<spanid="pyfts-models-song-module"></span><h2>pyFTS.models.song module<aclass="headerlink"href="#module-pyFTS.models.song"title="Permalink to this headline">¶</a></h2>
<p>First Order Traditional Fuzzy Time Series method by Song & Chissom (1993)</p>
<olclass="upperalpha simple"start="17">
<li><p>Song and B. S. Chissom, “Fuzzy time series and its models,” Fuzzy Sets Syst., vol. 54, no. 3, pp. 269–277, 1993.</p></li>
</ol>
<dlclass="py class">
<dtid="pyFTS.models.song.ConventionalFTS">
<emclass="property">class </em><codeclass="sig-prename descclassname">pyFTS.models.song.</code><codeclass="sig-name descname">ConventionalFTS</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/song.html#ConventionalFTS"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">flr_membership_matrix</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">flr</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/song.html#ConventionalFTS.flr_membership_matrix"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.flr_membership_matrix"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">forecast</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">ndata</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/song.html#ConventionalFTS.forecast"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.forecast"title="Permalink to this definition">¶</a></dt>
<dd><p>Point forecast one step ahead</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>data</strong>– time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong>– model specific parameters</p></li>
</ul>
</dd>
<dtclass="field-even">Returns</dt>
<ddclass="field-even"><p>a list with the forecasted values</p>
<codeclass="sig-name descname">operation_matrix</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">flrs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/song.html#ConventionalFTS.operation_matrix"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.operation_matrix"title="Permalink to this definition">¶</a></dt>
<dd></dd></dl>
<dlclass="py method">
<dtid="pyFTS.models.song.ConventionalFTS.train">
<codeclass="sig-name descname">train</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">data</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/song.html#ConventionalFTS.train"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.song.ConventionalFTS.train"title="Permalink to this definition">¶</a></dt>
<dd><p>Method specific parameter fitting</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>data</strong>– training time series data</p></li>
<li><p><strong>kwargs</strong>– Method specific parameters</p></li>
<spanid="pyfts-models-chen-module"></span><h2>pyFTS.models.chen module<aclass="headerlink"href="#module-pyFTS.models.chen"title="Permalink to this headline">¶</a></h2>
<p>First Order Conventional Fuzzy Time Series by Chen (1996)</p>
<p>S.-M. Chen, “Forecasting enrollments based on fuzzy time series,” Fuzzy Sets Syst., vol. 81, no. 3, pp. 311–319, 1996.</p>
<dlclass="py class">
<dtid="pyFTS.models.chen.ConventionalFLRG">
<emclass="property">class </em><codeclass="sig-prename descclassname">pyFTS.models.chen.</code><codeclass="sig-name descname">ConventionalFLRG</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">LHS</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/chen.html#ConventionalFLRG"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFLRG"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">append_rhs</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">c</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/chen.html#ConventionalFLRG.append_rhs"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFLRG.append_rhs"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">get_key</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">sets</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/chen.html#ConventionalFLRG.get_key"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFLRG.get_key"title="Permalink to this definition">¶</a></dt>
<dd><p>Returns a unique identifier for this FLRG</p>
</dd></dl>
</dd></dl>
<dlclass="py class">
<dtid="pyFTS.models.chen.ConventionalFTS">
<emclass="property">class </em><codeclass="sig-prename descclassname">pyFTS.models.chen.</code><codeclass="sig-name descname">ConventionalFTS</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/chen.html#ConventionalFTS"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">forecast</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">ndata</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/chen.html#ConventionalFTS.forecast"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.forecast"title="Permalink to this definition">¶</a></dt>
<dd><p>Point forecast one step ahead</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>data</strong>– time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong>– model specific parameters</p></li>
</ul>
</dd>
<dtclass="field-even">Returns</dt>
<ddclass="field-even"><p>a list with the forecasted values</p>
<codeclass="sig-name descname">generate_flrg</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">flrs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/chen.html#ConventionalFTS.generate_flrg"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.generate_flrg"title="Permalink to this definition">¶</a></dt>
<dd></dd></dl>
<dlclass="py method">
<dtid="pyFTS.models.chen.ConventionalFTS.train">
