P,Q) = - ∑ P(x) log ( Q(x) )</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>q</strong> a probabilistic.ProbabilityDistribution object</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>Cross entropy between this probability distribution and the given distribution</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
2022-04-10 21:32:24 +04:00
<dt class="sig sig-object py" id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.cumulative">
<span class="sig-name descname"><span class="pre">cumulative</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">values</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.cumulative"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.cumulative" title="Permalink to this definition"></a></dt>
2021-01-13 01:04:42 +04:00
<dd><p>Return the cumulative probability densities for the input values,
such that F(x) = P(X &lt;= x)</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>values</strong> A list of input values</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>The cumulative probability densities for the input values</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
2022-04-10 21:32:24 +04:00
<dt class="sig sig-object py" id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.density">
<span class="sig-name descname"><span class="pre">density</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">values</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.density"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.density" title="Permalink to this definition"></a></dt>
2021-01-13 01:04:42 +04:00
<dd><p>Return the probability densities for the input values</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>values</strong> List of values to return the densities</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>List of probability densities for the input values</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
2022-04-10 21:32:24 +04:00
<dt class="sig sig-object py" id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.differential_offset">
<span class="sig-name descname"><span class="pre">differential_offset</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">value</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.differential_offset"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.differential_offset" title="Permalink to this definition"></a></dt>
2021-01-13 01:04:42 +04:00
<dd><p>Auxiliary function for probability distributions of differentiated data</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>value</strong> </p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
2022-04-10 21:32:24 +04:00
<dt class="sig sig-object py" id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.empiricalloglikelihood">
<span class="sig-name descname"><span class="pre">empiricalloglikelihood</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.empiricalloglikelihood"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.empiricalloglikelihood" title="Permalink to this definition"></a></dt>
2021-01-13 01:04:42 +04:00
<dd><p>Empirical Log Likelihood of the probability distribution, L(P) = ∑ log( P(x) )</p>
<dl class="field-list simple">
<dt class="field-odd">Returns</dt>
<dd class="field-odd"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
2022-04-10 21:32:24 +04:00
<dt class="sig sig-object py" id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.entropy">
<span class="sig-name descname"><span class="pre">entropy</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.entropy"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.entropy" title="Permalink to this definition"></a></dt>
2021-01-13 01:04:42 +04:00
<dd><p>Return the entropy of the probability distribution, H(P) = E[ -ln P(X) ] = - ∑ P(x) log ( P(x) )</p>
<p>:return:the entropy of the probability distribution</p>
</dd></dl>
<dl class="py method">
2022-04-10 21:32:24 +04:00
<dt class="sig sig-object py" id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.expected_value">
<span class="sig-name descname"><span class="pre">expected_value</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.expected_value"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.expected_value" title="Permalink to this definition"></a></dt>
2021-01-13 01:04:42 +04:00
<dd><p>Return the expected value of the distribution, as E[X] = ∑ x * P(x)</p>
<dl class="field-list simple">
<dt class="field-odd">Returns</dt>
<dd class="field-odd"><p>The expected value of the distribution</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
2022-04-10 21:32:24 +04:00
<dt class="sig sig-object py" id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.kullbackleiblerdivergence">
<span class="sig-name descname"><span class="pre">kullbackleiblerdivergence</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">q</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.kullbackleiblerdivergence"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.kullbackleiblerdivergence" title="Permalink to this definition"></a></dt>
2021-01-13 01:04:42 +04:00
<dd><p>Kullback-Leibler divergence between the actual probability distribution and the informed one.
