89 lines
3.7 KiB
Java
89 lines
3.7 KiB
Java
package ru.ulstu.services;
|
|
|
|
import org.slf4j.Logger;
|
|
import org.slf4j.LoggerFactory;
|
|
import org.springframework.stereotype.Service;
|
|
import ru.ulstu.TimeSeriesUtils;
|
|
import ru.ulstu.models.TimeSeries;
|
|
import ru.ulstu.models.TimeSeriesValue;
|
|
import ru.ulstu.models.exceptions.ModelingException;
|
|
import ru.ulstu.tsMethods.TimeSeriesMethod;
|
|
import ru.ulstu.tsMethods.exponential.AddTrendAddSeason;
|
|
import ru.ulstu.tsMethods.exponential.NoTrendNoSeason;
|
|
import ru.ulstu.tsMethods.exponential.param.Alpha;
|
|
import ru.ulstu.tsMethods.exponential.param.Beta;
|
|
import ru.ulstu.tsMethods.exponential.param.Gamma;
|
|
import ru.ulstu.tsMethods.exponential.param.Season;
|
|
import ru.ulstu.tsMethods.exponential.param.TimeSeriesMethodParamValue;
|
|
|
|
import java.time.LocalDateTime;
|
|
import java.util.Arrays;
|
|
import java.util.List;
|
|
import java.util.stream.Collectors;
|
|
|
|
|
|
@Service
|
|
public class TimeSeriesService {
|
|
private static final Logger LOGGER = LoggerFactory.getLogger(TimeSeriesService.class);
|
|
|
|
public TimeSeries getRandomTimeSeries(int length) {
|
|
TimeSeries ts = new TimeSeries("Random time series");
|
|
LocalDateTime dateStart = LocalDateTime.now().minusDays(length);
|
|
for (int i = 0; i < length; i++) {
|
|
ts.getValues().add(new TimeSeriesValue(dateStart, Math.random()));
|
|
dateStart = dateStart.plusDays(1);
|
|
}
|
|
return ts;
|
|
}
|
|
|
|
public TimeSeries getForecast(TimeSeries timeSeries, int countPoints) throws ModelingException {
|
|
TimeSeriesMethod method;
|
|
method = new NoTrendNoSeason(timeSeries, new TimeSeriesMethodParamValue<>(new Alpha(), 0.8));
|
|
method = new AddTrendAddSeason(timeSeries,
|
|
new TimeSeriesMethodParamValue<>(new Alpha(), 0.5),
|
|
new TimeSeriesMethodParamValue<>(new Beta(), 0.5),
|
|
new TimeSeriesMethodParamValue<>(new Gamma(), 0.5),
|
|
new TimeSeriesMethodParamValue<>(new Season(), 17));
|
|
return method.getForecast(countPoints);
|
|
}
|
|
|
|
public TimeSeries smoothTimeSeries(TimeSeries timeSeries) throws ModelingException {
|
|
//NoTrendNoSeason nn = new NoTrendNoSeason(timeSeries, ExponentialMethodParams.of(ExponentialParamName.ALPHA, 0.8));
|
|
TimeSeriesMethod method;
|
|
method = new NoTrendNoSeason(timeSeries, new TimeSeriesMethodParamValue<>(new Alpha(), 0.8));
|
|
method = new AddTrendAddSeason(timeSeries,
|
|
new TimeSeriesMethodParamValue<>(new Alpha(), 0.5),
|
|
new TimeSeriesMethodParamValue<>(new Beta(), 0.5),
|
|
new TimeSeriesMethodParamValue<>(new Gamma(), 0.5),
|
|
new TimeSeriesMethodParamValue<>(new Season(), 17));
|
|
return method.getModel();
|
|
}
|
|
|
|
public TimeSeries getTimeSeriesFromString(String tsString) {
|
|
List<TimeSeriesValue> tsValues = Arrays.stream(tsString.split("\n"))
|
|
.flatMap(v -> Arrays.stream(v.split(";")))
|
|
.flatMap(v -> Arrays.stream(v.split(",")))
|
|
.flatMap(v -> Arrays.stream(v.split("<br>")))
|
|
.filter(v -> {
|
|
try {
|
|
Double.parseDouble(v);
|
|
return true;
|
|
} catch (NumberFormatException e) {
|
|
return false;
|
|
}
|
|
})
|
|
.map(Double::parseDouble)
|
|
.map(TimeSeriesValue::new)
|
|
.collect(Collectors.toList());
|
|
return TimeSeriesUtils.fillDates(new TimeSeries(tsValues));
|
|
}
|
|
|
|
public String getTimeSeriesToString(TimeSeries timeSeries) {
|
|
return timeSeries
|
|
.getValues()
|
|
.stream()
|
|
.map(v -> v.getValue().toString().replace("\\.", ","))
|
|
.collect(Collectors.joining(";"));
|
|
}
|
|
}
|