<codeclass="sig-name descname">train</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">data</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/chen.html#ConventionalFTS.train"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.chen.ConventionalFTS.train"title="Permalink to this definition">¶</a></dt>
<dd><p>Method specific parameter fitting</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>data</strong>– training time series data</p></li>
<li><p><strong>kwargs</strong>– Method specific parameters</p></li>
<spanid="pyfts-models-yu-module"></span><h2>pyFTS.models.yu module<aclass="headerlink"href="#module-pyFTS.models.yu"title="Permalink to this headline">¶</a></h2>
<p>First Order Weighted Fuzzy Time Series by Yu(2005)</p>
<p>H.-K. Yu, “Weighted fuzzy time series models for TAIEX forecasting,”
Phys. A Stat. Mech. its Appl., vol. 349, no. 3, pp. 609–624, 2005.</p>
<dlclass="py class">
<dtid="pyFTS.models.yu.WeightedFLRG">
<emclass="property">class </em><codeclass="sig-prename descclassname">pyFTS.models.yu.</code><codeclass="sig-name descname">WeightedFLRG</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">LHS</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/yu.html#WeightedFLRG"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.yu.WeightedFLRG"title="Permalink to this definition">¶</a></dt>
<p>First Order Weighted Fuzzy Logical Relationship Group</p>
<dlclass="py method">
<dtid="pyFTS.models.yu.WeightedFLRG.append_rhs">
<codeclass="sig-name descname">append_rhs</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">c</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/yu.html#WeightedFLRG.append_rhs"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.yu.WeightedFLRG.append_rhs"title="Permalink to this definition">¶</a></dt>
<dd></dd></dl>
<dlclass="py method">
<dtid="pyFTS.models.yu.WeightedFLRG.weights">
<codeclass="sig-name descname">weights</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">sets</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/yu.html#WeightedFLRG.weights"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.yu.WeightedFLRG.weights"title="Permalink to this definition">¶</a></dt>
<dd></dd></dl>
</dd></dl>
<dlclass="py class">
<dtid="pyFTS.models.yu.WeightedFTS">
<emclass="property">class </em><codeclass="sig-prename descclassname">pyFTS.models.yu.</code><codeclass="sig-name descname">WeightedFTS</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/yu.html#WeightedFTS"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">forecast</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">ndata</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/yu.html#WeightedFTS.forecast"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.forecast"title="Permalink to this definition">¶</a></dt>
<dd><p>Point forecast one step ahead</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>data</strong>– time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong>– model specific parameters</p></li>
</ul>
</dd>
<dtclass="field-even">Returns</dt>
<ddclass="field-even"><p>a list with the forecasted values</p>
<codeclass="sig-name descname">generate_FLRG</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">flrs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/yu.html#WeightedFTS.generate_FLRG"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.generate_FLRG"title="Permalink to this definition">¶</a></dt>
<dd></dd></dl>
<dlclass="py method">
<dtid="pyFTS.models.yu.WeightedFTS.train">
<codeclass="sig-name descname">train</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">ndata</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/yu.html#WeightedFTS.train"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.yu.WeightedFTS.train"title="Permalink to this definition">¶</a></dt>
<dd><p>Method specific parameter fitting</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>data</strong>– training time series data</p></li>
<li><p><strong>kwargs</strong>– Method specific parameters</p></li>
<spanid="pyfts-models-cheng-module"></span><h2>pyFTS.models.cheng module<aclass="headerlink"href="#module-pyFTS.models.cheng"title="Permalink to this headline">¶</a></h2>
<p>Trend Weighted Fuzzy Time Series by Cheng, Chen and Wu (2009)</p>
<p>C.-H. Cheng, Y.-S. Chen, and Y.-L. Wu, “Forecasting innovation diffusion of products using trend-weighted fuzzy time-series model,”
Expert Syst. Appl., vol. 36, no. 2, pp. 1826–1832, 2009.</p>
<dlclass="py class">
<dtid="pyFTS.models.cheng.TrendWeightedFLRG">
<emclass="property">class </em><codeclass="sig-prename descclassname">pyFTS.models.cheng.</code><codeclass="sig-name descname">TrendWeightedFLRG</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">LHS</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/cheng.html#TrendWeightedFLRG"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFLRG"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">weights</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">sets</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/cheng.html#TrendWeightedFLRG.weights"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFLRG.weights"title="Permalink to this definition">¶</a></dt>
<dd></dd></dl>
</dd></dl>
<dlclass="py class">
<dtid="pyFTS.models.cheng.TrendWeightedFTS">
<emclass="property">class </em><codeclass="sig-prename descclassname">pyFTS.models.cheng.</code><codeclass="sig-name descname">TrendWeightedFTS</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/cheng.html#TrendWeightedFTS"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFTS"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">generate_FLRG</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">flrs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/cheng.html#TrendWeightedFTS.generate_FLRG"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.cheng.TrendWeightedFTS.generate_FLRG"title="Permalink to this definition">¶</a></dt>
