WIP: страницы для правил #62
@ -29,7 +29,7 @@ public class AssessmentController {
|
||||
public String getAssessments(Model model, @RequestParam Optional<Integer> branchId) {
|
||||
model.addAttribute("branches", branchService.findAll());
|
||||
if (branchId.isPresent()) {
|
||||
model.addAttribute("assessments", fuzzyInferenceService.getAssessments(branchId.get()));
|
||||
model.addAttribute("assessments", fuzzyInferenceService.getAssessmentsByForecastTendencies(branchId.get()));
|
||||
model.addAttribute("filterBranchForm", new FilterBranchForm(branchId.get()));
|
||||
} else {
|
||||
model.addAttribute("filterBranchForm", new FilterBranchForm());
|
||||
|
@ -1,13 +1,22 @@
|
||||
package ru.ulstu.extractor.assessment.model;
|
||||
|
||||
import ru.ulstu.extractor.rule.model.DbRule;
|
||||
import ru.ulstu.extractor.ts.model.TimeSeriesType;
|
||||
|
||||
public class Assessment {
|
||||
private String consequent;
|
||||
private TimeSeriesType firstAntecedent;
|
||||
private String firstAntecedentTendency;
|
||||
private TimeSeriesType secondAntecedent;
|
||||
private String secondAntecedentTendency;
|
||||
private final String consequent;
|
||||
private final TimeSeriesType firstAntecedent;
|
||||
private final String firstAntecedentTendency;
|
||||
private final TimeSeriesType secondAntecedent;
|
||||
private final String secondAntecedentTendency;
|
||||
|
||||
public Assessment(DbRule dbRule) {
|
||||
this.consequent = dbRule.getConsequent();
|
||||
this.firstAntecedent = dbRule.getFirstAntecedent();
|
||||
this.firstAntecedentTendency = dbRule.getFirstAntecedentValue().getAntecedentValue();
|
||||
this.secondAntecedent = dbRule.getSecondAntecedent();
|
||||
this.secondAntecedentTendency = dbRule.getSecondAntecedentValue().getAntecedentValue();
|
||||
}
|
||||
|
||||
public String getConsequent() {
|
||||
return consequent;
|
||||
|
@ -12,6 +12,7 @@ import com.fuzzylite.term.Triangle;
|
||||
import com.fuzzylite.variable.InputVariable;
|
||||
import com.fuzzylite.variable.OutputVariable;
|
||||
import org.springframework.stereotype.Service;
|
||||
import ru.ulstu.extractor.assessment.model.Assessment;
|
||||
import ru.ulstu.extractor.gitrepository.service.GitRepositoryService;
|
||||
import ru.ulstu.extractor.rule.model.AntecedentValue;
|
||||
import ru.ulstu.extractor.rule.model.DbRule;
|
||||
@ -22,6 +23,7 @@ import java.util.HashMap;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.stream.Collectors;
|
||||
import java.util.stream.Stream;
|
||||
|
||||
@Service
|
||||
public class FuzzyInferenceService {
|
||||
@ -56,13 +58,13 @@ public class FuzzyInferenceService {
|
||||
dbRule.getFirstAntecedentValue().getAntecedentValue(),
|
||||
dbRule.getSecondAntecedent().name(),
|
||||
dbRule.getSecondAntecedentValue().getAntecedentValue(),
|
||||
dbRule.getConsequent().replaceAll(" ", "_"));
|
||||
dbRule.getId());
|
||||
}
|
||||
|
||||
private RuleBlock getRuleBlock(Engine engine,
|
||||
Map<String, Double> variableValues,
|
||||
List<AntecedentValue> antecedentValues,
|
||||
List<String> consequentValues) {
|
||||
List<Integer> consequentValues) {
|
||||
variableValues.forEach((key, value) -> {
|
||||
InputVariable input = new InputVariable();
|
||||
input.setName(key);
|
||||
@ -86,7 +88,7 @@ public class FuzzyInferenceService {
|
||||
output.setDefaultValue(Double.NaN);
|
||||
output.setLockValueInRange(false);
|
||||
for (int i = 0; i < consequentValues.size(); i++) {
|
||||
output.addTerm(new Triangle(consequentValues.get(i).replaceAll(" ", "_"), i - 0.1, i + 2.1));
|
||||
output.addTerm(new Triangle(consequentValues.get(i).toString(), i - 0.1, i + 2.1));
|
||||
}
|
||||
engine.addOutputVariable(output);
|
||||
|
||||
@ -109,15 +111,42 @@ public class FuzzyInferenceService {
|
||||
return engine;
|
||||
}
|
||||
|
||||
public String getAssessments(Integer branchId) {
|
||||
public List<Assessment> getAssessmentsByForecastTendencies(Integer branchId) {
|
||||
List<TimeSeries> timeSeries = timeSeriesService.getByBranch(branchId);
|
||||