DKL(P || Q) = - ∑ P(x) log( P(X) / Q(x) )</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>q</strong> a probabilistic.ProbabilityDistribution object</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>Kullback-Leibler divergence</p>
</dd>
</dl>
</dd></dl>
<dl class="py attribute">
2022-04-10 21:32:24 +04:00
<dt class="sig sig-object py" id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.labels">
<span class="sig-name descname"><span class="pre">labels</span></span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.labels" title="Permalink to this definition"></a></dt>
2021-01-13 01:04:42 +04:00
<dd><p>Bins labels on a discrete PDF</p>
</dd></dl>
<dl class="py method">
2022-04-10 21:32:24 +04:00
<dt class="sig sig-object py" id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.plot">
<span class="sig-name descname"><span class="pre">plot</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">axis</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">color</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'black'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tam</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[10,</span> <span class="pre">6]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">title</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.plot"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.plot" title="Permalink to this definition"></a></dt>
2021-01-13 01:04:42 +04:00
<dd></dd></dl>
<dl class="py method">
2022-04-10 21:32:24 +04:00
<dt class="sig sig-object py" id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.pseudologlikelihood">
<span class="sig-name descname"><span class="pre">pseudologlikelihood</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.pseudologlikelihood"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.pseudologlikelihood" title="Permalink to this definition"></a></dt>
2021-01-13 01:04:42 +04:00
<dd><p>Pseudo log likelihood of the probability distribution with respect to data</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>data</strong> </p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
2022-04-10 21:32:24 +04:00
<dt class="sig sig-object py" id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.quantile">
<span class="sig-name descname"><span class="pre">quantile</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">values</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.quantile"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.quantile" title="Permalink to this definition"></a></dt>
2021-01-13 01:04:42 +04:00
<dd><p>Return the Universe of Discourse values in relation to the quantile input values,
such that Q(tau) = min( {x | F(x) &gt;= tau })</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>values</strong> input values</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>The list of the quantile values for the input values</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
2022-04-10 21:32:24 +04:00
<dt class="sig sig-object py" id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.set">
<span class="sig-name descname"><span class="pre">set</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">value</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">density</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.set"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.set" title="Permalink to this definition"></a></dt>
2021-01-13 01:04:42 +04:00
<dd><p>Assert a probability density for a certain value value, such that P(value) = density</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>value</strong> A value in the universe of discourse from the distribution</p></li>
<li><p><strong>density</strong> The probability density to assign to the value</p></li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py attribute">
2022-04-10 21:32:24 +04:00
<dt class="sig sig-object py" id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.type">
<span class="sig-name descname"><span class="pre">type</span></span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.type" title="Permalink to this definition"></a></dt>
2021-01-13 01:04:42 +04:00
<dd><p>If type is histogram, the PDF is discrete
If type is KDE the PDF is continuous</p>
</dd></dl>
<dl class="py attribute">
2022-04-10 21:32:24 +04:00
<dt class="sig sig-object py" id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.uod">
<span class="sig-name descname"><span class="pre">uod</span></span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.uod" title="Permalink to this definition"></a></dt>
2021-01-13 01:04:42 +04:00
<dd><p>Universe of discourse</p>
</dd></dl>
</dd></dl>
<dl class="py function">
2022-04-10 21:32:24 +04:00
<dt class="sig sig-object py" id="pyFTS.probabilistic.ProbabilityDistribution.from_point">
<span class="sig-prename descclassname"><span class="pre">pyFTS.probabilistic.ProbabilityDistribution.</span></span><span class="sig-name descname"><span class="pre">from_point</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#from_point"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.from_point" title="Permalink to this definition"></a></dt>
2021-01-13 01:04:42 +04:00
<dd><p>Create a probability distribution from a scalar value</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>x</strong> scalar value</p></li>
<li><p><strong>kwargs</strong> common parameters of the distribution</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>the ProbabilityDistribution object</p>
</dd>
</dl>
</dd></dl>
</div>
2021-01-13 01:04:42 +04:00
<div class="section" id="module-pyFTS.probabilistic.kde">