<spanid="pyfts-models-hofts-module"></span><h2>pyFTS.models.hofts module<aclass="headerlink"href="#module-pyFTS.models.hofts"title="Permalink to this headline">¶</a></h2>
<p>High Order FTS</p>
<p>Severiano, S. A. Jr; Silva, P. C. L.; Sadaei, H. J.; Guimarães, F. G. Very Short-term Solar Forecasting
using Fuzzy Time Series. 2017 IEEE International Conference on Fuzzy Systems. DOI10.1109/FUZZ-IEEE.2017.8015732</p>
<dlclass="py class">
<dtid="pyFTS.models.hofts.HighOrderFLRG">
<emclass="property">class </em><codeclass="sig-prename descclassname">pyFTS.models.hofts.</code><codeclass="sig-name descname">HighOrderFLRG</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">order</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#HighOrderFLRG"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFLRG"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">append_lhs</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">c</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#HighOrderFLRG.append_lhs"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFLRG.append_lhs"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">append_rhs</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">c</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#HighOrderFLRG.append_rhs"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFLRG.append_rhs"title="Permalink to this definition">¶</a></dt>
<dd></dd></dl>
</dd></dl>
<dlclass="py class">
<dtid="pyFTS.models.hofts.HighOrderFTS">
<emclass="property">class </em><codeclass="sig-prename descclassname">pyFTS.models.hofts.</code><codeclass="sig-name descname">HighOrderFTS</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#HighOrderFTS"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">configure_lags</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#HighOrderFTS.configure_lags"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.configure_lags"title="Permalink to this definition">¶</a></dt>
<dd></dd></dl>
<dlclass="py method">
<dtid="pyFTS.models.hofts.HighOrderFTS.forecast">
<codeclass="sig-name descname">forecast</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">ndata</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#HighOrderFTS.forecast"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.forecast"title="Permalink to this definition">¶</a></dt>
<dd><p>Point forecast one step ahead</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>data</strong>– time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong>– model specific parameters</p></li>
</ul>
</dd>
<dtclass="field-even">Returns</dt>
<ddclass="field-even"><p>a list with the forecasted values</p>
<codeclass="sig-name descname">generate_flrg</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">data</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#HighOrderFTS.generate_flrg"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.generate_flrg"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">generate_flrg_fuzzyfied</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">data</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#HighOrderFTS.generate_flrg_fuzzyfied"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.generate_flrg_fuzzyfied"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">generate_lhs_flrg</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">sample</span></em>, <emclass="sig-param"><spanclass="n">explain</span><spanclass="o">=</span><spanclass="default_value">False</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#HighOrderFTS.generate_lhs_flrg"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.generate_lhs_flrg"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">generate_lhs_flrg_fuzzyfied</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">sample</span></em>, <emclass="sig-param"><spanclass="n">explain</span><spanclass="o">=</span><spanclass="default_value">False</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#HighOrderFTS.generate_lhs_flrg_fuzzyfied"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.generate_lhs_flrg_fuzzyfied"title="Permalink to this definition">¶</a></dt>
<dd></dd></dl>
<dlclass="py method">
<dtid="pyFTS.models.hofts.HighOrderFTS.train">
<codeclass="sig-name descname">train</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">data</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#HighOrderFTS.train"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.hofts.HighOrderFTS.train"title="Permalink to this definition">¶</a></dt>
<dd><p>Method specific parameter fitting</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>data</strong>– training time series data</p></li>
<li><p><strong>kwargs</strong>– Method specific parameters</p></li>
</ul>
</dd>
</dl>
</dd></dl>
</dd></dl>
<dlclass="py class">
<dtid="pyFTS.models.hofts.WeightedHighOrderFLRG">