List<DbRule> dbRules = ruleService.getList();
|
||||
return getAssessmentsByTimeSeriesTendencies(dbRules, timeSeries);
|
||||
}
|
||||
|
||||
public List<Assessment> getAssessmentsByLastValues(Integer branchId) {
|
||||
List<TimeSeries> timeSeries = timeSeriesService.getByBranch(branchId);
|
||||
List<DbRule> dbRules = ruleService.getList();
|
||||
return getAssessmentsByLastValues(dbRules, timeSeries);
|
||||
}
|
||||
|
||||
private List<Assessment> getFuzzyInference(List<DbRule> dbRules, Map<String, Double> variableValues) {
|
||||
Engine engine = getFuzzyEngine();
|
||||
List<AntecedentValue> antecedentValues = antecedentValueService.getList();
|
||||
List<String> consequentValues = ruleService.getConsequentList();
|
||||
List<AntecedentValue> antecedentValues = Stream.concat(dbRules.stream().map(DbRule::getFirstAntecedentValue),
|
||||
dbRules.stream().map(DbRule::getSecondAntecedentValue)).distinct().collect(Collectors.toList());
|
||||
List<Integer> consequentValues = dbRules.stream().map(DbRule::getId).collect(Collectors.toList());
|
||||
engine.addRuleBlock(getRuleBlock(engine, variableValues, antecedentValues, consequentValues));
|
||||
String consequent = getConsequent(engine, variableValues);
|
||||
return dbRules
|
||||
.stream()
|
||||
.filter(r -> r.getId().equals(Integer.valueOf(consequent)))
|
||||
.map(Assessment::new)
|
||||
.collect(Collectors.toList());
|
||||
}
|
||||
|
||||
private List<Assessment> getAssessmentsByTimeSeriesTendencies(List<DbRule> dbRules, List<TimeSeries> timeSeries) {
|
||||
Map<String, Double> variableValues = new HashMap<>();
|
||||
timeSeries.forEach(ts -> variableValues.put(ts.getTimeSeriesType().name(), timeSeriesService.getLastTimeSeriesTendency(ts)));
|
||||
engine.addRuleBlock(getRuleBlock(engine, variableValues, antecedentValues, consequentValues));
|
||||
return getConsequent(engine, variableValues);
|
||||
return getFuzzyInference(dbRules, variableValues);
|
||||
}
|
||||
|
||||
private List<Assessment> getAssessmentsByLastValues(List<DbRule> dbRules, List<TimeSeries> timeSeries) {
|
||||
Map<String, Double> variableValues = new HashMap<>();
|
||||
timeSeries.forEach(ts -> variableValues.put(ts.getTimeSeriesType().name(), ts.getValues().get(ts.getValues().size() - 1).getValue()));
|
||||
return getFuzzyInference(dbRules, variableValues);
|
||||
}
|
||||
|
||||
private void validateVariables(Map<String, Double> variableValues, List<DbRule> dbDbRules) {
|
||||
@ -144,7 +173,7 @@ public class FuzzyInferenceService {
|
||||
outputVariable.defuzzify();
|
||||
}
|
||||
return (outputVariable == null || Double.isNaN(outputVariable.getValue()))
|
||||
? "Нет рекомендаций"
|
||||
? "Нет результата"
|
||||
: outputVariable.highestMembership(outputVariable.getValue()).getSecond().getName();
|
||||
}
|
||||
}
|
||||
|
@ -35,18 +35,13 @@
|
||||
<input type="hidden" th:field="*{branchId}">
|
||||
</form>
|
||||
<div th:if="${assessments != null}">
|
||||
<h3>Состояние репозитория описывается следующими выражениями:</h3>
|
||||
<h5>Состояние репозитория описывается следующими выражениями:</h5>
|
||||
<div th:each="assessment: ${assessments}">
|
||||
<div th:text="${assessment.consequent}"></div>
|
||||
вследствие тенденции
|
||||
<div th:text="${assessment.firstAntecedentTendency}"></div>
|
||||
показателя
|
||||
<div th:text="${assessment.firstAntecedent}"></div>
|
||||
и тенденции
|
||||
<div th:text="${assessment.secondAntecedentTendency}"></div>
|
||||
показателя
|
||||
<div th:text="${assessment.secondAntecedent}"></div>
|
||||
и
|
||||
<span th:text="${assessment.consequent}"></span>
|
||||
вследствие тенденции '<span th:text="${assessment.firstAntecedentTendency}"></span>' показателя '<span
|
||||
th:text="${assessment.firstAntecedent.description}"></span>'
|
||||
и тенденции '<span th:text="${assessment.secondAntecedentTendency}"></span>' показателя '<span
|
||||
th:text="${assessment.secondAntecedent.description}"></span>';
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
Loading…
Reference in New Issue
Block a user