<span id="pyfts-probabilistic-kde-module"></span><h2>pyFTS.probabilistic.kde module<a class="headerlink" href="#module-pyFTS.probabilistic.kde" title="Permalink to this headline"></a></h2>
<p>Kernel Density Estimation</p>
<dl class="py class">
2022-04-10 21:32:24 +04:00
<dt class="sig sig-object py" id="pyFTS.probabilistic.kde.KernelSmoothing">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">pyFTS.probabilistic.kde.</span></span><span class="sig-name descname"><span class="pre">KernelSmoothing</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/kde.html#KernelSmoothing"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.probabilistic.kde.KernelSmoothing" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.10)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
2021-01-13 01:04:42 +04:00
<p>Kernel Density Estimation</p>
<dl class="py attribute">
2022-04-10 21:32:24 +04:00
<dt class="sig sig-object py" id="pyFTS.probabilistic.kde.KernelSmoothing.h">
<span class="sig-name descname"><span class="pre">h</span></span><a class="headerlink" href="#pyFTS.probabilistic.kde.KernelSmoothing.h" title="Permalink to this definition"></a></dt>
2021-01-13 01:04:42 +04:00
<dd><p>Width parameter</p>
</dd></dl>
<dl class="py attribute">
2022-04-10 21:32:24 +04:00
<dt class="sig sig-object py" id="pyFTS.probabilistic.kde.KernelSmoothing.kernel">
<span class="sig-name descname"><span class="pre">kernel</span></span><a class="headerlink" href="#pyFTS.probabilistic.kde.KernelSmoothing.kernel" title="Permalink to this definition"></a></dt>
2021-01-13 01:04:42 +04:00
<dd><p>Kernel function</p>
</dd></dl>
<dl class="py method">
2022-04-10 21:32:24 +04:00
<dt class="sig sig-object py" id="pyFTS.probabilistic.kde.KernelSmoothing.kernel_function">
<span class="sig-name descname"><span class="pre">kernel_function</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">u</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/kde.html#KernelSmoothing.kernel_function"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.probabilistic.kde.KernelSmoothing.kernel_function" title="Permalink to this definition"></a></dt>
2021-01-13 01:04:42 +04:00
<dd><p>Apply the kernel</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>u</strong> </p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
2022-04-10 21:32:24 +04:00
<dt class="sig sig-object py" id="pyFTS.probabilistic.kde.KernelSmoothing.probability">
<span class="sig-name descname"><span class="pre">probability</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/kde.html#KernelSmoothing.probability"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.probabilistic.kde.KernelSmoothing.probability" title="Permalink to this definition"></a></dt>
2021-01-13 01:04:42 +04:00
<dd><p>Probability of the point x on data</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>x</strong> </p></li>
<li><p><strong>data</strong> </p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
</dd></dl>
</div>
</div>
2020-08-19 00:06:41 +04:00
<div class="clearer"></div>
</div>
</div>
</div>
2020-08-19 00:06:41 +04:00
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
2022-04-11 03:36:17 +04:00
<p class="logo"><a href="index.html">
<img class="logo" src="_static/logo_heading2.png" alt="Logo"/>
</a></p>
2022-04-10 21:32:24 +04:00
<div>
<h3><a href="index.html">Table of Contents</a></h3>
<ul>
2020-08-19 00:06:41 +04:00
<li><a class="reference internal" href="#">pyFTS.probabilistic package</a><ul>
<li><a class="reference internal" href="#module-pyFTS.probabilistic">Module contents</a></li>
<li><a class="reference internal" href="#submodules">Submodules</a></li>
2021-01-13 01:04:42 +04:00
<li><a class="reference internal" href="#module-pyFTS.probabilistic.ProbabilityDistribution">pyFTS.probabilistic.ProbabilityDistribution module</a></li>
<li><a class="reference internal" href="#module-pyFTS.probabilistic.kde">pyFTS.probabilistic.kde module</a></li>
2020-08-19 00:06:41 +04:00
</ul>
</li>
</ul>
2022-04-10 21:32:24 +04:00
</div>
<div>
<h4>Previous topic</h4>
<p class="topless"><a href="pyFTS.partitioners.html"
title="previous chapter">pyFTS.partitioners package</a></p>
</div>
2020-08-19 00:06:41 +04:00
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="_sources/pyFTS.probabilistic.rst.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3 id="searchlabel">Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="search.html" method="get">
2022-04-10 21:32:24 +04:00
<input type="text" name="q" aria-labelledby="searchlabel" autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false"/>
2020-08-19 00:06:41 +04:00
<input type="submit" value="Go" />
</form>
</div>
</div>
<script>$('#searchbox').show(0);</script>
</div>
</div>
<div class="clearer"></div>
</div>
2018-08-30 23:04:52 +04:00
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="pyFTS.partitioners.html" title="pyFTS.partitioners package"
>previous</a> |</li>
2022-04-10 21:32:24 +04:00
<li class="nav-item nav-item-0"><a href="index.html">pyFTS 1.7 documentation</a> &#187;</li>
2018-08-30 23:04:52 +04:00
<li class="nav-item nav-item-1"><a href="modules.html" >pyFTS</a> &#187;</li>
2020-08-19 00:06:41 +04:00
<li class="nav-item nav-item-2"><a href="pyFTS.html" >pyFTS package</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">pyFTS.probabilistic package</a></li>
2018-08-30 23:04:52 +04:00
</ul>
</div>
<div class="footer" role="contentinfo">
2022-04-10 21:32:24 +04:00
&#169; Copyright 2022, Machine Intelligence and Data Science Laboratory - UFMG - Brazil.
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 4.5.0.
</div>
</body>
</html>