<emclass="property">class </em><codeclass="sig-prename descclassname">pyFTS.models.hofts.</code><codeclass="sig-name descname">WeightedHighOrderFLRG</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">order</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#WeightedHighOrderFLRG"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFLRG"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">append_lhs</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">c</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#WeightedHighOrderFLRG.append_lhs"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFLRG.append_lhs"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">append_rhs</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">fset</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#WeightedHighOrderFLRG.append_rhs"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFLRG.append_rhs"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">get_lower</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">sets</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#WeightedHighOrderFLRG.get_lower"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFLRG.get_lower"title="Permalink to this definition">¶</a></dt>
<dd><p>Returns the lower bound value for the RHS fuzzy sets</p>
<codeclass="sig-name descname">get_midpoint</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">sets</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#WeightedHighOrderFLRG.get_midpoint"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFLRG.get_midpoint"title="Permalink to this definition">¶</a></dt>
<dd><p>Returns the midpoint value for the RHS fuzzy sets</p>
<codeclass="sig-name descname">get_upper</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">sets</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#WeightedHighOrderFLRG.get_upper"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFLRG.get_upper"title="Permalink to this definition">¶</a></dt>
<dd><p>Returns the upper bound value for the RHS fuzzy sets</p>
<codeclass="sig-name descname">weights</code><spanclass="sig-paren">(</span><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#WeightedHighOrderFLRG.weights"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFLRG.weights"title="Permalink to this definition">¶</a></dt>
<dd></dd></dl>
</dd></dl>
<dlclass="py class">
<dtid="pyFTS.models.hofts.WeightedHighOrderFTS">
<emclass="property">class </em><codeclass="sig-prename descclassname">pyFTS.models.hofts.</code><codeclass="sig-name descname">WeightedHighOrderFTS</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#WeightedHighOrderFTS"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFTS"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">generate_lhs_flrg_fuzzyfied</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">sample</span></em>, <emclass="sig-param"><spanclass="n">explain</span><spanclass="o">=</span><spanclass="default_value">False</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hofts.html#WeightedHighOrderFTS.generate_lhs_flrg_fuzzyfied"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.hofts.WeightedHighOrderFTS.generate_lhs_flrg_fuzzyfied"title="Permalink to this definition">¶</a></dt>
<spanid="pyfts-models-hwang-module"></span><h2>pyFTS.models.hwang module<aclass="headerlink"href="#module-pyFTS.models.hwang"title="Permalink to this headline">¶</a></h2>
<p>High Order Fuzzy Time Series by Hwang, Chen and Lee (1998)</p>
<p>Jeng-Ren Hwang, Shyi-Ming Chen, and Chia-Hoang Lee, “Handling forecasting problems using fuzzy time series,”
Fuzzy Sets Syst., no. 100, pp. 217–228, 1998.</p>
<dlclass="py class">
<dtid="pyFTS.models.hwang.HighOrderFTS">
<emclass="property">class </em><codeclass="sig-prename descclassname">pyFTS.models.hwang.</code><codeclass="sig-name descname">HighOrderFTS</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hwang.html#HighOrderFTS"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">configure_lags</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hwang.html#HighOrderFTS.configure_lags"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.configure_lags"title="Permalink to this definition">¶</a></dt>
<dd></dd></dl>
<dlclass="py method">
<dtid="pyFTS.models.hwang.HighOrderFTS.forecast">
<codeclass="sig-name descname">forecast</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">ndata</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hwang.html#HighOrderFTS.forecast"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.forecast"title="Permalink to this definition">¶</a></dt>
<dd><p>Point forecast one step ahead</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>data</strong>– time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong>– model specific parameters</p></li>
</ul>
</dd>
<dtclass="field-even">Returns</dt>
<ddclass="field-even"><p>a list with the forecasted values</p>
</dd>
</dl>
</dd></dl>
<dlclass="py method">
<dtid="pyFTS.models.hwang.HighOrderFTS.train">
<codeclass="sig-name descname">train</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">data</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/hwang.html#HighOrderFTS.train"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.hwang.HighOrderFTS.train"title="Permalink to this definition">¶</a></dt>
<dd><p>Method specific parameter fitting</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>data</strong>– training time series data</p></li>
<li><p><strong>kwargs</strong>– Method specific parameters</p></li>
<spanid="pyfts-models-ifts-module"></span><h2>pyFTS.models.ifts module<aclass="headerlink"href="#module-pyFTS.models.ifts"title="Permalink to this headline">¶</a></h2>
<p>High Order Interval Fuzzy Time Series</p>
<p>SILVA, Petrônio CL; SADAEI, Hossein Javedani; GUIMARÃES, Frederico Gadelha. Interval Forecasting with Fuzzy Time Series.
In: Computational Intelligence (SSCI), 2016 IEEE Symposium Series on. IEEE, 2016. p. 1-8.</p>
<dlclass="py class">
<dtid="pyFTS.models.ifts.IntervalFTS">
<emclass="property">class </em><codeclass="sig-prename descclassname">pyFTS.models.ifts.</code><codeclass="sig-name descname">IntervalFTS</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ifts.html#IntervalFTS"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">forecast_ahead_interval</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">data</span></em>, <emclass="sig-param"><spanclass="n">steps</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ifts.html#IntervalFTS.forecast_ahead_interval"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.forecast_ahead_interval"title="Permalink to this definition">¶</a></dt>
<dd><p>Interval forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>data</strong>– time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>steps</strong>– the number of steps ahead to forecast</p></li>
<li><p><strong>start_at</strong>– in the multi step forecasting, the index of the data where to start forecasting (default: 0)</p></li>
</ul>
</dd>
<dtclass="field-even">Returns</dt>
<ddclass="field-even"><p>a list with the forecasted intervals</p>
<codeclass="sig-name descname">forecast_interval</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">ndata</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ifts.html#IntervalFTS.forecast_interval"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.forecast_interval"title="Permalink to this definition">¶</a></dt>
<dd><p>Interval forecast one step ahead</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>data</strong>– time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong>– model specific parameters</p></li>
</ul>
</dd>
<dtclass="field-even">Returns</dt>
<ddclass="field-even"><p>a list with the prediction intervals</p>
</dd>
</dl>
</dd></dl>
<dlclass="py method">
<dtid="pyFTS.models.ifts.IntervalFTS.get_lower">
<codeclass="sig-name descname">get_lower</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">flrg</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ifts.html#IntervalFTS.get_lower"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.get_lower"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">get_sequence_membership</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">data</span></em>, <emclass="sig-param"><spanclass="n">fuzzySets</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ifts.html#IntervalFTS.get_sequence_membership"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.get_sequence_membership"title="Permalink to this definition">¶</a></dt>
<dd></dd></dl>
<dlclass="py method">
<dtid="pyFTS.models.ifts.IntervalFTS.get_upper">
<codeclass="sig-name descname">get_upper</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">flrg</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ifts.html#IntervalFTS.get_upper"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.ifts.IntervalFTS.get_upper"title="Permalink to this definition">¶</a></dt>
<dd></dd></dl>
</dd></dl>
<dlclass="py class">
<dtid="pyFTS.models.ifts.WeightedIntervalFTS">
<emclass="property">class </em><codeclass="sig-prename descclassname">pyFTS.models.ifts.</code><codeclass="sig-name descname">WeightedIntervalFTS</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ifts.html#WeightedIntervalFTS"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">forecast_ahead_interval</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">data</span></em>, <emclass="sig-param"><spanclass="n">steps</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ifts.html#WeightedIntervalFTS.forecast_ahead_interval"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.forecast_ahead_interval"title="Permalink to this definition">¶</a></dt>
<dd><p>Interval forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>data</strong>– time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>steps</strong>– the number of steps ahead to forecast</p></li>
<li><p><strong>start_at</strong>– in the multi step forecasting, the index of the data where to start forecasting (default: 0)</p></li>
</ul>
</dd>
<dtclass="field-even">Returns</dt>
<ddclass="field-even"><p>a list with the forecasted intervals</p>
<codeclass="sig-name descname">forecast_interval</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">ndata</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ifts.html#WeightedIntervalFTS.forecast_interval"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.forecast_interval"title="Permalink to this definition">¶</a></dt>
<dd><p>Interval forecast one step ahead</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>data</strong>– time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong>– model specific parameters</p></li>
</ul>
</dd>
<dtclass="field-even">Returns</dt>
<ddclass="field-even"><p>a list with the prediction intervals</p>
<codeclass="sig-name descname">get_lower</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">flrg</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ifts.html#WeightedIntervalFTS.get_lower"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.get_lower"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">get_sequence_membership</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">data</span></em>, <emclass="sig-param"><spanclass="n">fuzzySets</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ifts.html#WeightedIntervalFTS.get_sequence_membership"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.get_sequence_membership"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">get_upper</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">flrg</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ifts.html#WeightedIntervalFTS.get_upper"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.ifts.WeightedIntervalFTS.get_upper"title="Permalink to this definition">¶</a></dt>
<spanid="pyfts-models-ismailefendi-module"></span><h2>pyFTS.models.ismailefendi module<aclass="headerlink"href="#module-pyFTS.models.ismailefendi"title="Permalink to this headline">¶</a></h2>
<p>First Order Improved Weighted Fuzzy Time Series by Efendi, Ismail and Deris (2013)</p>
<p>R. Efendi, Z. Ismail, and M. M. Deris, “Improved weight Fuzzy Time Series as used in the exchange rates forecasting of
US Dollar to Ringgit Malaysia,” Int. J. Comput. Intell. Appl., vol. 12, no. 1, p. 1350005, 2013.</p>
<emclass="property">class </em><codeclass="sig-prename descclassname">pyFTS.models.ismailefendi.</code><codeclass="sig-name descname">ImprovedWeightedFLRG</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">LHS</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ismailefendi.html#ImprovedWeightedFLRG"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFLRG"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">append_rhs</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">c</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ismailefendi.html#ImprovedWeightedFLRG.append_rhs"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFLRG.append_rhs"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">weights</code><spanclass="sig-paren">(</span><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ismailefendi.html#ImprovedWeightedFLRG.weights"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFLRG.weights"title="Permalink to this definition">¶</a></dt>
<emclass="property">class </em><codeclass="sig-prename descclassname">pyFTS.models.ismailefendi.</code><codeclass="sig-name descname">ImprovedWeightedFTS</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ismailefendi.html#ImprovedWeightedFTS"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">forecast</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">ndata</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ismailefendi.html#ImprovedWeightedFTS.forecast"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.forecast"title="Permalink to this definition">¶</a></dt>
<dd><p>Point forecast one step ahead</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>data</strong>– time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong>– model specific parameters</p></li>
</ul>
</dd>
<dtclass="field-even">Returns</dt>
<ddclass="field-even"><p>a list with the forecasted values</p>
<codeclass="sig-name descname">generate_flrg</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">flrs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ismailefendi.html#ImprovedWeightedFTS.generate_flrg"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.generate_flrg"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">train</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">ndata</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/ismailefendi.html#ImprovedWeightedFTS.train"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.ismailefendi.ImprovedWeightedFTS.train"title="Permalink to this definition">¶</a></dt>
<dd><p>Method specific parameter fitting</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>data</strong>– training time series data</p></li>
<li><p><strong>kwargs</strong>– Method specific parameters</p></li>
<spanid="pyfts-models-pwfts-module"></span><h2>pyFTS.models.pwfts module<aclass="headerlink"href="#module-pyFTS.models.pwfts"title="Permalink to this headline">¶</a></h2>
<emclass="property">class </em><codeclass="sig-prename descclassname">pyFTS.models.pwfts.</code><codeclass="sig-name descname">ProbabilisticWeightedFLRG</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">order</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFLRG"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFLRG"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">append_rhs</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">c</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFLRG.append_rhs"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFLRG.append_rhs"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">get_lower</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">sets</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFLRG.get_lower"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFLRG.get_lower"title="Permalink to this definition">¶</a></dt>
<dd><p>Returns the lower bound value for the RHS fuzzy sets</p>
<codeclass="sig-name descname">get_membership</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">data</span></em>, <emclass="sig-param"><spanclass="n">sets</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFLRG.get_membership"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFLRG.get_membership"title="Permalink to this definition">¶</a></dt>
<dd><p>Returns the membership value of the FLRG for the input data</p>
<codeclass="sig-name descname">get_midpoint</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">sets</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFLRG.get_midpoint"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFLRG.get_midpoint"title="Permalink to this definition">¶</a></dt>
<dd><p>Return the expectation of the PWFLRG, the weighted sum</p>
<codeclass="sig-name descname">get_upper</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">sets</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFLRG.get_upper"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFLRG.get_upper"title="Permalink to this definition">¶</a></dt>
<dd><p>Returns the upper bound value for the RHS fuzzy sets</p>
<codeclass="sig-name descname">lhs_conditional_probability</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">x</span></em>, <emclass="sig-param"><spanclass="n">sets</span></em>, <emclass="sig-param"><spanclass="n">norm</span></em>, <emclass="sig-param"><spanclass="n">uod</span></em>, <emclass="sig-param"><spanclass="n">nbins</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFLRG.lhs_conditional_probability"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFLRG.lhs_conditional_probability"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">lhs_conditional_probability_fuzzyfied</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">lhs_mv</span></em>, <emclass="sig-param"><spanclass="n">sets</span></em>, <emclass="sig-param"><spanclass="n">norm</span></em>, <emclass="sig-param"><spanclass="n">uod</span></em>, <emclass="sig-param"><spanclass="n">nbins</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFLRG.lhs_conditional_probability_fuzzyfied"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFLRG.lhs_conditional_probability_fuzzyfied"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">partition_function</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">sets</span></em>, <emclass="sig-param"><spanclass="n">uod</span></em>, <emclass="sig-param"><spanclass="n">nbins</span><spanclass="o">=</span><spanclass="default_value">100</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFLRG.partition_function"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFLRG.partition_function"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">rhs_conditional_probability</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">x</span></em>, <emclass="sig-param"><spanclass="n">sets</span></em>, <emclass="sig-param"><spanclass="n">uod</span></em>, <emclass="sig-param"><spanclass="n">nbins</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFLRG.rhs_conditional_probability"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFLRG.rhs_conditional_probability"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">rhs_unconditional_probability</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">c</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFLRG.rhs_unconditional_probability"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFLRG.rhs_unconditional_probability"title="Permalink to this definition">¶</a></dt>
<emclass="property">class </em><codeclass="sig-prename descclassname">pyFTS.models.pwfts.</code><codeclass="sig-name descname">ProbabilisticWeightedFTS</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">add_new_PWFLGR</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">flrg</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.add_new_PWFLGR"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.add_new_PWFLGR"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">flrg_lhs_conditional_probability</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">x</span></em>, <emclass="sig-param"><spanclass="n">flrg</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.flrg_lhs_conditional_probability"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.flrg_lhs_conditional_probability"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">flrg_lhs_conditional_probability_fuzzyfied</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">x</span></em>, <emclass="sig-param"><spanclass="n">flrg</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.flrg_lhs_conditional_probability_fuzzyfied"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.flrg_lhs_conditional_probability_fuzzyfied"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">flrg_lhs_unconditional_probability</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">flrg</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.flrg_lhs_unconditional_probability"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.flrg_lhs_unconditional_probability"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">flrg_rhs_conditional_probability</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">x</span></em>, <emclass="sig-param"><spanclass="n">flrg</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.flrg_rhs_conditional_probability"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.flrg_rhs_conditional_probability"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">forecast</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">data</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.forecast"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast"title="Permalink to this definition">¶</a></dt>
<dd><p>Point forecast one step ahead</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>data</strong>– time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong>– model specific parameters</p></li>
</ul>
</dd>
<dtclass="field-even">Returns</dt>
<ddclass="field-even"><p>a list with the forecasted values</p>
<codeclass="sig-name descname">forecast_ahead</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">data</span></em>, <emclass="sig-param"><spanclass="n">steps</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.forecast_ahead"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead"title="Permalink to this definition">¶</a></dt>
<dd><p>Point forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>data</strong>– time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>steps</strong>– the number of steps ahead to forecast (default: 1)</p></li>
<li><p><strong>start_at</strong>– in the multi step forecasting, the index of the data where to start forecasting (default: 0)</p></li>
</ul>
</dd>
<dtclass="field-even">Returns</dt>
<ddclass="field-even"><p>a list with the forecasted values</p>
<codeclass="sig-name descname">forecast_ahead_distribution</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">ndata</span></em>, <emclass="sig-param"><spanclass="n">steps</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.forecast_ahead_distribution"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead_distribution"title="Permalink to this definition">¶</a></dt>
<dd><p>Probabilistic forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>data</strong>– time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>steps</strong>– the number of steps ahead to forecast</p></li>
<li><p><strong>start_at</strong>– in the multi step forecasting, the index of the data where to start forecasting (default: 0)</p></li>
</ul>
</dd>
<dtclass="field-even">Returns</dt>
<ddclass="field-even"><p>a list with the forecasted Probability Distributions</p>
<codeclass="sig-name descname">forecast_ahead_interval</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">data</span></em>, <emclass="sig-param"><spanclass="n">steps</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.forecast_ahead_interval"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_ahead_interval"title="Permalink to this definition">¶</a></dt>
<dd><p>Interval forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>data</strong>– time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>steps</strong>– the number of steps ahead to forecast</p></li>
<li><p><strong>start_at</strong>– in the multi step forecasting, the index of the data where to start forecasting (default: 0)</p></li>
</ul>
</dd>
<dtclass="field-even">Returns</dt>
<ddclass="field-even"><p>a list with the forecasted intervals</p>
<codeclass="sig-name descname">forecast_distribution</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">ndata</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.forecast_distribution"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_distribution"title="Permalink to this definition">¶</a></dt>
<dd><p>Probabilistic forecast one step ahead</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>data</strong>– time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong>– model specific parameters</p></li>
</ul>
</dd>
<dtclass="field-even">Returns</dt>
<ddclass="field-even"><p>a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions</p>
<codeclass="sig-name descname">forecast_distribution_from_distribution</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">previous_dist</span></em>, <emclass="sig-param"><spanclass="n">smooth</span></em>, <emclass="sig-param"><spanclass="n">uod</span></em>, <emclass="sig-param"><spanclass="n">bins</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.forecast_distribution_from_distribution"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_distribution_from_distribution"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">forecast_interval</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">ndata</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.forecast_interval"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.forecast_interval"title="Permalink to this definition">¶</a></dt>
<dd><p>Interval forecast one step ahead</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>data</strong>– time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong>– model specific parameters</p></li>
</ul>
</dd>
<dtclass="field-even">Returns</dt>
<ddclass="field-even"><p>a list with the prediction intervals</p>
<codeclass="sig-name descname">generate_flrg</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">data</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.generate_flrg"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.generate_flrg"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">generate_flrg2</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">data</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.generate_flrg2"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.generate_flrg2"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">generate_flrg_fuzzyfied</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">data</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.generate_flrg_fuzzyfied"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.generate_flrg_fuzzyfied"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">generate_lhs_flrg</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">sample</span></em>, <emclass="sig-param"><spanclass="n">explain</span><spanclass="o">=</span><spanclass="default_value">False</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.generate_lhs_flrg"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.generate_lhs_flrg"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">generate_lhs_flrg_fuzzyfied</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">sample</span></em>, <emclass="sig-param"><spanclass="n">explain</span><spanclass="o">=</span><spanclass="default_value">False</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.generate_lhs_flrg_fuzzyfied"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.generate_lhs_flrg_fuzzyfied"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">get_lower</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">flrg</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.get_lower"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.get_lower"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">get_midpoint</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">flrg</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.get_midpoint"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.get_midpoint"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">get_sets_from_both_fuzzyfication</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">sample</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.get_sets_from_both_fuzzyfication"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.get_sets_from_both_fuzzyfication"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">get_upper</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">flrg</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.get_upper"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.get_upper"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">interval_heuristic</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">sample</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.interval_heuristic"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.interval_heuristic"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">interval_quantile</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">ndata</span></em>, <emclass="sig-param"><spanclass="n">alpha</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.interval_quantile"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.interval_quantile"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">point_expected_value</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">sample</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.point_expected_value"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.point_expected_value"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">point_heuristic</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">sample</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.point_heuristic"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.point_heuristic"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">pwflrg_lhs_memberhip_fuzzyfied</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">flrg</span></em>, <emclass="sig-param"><spanclass="n">sample</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.pwflrg_lhs_memberhip_fuzzyfied"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.pwflrg_lhs_memberhip_fuzzyfied"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">train</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">data</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.train"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.train"title="Permalink to this definition">¶</a></dt>
<dd><p>Method specific parameter fitting</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>data</strong>– training time series data</p></li>
<li><p><strong>kwargs</strong>– Method specific parameters</p></li>
<codeclass="sig-name descname">update_model</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">data</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#ProbabilisticWeightedFTS.update_model"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.ProbabilisticWeightedFTS.update_model"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-prename descclassname">pyFTS.models.pwfts.</code><codeclass="sig-name descname">visualize_distributions</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">model</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/pwfts.html#visualize_distributions"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.pwfts.visualize_distributions"title="Permalink to this definition">¶</a></dt>
<spanid="pyfts-models-sadaei-module"></span><h2>pyFTS.models.sadaei module<aclass="headerlink"href="#module-pyFTS.models.sadaei"title="Permalink to this headline">¶</a></h2>
<p>First Order Exponentialy Weighted Fuzzy Time Series by Sadaei et al. (2013)</p>
<p>H. J. Sadaei, R. Enayatifar, A. H. Abdullah, and A. Gani, “Short-term load forecasting using a hybrid model with a
refined exponentially weighted fuzzy time series and an improved harmony search,” Int. J. Electr. Power Energy Syst., vol. 62, no. from 2005, pp. 118–129, 2014.</p>
<emclass="property">class </em><codeclass="sig-prename descclassname">pyFTS.models.sadaei.</code><codeclass="sig-name descname">ExponentialyWeightedFLRG</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">LHS</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/sadaei.html#ExponentialyWeightedFLRG"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFLRG"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">append_rhs</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">c</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/sadaei.html#ExponentialyWeightedFLRG.append_rhs"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFLRG.append_rhs"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">weights</code><spanclass="sig-paren">(</span><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/sadaei.html#ExponentialyWeightedFLRG.weights"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFLRG.weights"title="Permalink to this definition">¶</a></dt>
<emclass="property">class </em><codeclass="sig-prename descclassname">pyFTS.models.sadaei.</code><codeclass="sig-name descname">ExponentialyWeightedFTS</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/sadaei.html#ExponentialyWeightedFTS"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">forecast</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">ndata</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/sadaei.html#ExponentialyWeightedFTS.forecast"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.forecast"title="Permalink to this definition">¶</a></dt>
<dd><p>Point forecast one step ahead</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>data</strong>– time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong>– model specific parameters</p></li>
</ul>
</dd>
<dtclass="field-even">Returns</dt>
<ddclass="field-even"><p>a list with the forecasted values</p>
<codeclass="sig-name descname">generate_flrg</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">flrs</span></em>, <emclass="sig-param"><spanclass="n">c</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/sadaei.html#ExponentialyWeightedFTS.generate_flrg"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.generate_flrg"title="Permalink to this definition">¶</a></dt>
<codeclass="sig-name descname">train</code><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n">data</span></em>, <emclass="sig-param"><spanclass="o">**</span><spanclass="n">kwargs</span></em><spanclass="sig-paren">)</span><aclass="reference internal"href="_modules/pyFTS/models/sadaei.html#ExponentialyWeightedFTS.train"><spanclass="viewcode-link">[source]</span></a><aclass="headerlink"href="#pyFTS.models.sadaei.ExponentialyWeightedFTS.train"title="Permalink to this definition">¶</a></dt>
<dd><p>Method specific parameter fitting</p>
<dlclass="field-list simple">
<dtclass="field-odd">Parameters</dt>
<ddclass="field-odd"><ulclass="simple">
<li><p><strong>data</strong>– training time series data</p></li>
<li><p><strong>kwargs</strong>– Method specific parameters</p></li>